2017年认证杯SPSSPRO杯数学建模B题(第二阶段)岁月的印记全过程文档及程序

news2024/11/15 18:01:38

2017年认证杯SPSSPRO杯数学建模

B题 岁月的印记

原题再现:

  对同一个人来说,如果没有过改变面容的疾病、面部外伤或外科手术等经历,年轻和年老时的面容总有很大的相似性。人们在生活中也往往能够分辨出来两张不同年龄段的照片是不是同一个人。当然,年龄段相差越大,识别起来也就越困难。
  第二阶段问题: 我们希望通过一个人在年轻时的面部照片来预测其过若干年后的容貌,也希望做到通过一个人在较大年龄时的照片来还原其年轻时的容貌。请你建立合理的数学模型来完成这项任务。

整体求解过程概述(摘要)

  本文采用局域二值模式特征提取,SVM 支持向量机对图像人脸进行年龄预测,又利用人脸随着年龄的形状变化和纹理特征变化对不同目标年龄的人脸进行重构,还对重构后的人脸和真实人脸进行了相似度分析。
  首先,为了提高模型准确率,我们对图像进行灰度均衡化、旋转调整、尺度归一化处理。我们建立了基于局域二值模式的纹理特征提取模型,并且建立了基于 BP 神经网络贡献分析法对特征向量进行降维,得出额头、嘴巴、眼角等地方对年龄的影响较大,将原维数 256 维的纹理特征向量降到 30 维。我们将降维后的特征向量作为输入,训练了加权支持向量机的年龄估计函数。同时,我们利用 FG-NET 人脸数据库验证年龄估计的支持向量回归模型,准确率达到 76.2%,且误差控制在 3 岁以内。
  其次,我们选取 50 个特征点来标定人脸正面,得到了 8 个年龄段的平均脸型。接着我们建立了基于径向基函数的人脸形状变化模型,并计算出该年龄段人脸纹理特征向量,利用 LBP 算子提取的纹理特征与人脸型的变化相结合,进而重构了出目标年龄的人脸图像,其中人脸预测时进行的是纹理特征向量的叠加计算,人脸还原时进行的是纹理特征向量的差运算。
  最后,我们建立基于欧氏距离的照片相似度分析模型,对模型重构出的人脸与真实的人脸进行相似度分析,检验出模型的正确率在 58.6%。我们还分析了所建模型的优缺点,讨论了模型的推广应用。

问题分析:

  人脸图像识别问题是现今模式识别、图像处理等学科的一大研究热点,可以广泛的应用于安全部门、身份鉴别、电视会议、数字监控等领域。随着年龄的变化,人脸会发生变化,具体表现在色相衰老和皱纹的出现。本题要求我们在第一阶段的基础上,建立数学模型,解决通过一个人年轻时候来预测其若干年后的容貌,以及通过一个人在年老
时的照片来还原其年轻时候的容貌两个问题。
  首先,我们选取了 FG-NET 年龄人脸库,该人脸数据库中的人脸图像并不是在标准光线和标准角度中拍摄的,所以我们首先进行预处理,才能使用图像数据进行建模。但由于采集的图像往往会带有很多的噪声和干扰信号,因此对于采集的人脸图像,首先需要进行规范化处理,将外界的因素带来的影响提出,这里可以采用灰度化、集合规范化(图像的平移、旋转、缩放变化)、灰度规范化(即平滑、灰度均衡化)等预处理的方法。
  其次,要对图像进行面部特征提取和年龄估计,因为只有根据人脸的特征才能对其年龄进行合理的估计。可以使用 LBP 纹理特征提取算法,提取出人脸的纹理特征向量,并通过神经网络贡献分析法对特征向量作降维处理。对降维后的人脸纹理特征向量,可以使用 SVR 支持向量机回归模型, 以特征向量为输入对 SVR 进行训练,可以得到年龄估计模型。以此对图像的人脸进行较为准确的年龄估计。为下一步的人脸预测和人脸还原做准备。
  然后,是人脸的重构部分。由于人脸的变化主要表现为人脸形状随年龄的变化和人脸纹理特征(青春痘、皱纹等)随年龄的变化。因此,在确定目前人脸的年龄以后,就可以以此为基础,对人脸进行重构。这里的重构有两类,一类是对预测一张年轻的脸若干年后的容貌,令一类是还原一张年老的脸若干年前的容貌。重构主要包含有两个阶段,一是对人脸形状的改变,而是对人脸纹理的变化。在预测人脸的容貌时,只要利用该年龄段的人的脸形状变化后,叠加上预测年龄段的人脸纹理特征即可。对于还原人脸容貌,则要将人脸形状还原后,去除掉相应的纹理特征。
  最后,还要检验人脸重构是否合理,即检验重构后的人脸是否还是与原来的人脸是同一个,因此可以建立人脸相似度检验模型,对重构后的人脸和该年龄的人脸进行相似度分析,检验模型的准确性。

模型假设:

  1. 假设人的衰老是正常衰老,不考虑人的生病、吸烟、压力大等不良生活习惯造成的非正常变老。
  2. 假设本文所研究的人在成长过程中没有经历因为搬家等造成的生存环境的改变,外部环境对其造成的外貌的影响不予考虑。
  3. 假设选取的人脸图像样本采取时,没有意外伤害或病变导致的人脸局部区域的形状、颜色发生显著性改变
  4. 假采样人脸图像时,被采样者没有故意扭曲脸型,即为正常拍照。

论文缩略图:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

部分程序代码:(代码和文档not free)

function [ opic ] = picInit( ipic )
%PICINIT 此函数用来预处理图片
mysize=size(ipic);
if numel(mysize)>2
 tmp = rgb2gray(ipic);% 将图像灰度化
else
 tmp = ipic;
end
%灰度调整
gc = imadjust(tmp,[0.2, 0.6], [0, 1]);
opic = gc;
end
//----------------------------------------------------------------------------
function [out] = get_bar( pic )
%GET_LBR 此处显示有关此函数的摘要
% 此处显示详细说明
gpic = double(pic);
lw=int16(size(gpic,1)/7);
lh=int16(size(gpic,2)/7);
for i = 0:6
 for j = 0:6
 res = zeros(lh, lw);
 for x = i*lw+1:(i+1)*lw
 for y = j*lh+1:(j+1)*lh
 if x > size(gpic, 1) || y > size(gpic, 2)
 continue; 
 end
 res(x-i*lw,y-j*lh) = pic(x,y);
 end
 end
 tmp = get_barD(res);
 if i == 0 && j == 0
 out=tmp;
 else
 out=array_add(out,tmp);
 end
 end
end
end
function [ opic ] = lbp( pic )
%LBP 进行 lbp 处理
tmp=pic;
for i = 2:size(pic,1)-1
 for j = 2:size(pic,2)-1
 res=0;
 for k=i-1:i+1
 for l=j-1:j+1
 if k==i && l == j
 continue
 end
 res=res*2;
 x = 0;
if pic(k,l)>pic(i,j)
 x=1;
 end
 res = res+x;
 end
 end
 tmp(i,j)=res;
 end
end
opic = tmp;
end
function [out] = get_bar( pic )
%GET_LBR 此处显示有关此函数的摘要
% 此处显示详细说明
gpic = double(pic);
lw=int16(size(gpic,1)/7);
lh=int16(size(gpic,2)/7);
for i = 0:6
 for j = 0:6
 res = zeros(lh, lw);
 for x = i*lw+1:(i+1)*lw
 for y = j*lh+1:(j+1)*lh
 if x > size(gpic, 1) || y > size(gpic, 2)
 continue; 
 end
 res(x-i*lw,y-j*lh) = pic(x,y);
 end
 end
 tmp = get_barD(res);
 if i == 0 && j == 0
 out=tmp;
 else
 out=array_add(out,tmp);
 end
 end
end
end
全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1404243.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Elasticsearch:介绍 kNN query,这是进行 kNN 搜索的专家方法

作者:来自 Elastic Mayya Sharipova, Benjamin Trent 当前状况:kNN 搜索作为顶层部分 Elasticsearch 中的 kNN 搜索被组织为搜索请求的顶层(top level)部分。 我们这样设计是为了: 无论分片数量多少,它总…

【人工智能大脑】仿生学与人工智能交汇:基于MP神经网络的精准农业实践

MP神经网络,即McCulloch-Pitts模型(MCP Model),是神经网络的早期形式之一,由Warren McCulloch和Walter Pitts在1943年提出。这个模型为现代人工神经网络的发展奠定了理论基础,并首次尝试模拟了生物神经元的…

Kotlin程序设计 扩展篇(一)

Kotlin程序设计(扩展一) **注意:**开启本视频学习前,需要先完成以下内容的学习: 请先完成《Kotlin程序设计》视频教程。请先完成《JavaSE》视频教程。 Kotlin在设计时考虑到了与Java的互操作性,现有的Ja…

RK3568 移植Ubuntu

使用ubuntu-base构建根文件系统 1、到ubuntu官网获取 ubuntu-base-18.04.5-base-arm64.tar.gz Ubuntu Base 18.04.5 LTS (Bionic Beaver) 2、将获取的文件拷贝到ubuntu虚拟机,新建目录,并解压 mkdir ubuntu_rootfs sudo tar -xpf u

Ubuntu之离线安装Gitlab,搭建私有代码仓库

Ubuntu之离线安装Gitlab,搭建私有代码仓库 文章目录 Ubuntu之离线安装Gitlab,搭建私有代码仓库1. 官网下载:2. 安装Gitlab3. 使用 1. 官网下载: https://packages.gitlab.com/gitlab/gitlab-ce wget下载地址: wget https://packages.gitla…

Linux命令_vim的详细用法

简介 vim是一款针对Linux和其他类Unix操作系统的文本编辑器。它是Vi编辑器的升级版本,具有丰富的功能和强大的扩展性。vim有三种基本模式:命令模式、插入模式和可视模式。 命令模式:用户可以使用各种命令移动光标和进行编辑操作,如…

安裝火狐和穀歌流覽器插件FoxyProxy管理海外動態IP代理

代理生態系統擁有大量有用的實用程式,使海外代理IP代理設置的使用變得簡單起來。其中一種類型叫做代理管理工具,像FoxyProxy就是該工具集比較受歡迎的。 本文將全面解析FoxyProxy擴展的功能和特性、Foxyproxy怎麼下載、以及如何在穀歌流覽器和火狐流覽器…

数据分析的理念、流程、方法、工具(上)

一、数据的价值 1、数据驱动企业运营 从电商平台的「猜你喜欢」到音乐平台的「心动模式」,大数据已经渗透到了我们生活的每一个场景。不论是互联网行业,还是零售业、制造业等,各行各业都在依托互联网大数据(数据采集、数据存储、…

AutoDL——终端训练神经网络模型(忽略本地问题)

前言: 本人之前分享过一篇文章:使用pycharm连接远程GPU训练神经网络模型(超详细!),其中详细介绍了如何利用pycharm连接AutoDL算力云平台租用的GPU服务器训练网络模型。但有些小伙伴可能会因为一些原因而导…

清越 peropure·AI 国内版ChatGP新功能介绍

当OpenAI发布ChatGPT的时候,没有人会意识到,新一代人工智能浪潮将给人类社会带来一场眩晕式变革。其中以ChatGPT为代表的AIGC技术加速成为AI领域的热门发展方向,推动着AI时代的前行发展。面对技术浪潮,清越科技(PeroPure)立足多样化生活场景、精准把握用户实际需求,持续精确Fin…

【爬虫、数据可视化实战】以“人口”话题为例爬取实时微博数据并进行舆情分析

前言: 近期在weibo上讨论的比较热的话题无非就是“人口”了。TaoTao也看了一些大家发的内容。但是感觉单纯的看文字内容不能很直观的反应出来大家的关切。索性就使用爬虫对数据进行爬取,同时结合着数据可视化的方式让数据自己开口说话。那么接下来就让我…

浮点数详解

目录 1.概述 2.浮点数的编码方式 2.1.float类型的IEEE编码 2.2.double类型的IEEE编码 2.3.现场问题 2.4.总结 1.概述 计算机也需要运算和存储数学中的实数。在计算机的发展过程中,曾产生过多种存储实数的方式,有的现在已经很少使用了。不管如何存储…

OpenCV书签 #差值哈希算法的原理与相似图片搜索实验

1. 介绍 差值哈希算法(Difference Hash Algorithm,简称dHash) 是哈希算法的一种,主要可以用来做以图搜索/相似图片的搜索工作。 2. 原理 差值哈希算法通过计算相邻像素的差异来生成哈希,即通过缩小图像的每个像素与平…

macbookpro怎么恢复出厂设置2024最新恢复方法汇总

可能你的MacBook曾经是高性能的代表,但是现在它正慢慢地逝去了自己的光芒?随着逐年的使用以及文件的添加和程序的安装,你的MacBook可能会开始变得迟缓卡顿,或者失却了以往的光彩。如果你发现你的Mac开始出现这些严重问题&#xff…

c#中使用UTF-8编码处理多语言文本的有效策略

使用UTF-8编码处理多语言文本的有效策略 在当今的全球化时代,软件开发者常常需要处理包含多种语言的文本。这不仅涉及英文和其他西方语言,还包括中文、日文、韩文等多字节字符系统。在这篇博客中,我将探讨如何有效地使用UTF-8编码来处理混合语…

基于SpringBoot Vue二手闲置物品交易系统

大家好✌!我是Dwzun。很高兴你能来阅读我,我会陆续更新Java后端、前端、数据库、项目案例等相关知识点总结,还为大家分享优质的实战项目,本人在Java项目开发领域有多年的经验,陆续会更新更多优质的Java实战项目&#x…

unity shaderGraph实例-武器特效(纹理遮罩,纹理动画,纹理变形)

文章目录 效果展示所需素材整体结构各区域内容区域1区域2区域3区域4区域4-1区域4-2区域4-3区域4-4 区域5区域6 后处理工程下载 效果展示 所需素材 除了剑的模型外,主要是这五张贴图,其中swordmask和swordmask1中白色的区域是剑身的位置,sword…

Visual Studio2022实用使用技巧集

前言 对于.NET开发者而言Visual Studio是我们日常工作中比较常用的开发工具,掌握一些Visual Studio实用的搜索、查找、替换技巧可以帮助我们大大提高工作效率从而避免996。 Visual Studio更多实用技巧 https://github.com/YSGStudyHards/DotNetGuide 代码和功能搜…

上门回收小程序,打造回收新模式

近年来,我国一直秉持着环保绿色的发展理念,为了减少资源浪费,旧物回收成为了人们处理废弃物品的方式。目前,我国回收市场规模大约能达到3.58亿元,在我国经济的稳定增长和环保意识的提高下,回收市场规模还将…

【Java】--网络编程:基于TCP协议的网络通信

【Java】–网络编程:基于TCP协议的网络通信 文章目录 【Java】--网络编程:基于TCP协议的网络通信一、TCP协议1.1 概念1.2 三次握手1.2.1 文字描述1.2.2 画图演示 1.3 四次挥手1.3.1 文字描述1.3.2 画图演示 二、基于TCP的Socket网络编程2.1 概念2.2 服务…