【人工智能大脑】仿生学与人工智能交汇:基于MP神经网络的精准农业实践

news2024/11/15 17:41:03

MP神经网络,即McCulloch-Pitts模型(MCP Model),是神经网络的早期形式之一,由Warren McCulloch和Walter Pitts在1943年提出。这个模型为现代人工神经网络的发展奠定了理论基础,并首次尝试模拟了生物神经元的工作原理。
在这里插入图片描述

MCP由来

深度学习的历史可以追溯到1943年,当时Walter Pitts(数学家)和Warren McCulloch(神经科学家)基于人类大脑的神经网络创建了一个计算机模型,模型名字是用两人名字命名,McCulloch&Pitts,称为MCP模型。

沃尔特·皮茨简介

在这里插入图片描述

1923年4月23日,美国逻辑学家小沃尔特·皮茨出生在底特律一个简陋的社区,年轻的皮茨他特别喜欢数理逻辑。12岁时,他在图书馆阅读了伯特兰·罗素(英国哲学家、数学家、逻辑学家、历史学家、文学家,分析哲学的主要创始人)和阿尔弗雷德·诺斯·怀特海的《数学原理》,并给罗素写了一封信,这封信给他留下了深刻的印象,罗素回复了他,还邀请皮茨来英国。 1938年,皮茨在芝加哥大学(University of Chicago)研究时,他被认为是一个古怪的天才。他参加了罗素在芝加哥的讲座,皮茨也给芝加哥的教授们留下了深刻的印象。
1940年,莱特文把皮茨介绍给了伊利诺伊大学新来的精神病学教授沃伦·麦卡洛克。42岁的麦卡洛克和匹兹第一次交谈时,他们马上发现他们有很多共同之处。而麦卡洛克则成为了皮茨生命中最重要的人。McCulloch和Pitts的研究是在计算机科学领域的早期阶段进行的,他们利用有限的计算资源和技术设备,最终提出了McCulloch-Pitts神经元模型。

跨学科合作创举MCP(MP)

McCulloch是一位神经科学家,而Pitts则是一位数学家和逻辑学家。他们的合作是跨学科的,结合了神经科学、数学和逻辑学的知识。这种跨学科的合作促进了他们对神经元行为的理解,并为神经网络的发展提供了坚实的基础。
原理: MP神经元模型相对简单,它是一个二值逻辑单元,可以看作是一种简化的阈值函数。其工作原理如下:

输入层:MP神经元接受多个布尔型输入信号,这些信号对应于生物神经元中的树突输入。
权重:每个输入信号都有一个对应的权重(w1, w2, w3…),表示该输入信号对神经元输出的影响程度,类似于突触强度。
加权求和与阈值比较:神经元将所有输入信号与其权重相乘后求和,并加上一个偏置(bias),然后将这个总和与一个预设的阈值进行比较。
非线性激活:当加权求和结果大于或等于阈值时,神经元输出一个固定的“兴奋”状态(通常为1);否则输出“抑制”状态(通常为0)。这种开关行为是对生物神经元激发/不激发状态的简化模拟。

数学原理

在这里插入图片描述

使用方法: MP神经元主要用于构建简单的逻辑门电路,例如与门、或门、非门等。通过适当设置权重和阈值,可以实现布尔逻辑运算。然而,由于其功能较为有限,无法直接处理连续值输入或实现复杂的非线性映射,因此在现代神经网络中并不常用作为基础计算单元。

原理电路

在这里插入图片描述

MP神经网络模型(McCulloch-Pitts 模型)的原理可以生动地比喻
一个自动灌溉系统精灵,它基于天气和土壤湿度来决定是否开启洒水装置。这个系统包含两个输入信号:一个是“天气传感器”,它提供晴天或雨天的信息(0表示晴天,1表示雨天);另一个是“土壤湿度传感器”,它提供土壤湿度的高低信息(0表示湿度低,1表示湿度高)。
在这里插入图片描述

权重:在这个系统中,你可以给每个输入信号分配一个权重值。比如,如果认为下雨时不需要浇水(因此雨天信号应该降低开启洒水器的可能性),你可以赋予“天气传感器”一个负权重,如-2;同时,如果认为土壤干燥时强烈需要浇水,你可以赋予“土壤湿度传感器”一个正权重,如+3。

加权求和与阈值比较:当系统接收到输入信号时,会将这两个信号分别乘以其对应的权重值,然后将它们相加。例如,如果是雨天且土壤湿度低(0 * -2 + 0 * 3 = 0),或者晴天且土壤湿度高(1 * -2 + 1 * 3 = 1),此时的结果就是系统的加权输入。

阈值判断(洒水装置自动调节开关):

def fire(self, weather_signal, humidity_signal):
        """
        模拟神经元激活函数,计算加权求和并判断是否达到阈值。
        输入信号weather_signal和humidity_signal分别代表天气和土壤湿度状态,
        对应于自动灌溉系统中的晴雨信息和土壤干湿程度。

        返回值:
        True - 开启洒水装置(对应门开启)
        False - 不开启洒水装置(对应门关闭)
        """
        weighted_sum = self.weather_weight * weather_signal + self.humidity_weight * humidity_signal
            if weighted_sum >= threshold:
        return 1
    else:
        return 0

系统有一个预设的阈值(假设为1)。只有当加权后的总和大于等于这个阈值时,洒水装置才会被激活开启。
所以,在上面的例子中有一行核心分析代码,帮助神经元做出精准判断,在晴天且土壤湿度高的情况下,洒水器才会开启。

洒水控制的高端大脑函数 def fire(self, weather_signal, humidity_signal)

# 计算加权求和,这个步骤是将天气信号(weather_signal)和土壤湿度信号(humidity_signal)分别乘以对应的权重值(self.weather_weight 和 self.humidity_weight)
# 然后将这两个加权后的结果相加。在洒水系统的比喻中:
# - 天气信号的权重(self.weather_weight)代表了天气条件对是否需要灌溉决策的影响程度;
#   如果天气权重为负数,则说明雨天时减少洒水需求(比如-2表示雨天时洒水装置开启的可能性降低)。
# - 土壤湿度信号的权重(self.humidity_weight)则反映了土壤湿度对于是否需要灌溉的重要性;
#   如果湿度权重为正数,则说明土壤干燥时增加洒水需求(如+3表示土壤越干燥,洒水装置开启的可能性越高)。

weighted_sum = self.weather_weight * weather_signal + self.humidity_weight * humidity_signal

# 通过上述计算,我们得到一个综合考虑了当前天气状况与土壤湿度情况的加权求和值,
# 这个数值将会用来决定是否开启洒水装置(例如,当加权求和值大于或等于阈值时,意味着应该开启洒水装置)。
# 定义类:MPNeuron(对应自动灌溉系统的决策中心“小精灵”)
class MPNeuron:
    def __init__(self, weather_weight=-2, humidity_weight=3, threshold=1):
        """
        初始化MP神经元,权重参数对应于比喻中的“魔法棒”的魔力大小,
        阈值对应于决定是否开启门或洒水装置所需的神秘数值。
        """
        self.weather_weight = weather_weight  # 天气传感器信号权重(雨天影响)
        self.humidity_weight = humidity_weight  # 土壤湿度传感器信号权重(土壤湿度影响)
        self.threshold = threshold  # 决策阈值

    def fire(self, weather_signal, humidity_signal):
        """
        模拟神经元激活函数,计算加权求和并判断是否达到阈值。
        输入信号weather_signal和humidity_signal分别代表天气和土壤湿度状态,
        对应于自动灌溉系统中的晴雨信息和土壤干湿程度。

        返回值:
        True - 开启洒水装置(对应门开启)
        False - 不开启洒水装置(对应门关闭)
        """
        weighted_sum = self.weather_weight * weather_signal + self.humidity_weight * humidity_signal
            if weighted_sum >= threshold:
        return 1
    else:
        return 0

# 实例化MP神经元,并进行测试
neuron = MPNeuron()

# 测试示例,假设获取到的实际天气和湿度信号
test_weather = 1  # 雨天(对应信号1)
test_humidity = 0  # 干燥(对应信号0)

# 判断是否开启洒水装置
decision = neuron.fire(test_weather, test_humidity)
print(f"当前天气:{('晴天', '雨天')[test_weather]},土壤湿度:{'干燥' if test_humidity == 0 else '湿润'}")
print(f"是否开启洒水装置:{decision}")

还原神经网络本质

# 定义激活函数(这里使用阶跃函数作为简化)
def step_function(summed_signal):
    if summed_signal >= 0:
        return 1  # 激活状态,对应洒水装置开启
    else:
        return 0  # 非激活状态,对应洒水装置关闭

# 初始化权重和阈值
weather_weight = -2
humidity_weight = 3
threshold = 1

# 定义模拟MP神经元的函数
def mp_neuron(weather, humidity):
    # 计算加权求和
    weighted_sum = weather * weather_weight + humidity * humidity_weight
    
    # 应用激活函数
    output = step_function(weighted_sum - threshold)  # 减去阈值是因为通常在实际应用中,我们会从总和中减去阈值来进行判断
    
    return output

# 测试数据
test_weather = 0  # 晴天(0代表晴天,1代表雨天)
test_humidity = 0  # 干燥(0代表干燥,1代表湿润)

# 模拟决策过程mp_neuron()函数是一个激活开头,激活就是

decision = mp_neuron(test_weather, test_humidity)

print(f"当前天气:{'晴天' if test_weather == 0 else '雨天'},土壤湿度:{'干燥' if test_humidity == 0 else '湿润'}")
print(f"是否开启洒水装置:{decision}")

在这里插入图片描述

古老的MP虽然现在已经退居幕后,但是MP神经网络:从硬件智慧的基石到深度学习繁花——也曾经,如同人工智能世界中的初露晨曦,启迪了如何在电路板上编织逻辑之网;而今,在误差反向传播算法破晓的光辉中,MP模型原理为多层感知器(MLP)等更繁复精妙的架构提供了更强有力的支撑。这些后继者犹如科技树上的累累硕果,将智能渗透至图像识别、语音辨识与自然语言处理的广阔天地,续写着人类认知机器智慧的新篇章。"

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1404241.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Kotlin程序设计 扩展篇(一)

Kotlin程序设计(扩展一) **注意:**开启本视频学习前,需要先完成以下内容的学习: 请先完成《Kotlin程序设计》视频教程。请先完成《JavaSE》视频教程。 Kotlin在设计时考虑到了与Java的互操作性,现有的Ja…

RK3568 移植Ubuntu

使用ubuntu-base构建根文件系统 1、到ubuntu官网获取 ubuntu-base-18.04.5-base-arm64.tar.gz Ubuntu Base 18.04.5 LTS (Bionic Beaver) 2、将获取的文件拷贝到ubuntu虚拟机,新建目录,并解压 mkdir ubuntu_rootfs sudo tar -xpf u

Ubuntu之离线安装Gitlab,搭建私有代码仓库

Ubuntu之离线安装Gitlab,搭建私有代码仓库 文章目录 Ubuntu之离线安装Gitlab,搭建私有代码仓库1. 官网下载:2. 安装Gitlab3. 使用 1. 官网下载: https://packages.gitlab.com/gitlab/gitlab-ce wget下载地址: wget https://packages.gitla…

Linux命令_vim的详细用法

简介 vim是一款针对Linux和其他类Unix操作系统的文本编辑器。它是Vi编辑器的升级版本,具有丰富的功能和强大的扩展性。vim有三种基本模式:命令模式、插入模式和可视模式。 命令模式:用户可以使用各种命令移动光标和进行编辑操作,如…

安裝火狐和穀歌流覽器插件FoxyProxy管理海外動態IP代理

代理生態系統擁有大量有用的實用程式,使海外代理IP代理設置的使用變得簡單起來。其中一種類型叫做代理管理工具,像FoxyProxy就是該工具集比較受歡迎的。 本文將全面解析FoxyProxy擴展的功能和特性、Foxyproxy怎麼下載、以及如何在穀歌流覽器和火狐流覽器…

数据分析的理念、流程、方法、工具(上)

一、数据的价值 1、数据驱动企业运营 从电商平台的「猜你喜欢」到音乐平台的「心动模式」,大数据已经渗透到了我们生活的每一个场景。不论是互联网行业,还是零售业、制造业等,各行各业都在依托互联网大数据(数据采集、数据存储、…

AutoDL——终端训练神经网络模型(忽略本地问题)

前言: 本人之前分享过一篇文章:使用pycharm连接远程GPU训练神经网络模型(超详细!),其中详细介绍了如何利用pycharm连接AutoDL算力云平台租用的GPU服务器训练网络模型。但有些小伙伴可能会因为一些原因而导…

清越 peropure·AI 国内版ChatGP新功能介绍

当OpenAI发布ChatGPT的时候,没有人会意识到,新一代人工智能浪潮将给人类社会带来一场眩晕式变革。其中以ChatGPT为代表的AIGC技术加速成为AI领域的热门发展方向,推动着AI时代的前行发展。面对技术浪潮,清越科技(PeroPure)立足多样化生活场景、精准把握用户实际需求,持续精确Fin…

【爬虫、数据可视化实战】以“人口”话题为例爬取实时微博数据并进行舆情分析

前言: 近期在weibo上讨论的比较热的话题无非就是“人口”了。TaoTao也看了一些大家发的内容。但是感觉单纯的看文字内容不能很直观的反应出来大家的关切。索性就使用爬虫对数据进行爬取,同时结合着数据可视化的方式让数据自己开口说话。那么接下来就让我…

浮点数详解

目录 1.概述 2.浮点数的编码方式 2.1.float类型的IEEE编码 2.2.double类型的IEEE编码 2.3.现场问题 2.4.总结 1.概述 计算机也需要运算和存储数学中的实数。在计算机的发展过程中,曾产生过多种存储实数的方式,有的现在已经很少使用了。不管如何存储…

OpenCV书签 #差值哈希算法的原理与相似图片搜索实验

1. 介绍 差值哈希算法(Difference Hash Algorithm,简称dHash) 是哈希算法的一种,主要可以用来做以图搜索/相似图片的搜索工作。 2. 原理 差值哈希算法通过计算相邻像素的差异来生成哈希,即通过缩小图像的每个像素与平…

macbookpro怎么恢复出厂设置2024最新恢复方法汇总

可能你的MacBook曾经是高性能的代表,但是现在它正慢慢地逝去了自己的光芒?随着逐年的使用以及文件的添加和程序的安装,你的MacBook可能会开始变得迟缓卡顿,或者失却了以往的光彩。如果你发现你的Mac开始出现这些严重问题&#xff…

c#中使用UTF-8编码处理多语言文本的有效策略

使用UTF-8编码处理多语言文本的有效策略 在当今的全球化时代,软件开发者常常需要处理包含多种语言的文本。这不仅涉及英文和其他西方语言,还包括中文、日文、韩文等多字节字符系统。在这篇博客中,我将探讨如何有效地使用UTF-8编码来处理混合语…

基于SpringBoot Vue二手闲置物品交易系统

大家好✌!我是Dwzun。很高兴你能来阅读我,我会陆续更新Java后端、前端、数据库、项目案例等相关知识点总结,还为大家分享优质的实战项目,本人在Java项目开发领域有多年的经验,陆续会更新更多优质的Java实战项目&#x…

unity shaderGraph实例-武器特效(纹理遮罩,纹理动画,纹理变形)

文章目录 效果展示所需素材整体结构各区域内容区域1区域2区域3区域4区域4-1区域4-2区域4-3区域4-4 区域5区域6 后处理工程下载 效果展示 所需素材 除了剑的模型外,主要是这五张贴图,其中swordmask和swordmask1中白色的区域是剑身的位置,sword…

Visual Studio2022实用使用技巧集

前言 对于.NET开发者而言Visual Studio是我们日常工作中比较常用的开发工具,掌握一些Visual Studio实用的搜索、查找、替换技巧可以帮助我们大大提高工作效率从而避免996。 Visual Studio更多实用技巧 https://github.com/YSGStudyHards/DotNetGuide 代码和功能搜…

上门回收小程序,打造回收新模式

近年来,我国一直秉持着环保绿色的发展理念,为了减少资源浪费,旧物回收成为了人们处理废弃物品的方式。目前,我国回收市场规模大约能达到3.58亿元,在我国经济的稳定增长和环保意识的提高下,回收市场规模还将…

【Java】--网络编程:基于TCP协议的网络通信

【Java】–网络编程:基于TCP协议的网络通信 文章目录 【Java】--网络编程:基于TCP协议的网络通信一、TCP协议1.1 概念1.2 三次握手1.2.1 文字描述1.2.2 画图演示 1.3 四次挥手1.3.1 文字描述1.3.2 画图演示 二、基于TCP的Socket网络编程2.1 概念2.2 服务…

Android 通过adb命令查看应用流量

一. 获取应用pid号 通过adb shell ps -A | grep 包名 来获取app的 pid号 二. 查看应用流量情况 使用adb shell cat /proc/#pid#/net/dev 命令 来获取流量数据 备注: Recevice: 表示收包 Transmit: 表示发包 bytes: 表示收发的字节数 packets: 表示收发正确的…

thinkphp+vue+mysql旅游推荐攻略分享网站p0667

基于php语言设计并实现了旅游分享网站。该系统基于B/S即所谓浏览器/服务器模式,应用thinkphp框架,选择MySQL作为后台数据库。系统主要包括用户、景点信息、攻略分类、旅游攻略、门票购买、留言反馈、论坛管理、系统管理等功能模块。运行环境:phpstudy/wa…