AI对比:ChatGPT和文心一言的区别和差异

news2025/1/23 9:31:31

目录

一、ChatGPT和文心一言大模型的对比分析

1.1 二者训练的数据情况分析

1.2 训练大模型数据规模和参数对比

1.3 二者3.5版本大模型对比总结

二、ChatGPT和文心一言功能对比分析

2.1 二者产品提供的功能情况分析

2.2 测试一下各种功能的特性

2.2.1 文本创作能力

2.2.2 代码功能

2.2.3 画图功能

三、总结



前言:

       ChatGPT和文心一言都是基于大模型驱动的AIGC产品,由于两者训练的基础数据不同,造成了两者功能和性能上的差异。

       本文将分析两者大模型的区别,然后测试二者功能和性能上的差异。

一、ChatGPT和文心一言大模型的对比分析

       对于ChatGPT和文心一言,市场上免费的最高大模型版本都是3.5,想要对比二者的区别,就要从二者大模型训练的数据集和模型参数上分析。

1.1 二者训练的数据情况分析

我们来问一下两个产品训练数据来源?

ChatGpt的回答:

文心一言的回答:

1.2 训练大模型数据规模和参数对比

问一下训练数据量级和模型参数量级?

ChatGpt回答:

GPT3.5大模型几百亿的参数量级;用于训练数据规模大,具体未知。

文心一言回答:

文心一言3.5大模型参数没有在官网找到,推论不超过千亿;用于训练清洗好的数据集有数十亿。

1.3 二者3.5版本大模型对比总结

       这里我们问的是两者训练的数据量级;ChatGpt回答的是有数百亿的参数,文心一言回答的是原始数据量级;这里补充个概念B(十亿),表示用于大模型训练的参数量。

训练数据集:ChatGpt从论文、GitHub、模型、Facebook的对话数据集、SOTA38.5万个对话的高质量数据等作为训练数据,数据集很大,但具体详情数据未知;文心一言从网络、新闻、博客等清理出数十亿处理后的数据作为数据集;

模型参数:ChatGpt3.5大模型有数百亿的参数,几十B;文心一言大模型的参数没有说明,推论有几百亿的参数。

       两个3.5版本大模型,从训练数据量和数据参数大小问答没有具体的指标;能从数据来源知道ChatGPT的训练数据更丰富,模型参数上没有详细的数据指标对比。

二、ChatGPT和文心一言功能对比分析

两个产品面向应用市场,可以免费使用的最新功能和性能对比分析。

2.1 二者产品提供的功能情况分析

ChatGpt回答:

文心一言回答:

总结:两者都能提供问答交流、文本创作、学科知识等交流; ChatGpt能提供编程辅助,文心一言能提供图片生成功能;

2.2 测试一下各种功能的特性

2.2.1 文本创作能力

写一首描述人工智能的七言绝句:

ChatGpt回答:

第一次写:

在芯片雄伟展神威,智慧涌动若潮汐。

代码谱写奇迹歌,铸就未来数千纸。

第二次写:

电流流转翼智慧,机械心灵识未来。

代码舞动奇思妙,数算世间新秩序。

文心一言回答:

第一次写:

智能光芒照万方,人勤智慧是吾邦。

能描妙境超凡俗,画出未来入梦乡。

第二次写:

智能科技耀乾坤, 创新发展势如虹。

未来世界谁主宰, 只有人工智能通。

总结:对于ChatGpt和文心一言对于汉字的理解能力与生成能力;

ChatGpt要求的是写七言,但是第一次却出现了八个字的句子,第二次回答才合规,从文学的角度看,它对于语义理解和输出产生的内容,有较高的理解水准,深层次描写了因果关系;

文心一言两次在规范上都是符合,但是从文学角度看,它的理解力和输出内容的深度停留在描述层面,和chatGpt的交流深度有一定的差距。

2.2.2 代码功能

问一下:写一个Flink1.16版本,Kafka到ES的代码。

ChatGpt代码能力:

<!-- Flink Kafka Connector xml-->
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-connector-kafka_2.12</artifactId>
    <version>1.16.0</version> <!-- 使用适当的版本号 -->
</dependency>

<!-- Flink Elasticsearch Connector -->
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-connector-elasticsearch7_2.12</artifactId>
    <version>1.16.0</version> <!-- 使用适当的版本号 -->
</dependency>


-----code-----
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.streaming.connectors.elasticsearch.ElasticsearchSinkFunction;
import org.apache.flink.streaming.connectors.elasticsearch7.ElasticsearchSink;
import org.apache.flink.util.Collector;
import org.apache.http.HttpHost;
import org.elasticsearch.action.index.IndexRequest;
import org.elasticsearch.client.Requests;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;

public class KafkaToESSinkExample {

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        Properties kafkaProps = new Properties();
        kafkaProps.setProperty("bootstrap.servers", "your_kafka_bootstrap_servers");
        kafkaProps.setProperty("group.id", "your_consumer_group_id");

        // 从 Kafka 读取数据
        DataStream<String> kafkaStream = env
            .addSource(new FlinkKafkaConsumer<>("your_kafka_topic", new SimpleStringSchema(), kafkaProps));

        // 解析 Kafka 数据,可以根据实际情况修改
        DataStream<Map<String, String>> parsedStream = kafkaStream
            .map(new KafkaDataParser());

        // 将数据写入 Elasticsearch
        List<HttpHost> httpHosts = new ArrayList<>();
        httpHosts.add(new HttpHost("your_elasticsearch_host", 9200, "http"));

        ElasticsearchSink.Builder<Map<String, String>> esSinkBuilder = new ElasticsearchSink.Builder<>(
            httpHosts,
            new ElasticsearchSinkFunction<Map<String, String>>() {
                public IndexRequest createIndexRequest(Map<String, String> element) {
                    // 定义将要写入 Elasticsearch 的文档
                    Map<String, String> json = new HashMap<>();
                    json.put("field1", element.get("field1"));
                    json.put("field2", element.get("field2"));
                    // 添加更多字段...

                    return Requests.indexRequest()
                        .index("your_elasticsearch_index")
                        .type("_doc")
                        .source(json);
                }

                @Override
                public void process(Map<String, String> element, RuntimeContext ctx, RequestIndexer indexer) {
                    indexer.add(createIndexRequest(element));
                }
            });

        // 设置批量写入选项
        esSinkBuilder.setBulkFlushMaxActions(1);

        // 添加 Elasticsearch Sink
        parsedStream.addSink(esSinkBuilder.build());

        env.execute("Kafka to Elasticsearch Sink Example");
    }

    // 解析 Kafka 数据的简单 MapFunction,可以根据实际情况修改
    public static class KafkaDataParser implements MapFunction<String, Map<String, String>> {
        @Override
        public Map<String, String> map(String value) throws Exception {
            // 这里假设 Kafka 中的数据是 JSON 格式
            // 解析数据并返回一个 Map,其中包含需要写入 Elasticsearch 的字段
            // 根据实际情况修改解析逻辑
            // 示例:{"field1": "value1", "field2": "value2"}
            return parseJsonToMap(value);
        }

        private Map<String, String> parseJsonToMap(String json) {
            // 实现 JSON 到 Map 的解析逻辑
            // 这里简单演示,具体实现取决于实际数据格式和字段
            Map<String, String> result = new HashMap<>();
            // 示例:{"field1": "value1", "field2": "value2"}
            String[] keyValuePairs = json.replaceAll("[{}\"]", "").split(",");
            for (String pair : keyValuePairs) {
                String[] entry = pair.split(":");
                result.put(entry[0].trim(), entry[1].trim());
            }
            return result;
        }
    }
}

文心一言的代码能力:

-------xml----
<dependencies>  
    <!-- Flink dependencies -->  
    <dependency>  
        <groupId>org.apache.flink</groupId>  
        <artifactId>flink-java</artifactId>  
        <version>1.16.0</version>  
    </dependency>  
    <dependency>  
        <groupId>org.apache.flink</groupId>  
        <artifactId>flink-streaming-java_2.11</artifactId>  
        <version>1.16.0</version>  
    </dependency>  
    <!-- Elasticsearch dependencies -->  
    <dependency>  
        <groupId>org.elasticsearch.client</groupId>  
        <artifactId>elasticsearch-rest-high-level-client</artifactId>  
        <version>7.15.2</version>  
    </dependency>  
    <dependency>  
        <groupId>org.apache.flink</groupId>  
        <artifactId>flink-connector-elasticsearch7</artifactId>  
        <version>1.16.0</version>  
    </dependency>  
</dependencies>

----------------code-------------------------------------
import org.apache.flink.api.common.restartstrategy.RestartStrategies;  
import org.apache.flink.streaming.api.datastream.DataStream;  
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;  
import org.apache.flink.streaming.connectors.kafka.*;  
import org.apache.flink.streaming.connectors.elasticsearch.*;  
import org.apache.flink.streaming.connectors.elasticsearch7.*;  
import org.apache.flink.util.Collector;  
import org.apache.flink.api.common.serialization.*;  
import org.apache.flink.api.java.*;  
import org.apache.flink.api.*;  
import org.apache.flink.*;  
import org.elasticsearch.*;  
import org.elasticsearch.action.*;  
import org.elasticsearch.client.*;  
import org.elasticsearch.client.indices.*;  
import org.elasticsearch.common.*;  
import org.elasticsearch.common.xcontent.*;  
import org.elasticsearch.rest.*;  
import org.elasticsearch.transport.*;  
import java.*;  
import java.util.*;  
import java.util.*;  
import javafx.*; // for Kafka consumer group ID generation (only required if you're on Java 8u20 or earlier)  
  
public class KafkaToES {  
    public static void main(String[] args) throws Exception {  
        // Set up the execution environment and parameters  
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();  
        env.setRestartStrategy(RestartStrategies.fixedDelayRestart(3, 1000)); // Restart strategy for task failures and exceptions, delay between restarts in milliseconds, number of restart attempts before the job fails if exceptions occur in the tasks (optional)  
        env.setParallelism(1); // Set parallelism for the job (optional)  
        env.enableCheckpointing(60000); // Enable checkpointing for fault tolerance (optional) and set checkpoint interval in milliseconds (optional)  
        env.getCheckpointConfig().setCheckpointTimeout(10000); // Set checkpoint timeout in milliseconds (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) (optional) 256MB - 1GB per TaskManager JVM heap size recommended, depending on your workload and the available memory per TaskManager machine ("node") that Flink is deployed on ("slot configuration") - https://ci-files01-prod.s

结论:两者基础的代码能力都是拥有的,准确性没有验证,但是ChatGpt代码逻辑上的准确性和表达能力优于文心一言,文心一言在代码输出的时候没有写完。

2.2.3 画图功能

chatGpt的画图能力:

文心一言的画图能力:

结论:ChatGpt3.5大模型没有提供画图功能,文心一言3.5大模型跨模态提供了画图功能,拥有图片的AIGC能力。

三、总结

       ChatGpt和文心一言这两个产品,能免费使用的功能上:文本创作等语言理解深度和代码输出质量上,ChatGpt比文心一言更有优势;但是文心一言在AI作画上功能上是独有的;另外一个可用性上,文心一言是国内的产品,使用方便,ChatGPT需要VPN翻墙和申请ChatGPT账号,操作上麻烦点。以上是笔者分析出来的区别。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1404951.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

websocket服务端本地部署

文章目录 1. Java 服务端demo环境2. 在pom文件引入第三包封装的netty框架maven坐标3. 创建服务端,以接口模式调用,方便外部调用4. 启动服务,出现以下信息表示启动成功,暴露端口默认99995. 创建隧道映射内网端口6. 查看状态->在线隧道,复制所创建隧道的公网地址加端口号7. 以…

Samtec微波、毫米波连接器系统实现卓越性能

【摘要/前言】 在IMS 2023展会上&#xff0c;Samtec 的展台展示了各种尖端产品和技术。其中之一是各种微波、毫米波连接器系统&#xff0c;这些系统性能卓越&#xff0c;令人印象深刻。 Samtec射频设计与仿真工程经理Michael Griesi向我们介绍了演示过程和结果。 【Demo演示】…

Qt5.12.0 与 VS2017 在 .pro文件转.vcxproj文件

一、参考资料 stackoverflow qt - How to generate .sln/.vcproj using qmake - Stack Overflowhttps://stackoverflow.com/questions/2339832/how-to-generate-sln-vcproj-using-qmake?answertabtrending#tab-topqt - 如何使用 qmake 生成 .sln/.vcproj - IT工具网 (coder.wo…

综合小型气象观测站

TH-QC12随着科技的发展&#xff0c;气象观测站已经变得越来越普遍。无论是大规模的国家级气象站&#xff0c;还是小型的气象观测站&#xff0c;它们都为我们的生活和生产提供了重要的气象数据。 综合小型气象观测站&#xff0c;顾名思义&#xff0c;它集成了多种气象观测设备&a…

如何搭建一个短视频社区?这篇文章告诉你

短视频社区是随着手机拍摄和社交媒体的普及而兴起的一种社区形式。 短视频社区通过提供用户生成的短视频内容&#xff0c;并与其他用户互动和分享&#xff0c;为用户提供了一个展示自己才华和创造力的平台。当前已经成为全球范围内的热门社交媒体形式&#xff0c;市场情况非常…

Apache Zeppelin结合Apache Airflow使用1

Apache Zeppelin结合Apache Airflow使用1 文章目录 Apache Zeppelin结合Apache Airflow使用1前言一、安装Airflow二、使用步骤1.目标2.编写DAG2.加载、执行DAG 总结 前言 之前学了Zeppelin的使用&#xff0c;今天开始结合Airflow串任务。 Apache Airflow和Apache Zeppelin是两…

DAY07_SpringBoot—用法整合MyBatis

目录 1 SpringBoot 用法1.1 环境切换1.1.1 业务需求1.1.2 多环境编辑 1.2 热部署1.2.1 需求说明1.2.2 引入jar包1.2.3 配置IDEA环境 2 SpringBoot整合Mybatis2.1 导入数据库2.2 创建SpringBoot项目2.2.1 创建项目2.2.2 生成POM.xml文件如下2.2.3 Mavenjar包作用范围2.2.4 数据源…

面试经验分享 | 工控安全研究员

本文由掌控安全学院 - 徐浩洋 投稿 笔试 进程注入有几种简单描述一下? Windows异常分发流程。 Windows下反调试和反反调试的手段。 使用分页机制下虚拟地址怎么翻译为物理地址。 符号延时加载(DeferredSymbolLoading)的原理? 漏洞触发流程是怎么样的,怎么定位触发点如何进行…

服务器数据恢复—服务器进水导致阵列中磁盘同时掉线的数据恢复案例

服务器数据恢复环境&#xff1a; 数台服务器数台存储阵列柜&#xff0c;共上百块硬盘&#xff0c;划分了数十组lun。 服务器故障&检测&#xff1a; 外部因素导致服务器进水&#xff0c;进水服务器中一组阵列内的所有硬盘同时掉线。 北亚数据恢复工程师到达现场后发现机房内…

OpenMP和MPI环境配置

目录 OpenMP和MPI环境配置OpenMP环境配置MPI环境配置&#xff08;Windows&#xff09;MPI环境配置&#xff08;Ubuntu&#xff09; 参考资料 OpenMP和MPI环境配置 OpenMP环境配置 首先创建项目&#xff0c;选择C 控制台应用。 选择项目&#xff0c;属性。 在C/C —— 语言中&…

老师家访的目的是什么

家访&#xff0c;对于老师来说&#xff0c;是工作中必不可少的一部分。有人会问&#xff0c;老师家访的目的是什么呢&#xff1f;是为了了解学生的家庭情况&#xff0c;还是为了和家长建立良好的沟通关系&#xff1f;其实&#xff0c;老师家访的目的远不止于此。 老师家访是为…

【MySQL】计算日期是当前月份的第几周

力扣题 1、题目地址 2993. 发生在周五的交易 I 2、模拟表 表&#xff1a;Purchases Column NameTypeuser_idintpurchase_datedateamount_spendint (user_id, purchase_date, amount_spend) 是该表的主键(具有唯一值的列)。purchase_date 的范围从 2023 年 11 月 1 日到 2…

对称图做法,全程动图演示

最终效果&#xff1a; 实现步骤&#xff1a; 其他图形画法&#xff1a; 点线对比图做法&#xff0c;全程动图演示 气泡图做法&#xff0c;全程动图演示 重叠柱状图做法&#xff0c;全程动图演示 瀑布图做法&#xff0c;全程动图演示 对称图做法&#xff0c;全程动图演示

轻松上手:通过阿里云PAI QuickStart微调部署Qwen-72B-Chat模型

作者&#xff1a;熊兮、求伯、一耘 引言 通义千问-72B&#xff08;Qwen-72B&#xff09;是阿里云研发的通义千问大模型系列的720亿参数规模模型。Qwen-72B的预训练数据类型多样、覆盖广泛&#xff0c;包括大量网络文本、专业书籍、代码等。Qwen-72B-Chat是在Qwen-72B的基础上…

第一篇【传奇开心果系列】beeware的toga开发移动应用:轮盘抽奖移动应用

系列博文目录 beeware的toga开发移动应用示例系列博文目录一、项目目标二、开发传奇开心果轮盘抽奖安卓应用编程思路三、传奇开心果轮盘抽奖安卓应用示例代码四、补充抽奖逻辑实现五、开发传奇开心果轮盘抽奖苹果手机应用编程思路六、开发传奇开心果轮盘抽奖苹果手机应用示例代…

kafka集群和Filebeat+Kafka+ELK

一、Kafka 概述 1.1 为什么需要消息队列&#xff08;MQ&#xff09; 主要原因是由于在高并发环境下&#xff0c;同步请求来不及处理&#xff0c;请求往往会发生阻塞。比如大量的请求并发访问数据库&#xff0c;导致行锁表锁&#xff0c;最后请求线程会堆积过多&#xff0c;从…

专业ScrumMaster(高级)- PSM II 认证班,Scrum.org认证PSM II官方认证班

课程简介 Scrum是目前运用最为广泛的敏捷开发方法&#xff0c;是一个轻量级的项目管理和产品研发管理框架&#xff0c;旨在最短时间内交付最大价值。根据2022年全球敏捷状态报告&#xff0c;Scrum的应用占比已经达到87%。 Scrum.org 由 Scrum 的联合创始人 Ken Schwaber 创立…

[亲测有效]CentOS7下安装mysql5.7

前言 近期项目需要搭配mysql一起存储相关数据&#xff0c;但对mysql的版本有要求&#xff0c;于是在服务器搭建了mysql5.7&#xff0c;顺便记录一下搭建步骤和踩坑解决步骤。 目录 前言 一、清除旧安装包 二、安装YUM 三、使用yum命令即可完成安装 四、重新设置密码 五、…

C#winform上位机开发学习笔记5-串口助手的定时发送功能添加

1.功能描述 选择自动发送功能后&#xff0c;按照设定的发送时间发送发送框中的信息数据&#xff0c;设定时间可以手动输入&#xff0c;当手动输入信息无效&#xff08;非数字&#xff09;时&#xff0c;系统弹出错误提示&#xff0c;并将其设置为默认定时时间。 2.代码部分 步…

【Gene Expression Prediction】Part3 Deep Learning in Gene Expression Analysis

文章目录 6 第二个讲座&#xff1a;Deep Learning in Gene Expression Analysis6.1 Introduction6.2 D-GEX6.2.1 Connectivity map project6.2.2 Predicting gene expression from landmark genes 6.3 Deep generative models for genomics6.3.1 Manifold hypothesis6.3.2 Auto…