竞赛保研 机器视觉人体跌倒检测系统 - opencv python

news2024/11/23 22:42:23

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 机器视觉人体跌倒检测系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


课题背景和意义

在中国,每年在65岁以上老人中,平均每3人中就有1人发生意外跌倒,每年大约有9500位老年人死于旅行途中或跌倒;而平均年龄在65岁至69岁之间的人每200次跌倒中就有一次髋关节骨折。更严重的是,20%到30%的患者会出现中度到严重的并发症,很可能导致残疾。

而在中国,老年人口已经突破2.5亿,按照30%概览推算,每年有7500万人次的老年人摔倒。

1 实现方法

实现方法有两种,一种是基于计算机视觉的,一种是基于惯性传感器器件的。

这次主要还是介绍基于计算机视觉的,想了解或学习基于惯性传感器器件跌倒检测的同学联系学长,学长安排博客。

传统机器视觉算法

传统背景差分法,结合OpenCV中的图像高斯平滑预处理以及腐蚀、膨胀图像形态学处理方法,实现一个更符合实际场景需要的运动目标检测方法。实验效果比较分析表明,该目标检测算法较传统目标检测算法能够提取更加准确和完整的运动目标轮廓。
在这里插入图片描述

检测效果如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

背景差分法利用当前待处理视频帧图像与已经建模好的背景图像进行差分运算,利用阈值处理减少图像中的噪声干扰。优点是计算简单,且可以解决帧间差分法检测空洞的问题,得到的轮廓比较完整;
缺点是对于动态场景的适应能力不强, 对光照变化、 外来无关事物影响比较敏感。

基于机器学习的跌倒检测

人体行为辨识属于模式识别的分类决策的阶段,主要通过提取表征人体运动行为的特征向量,进而对人体的行为进行分析分类,最终用自然语言对其进行描述。有两种比较常见的方法:

(1) 基于模型的方法
基于模板的方法主要以人体模板作为主要的使用依据,可以通过对包含特定行为的视频帧序列进行转换的方法得到人体的模板,然后将被检测的人体行为与已经归类的人体行为模板进行匹配分类,从而得到行为识别的结果。基于模型的方法具有计算简单的优点,一般通过模型之间的距离比较完成人体行为的分类识别。缺点是需要大量足够的训练样本。

(2) 基于聚类的方法
基于聚类的方法把视频帧序列按照某种规则分类,在每一段进行特征的提取组成表示该段的特征矢量,进而通过聚类和相似度量等方法,将其中类别较少的段归为异常。常在处理离线状态下大量数据的异常检测问题时使用基于聚类的行为辨识方法。

SVM简介

支持向量机即常说的 SVM,全称是Support Vector
Machine。支持向量机是建立在统计学的VC维理论与结构化最小风险原理的基础上的,通过将向量映射到一个更高维的空间里,在这个空间建立一个最大间隔超平面,这个超平面被称为最优分类面,是支持向量机方法的理论基础。

SVM跌倒检测原理

我设计了一种运动物体行为辨识中采用基于两级SVM分类器的方法。

第一级SVM分类器用于判决运动物体是否处于非直立(下蹲、跌倒等)状态,提取物体的宽高比、最小包含物体矩形框面积、最小包含物体矩形框周长、运动物体高度等特征进行分类器的训练和分类判决。对于第一级分类器判决为非直立状态的图像帧,将它送入第二级SVM分类器进行分类判决。

第二级SVM分类器用于区分运动物体处于跌倒或其他的非直立状态,提取Zernike矩特征、运动物体的高度、运动物体的宽度、运动物体轮廓面积、运动物体轮廓周长等特征进行分类器的训练和分类判决。如果第二级
SVM 分类器判决为属于跌倒姿势状态类, 系统自动发出报警信息。

算法流程

在这里插入图片描述

算法效果

在这里插入图片描述

在这里插入图片描述

深度学习跌倒检测

介绍一个效果非常不错的网络,使用数据集在该网络下训练后得到的跌倒检测效果粉肠不错。

最终效果

在这里插入图片描述

网络原理

在这里插入图片描述
在这里插入图片描述

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1400802.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何在Servlet中获取请求参数的值

看看这个大佬做的动图吧! 在Servlet中,你可以使用HttpServletRequest对象来获取请求参数的值。HttpServletRequest对象提供了一些方法,允许你访问从客户端发送的请求信息。以下是一些获取请求参数的常用方法: getParameter(String…

伊恩·斯图尔特《改变世界的17个方程》傅里叶变换笔记

主要是课堂的补充(yysy,我觉得课堂的教育模式真有够无聊的,PPT、写作业、考试,感受不到知识的魅力。 它告诉我们什么? 空间和时间中的任何模式都可以被看作不同频率的正弦模式的叠加。 为什么重要? 频率分量…

this.$set的用法

作用: 在data里面绑定的数据具有响应式的效果,也就是我们说的V-Model 数据更新视图,视图也能更新数据,如果不是data里面的数据如何添加响应式呢? this.$Set这个方法能够实现 用法: this.$Set(要添加的对象,要添加的属性’,要添…

20240121----重返学习-`nginx/conf/nginx.conf`的动静分离-单ip地址双服务器资源-最简配置说明

20240113----重返学习-nginx/conf/nginx.conf的多虚拟主机配置最简配置说明 文件说明 单ip地址双服务器资源配置 单个完整的静态项目 192.168.44.101上的配置文件: worker_processes 1; #工作进程个数;一般对应CPU内核对应一个worker_processes;太多反而让效率变差;even…

App 设计工具中的回调

目录 创建回调函数 回调函数编程 回调输入参数 在回调函数之间共享数据 在多个组件之间共享回调 以编程方式创建和分配回调 在代码中搜索回调 更改回调或断开与回调的连接 删除回调 示例:具有滑块回调的 App 回调是在用户与 App 中的 UI 组件交互时执行的…

数据结构之树和二叉树定义

数据结构之树和二叉树定义 1、树的定义2、树的基本概念3、二叉树的定义 数据结构是程序设计的重要基础,它所讨论的内容和技术对从事软件项目的开发有重要作用。学习数据结构要达到的目标是学会从问题出发,分析和研究计算机加工的数据的特性,以…

基于SpringBoot+Redis的前后端分离外卖项目-苍穹外卖微信小程序端(十三)

地址簿相关功能 1.1 需求分析和设计1.1.1 产品原型1.1.2 接口设计1.1.3 表设计 1.2 代码实现1.2.1 Mapper层1.2.2 Service层1.2.3 Controller层 1.1 需求分析和设计 1.1.1 产品原型 地址簿,指的是消费者用户的地址信息,用户登录成功后可以维护自己的地…

a-table 边框颜色修改

案例&#xff1a; <template><div class"mod_table"><a-table :columns"columns":data-source"data" bordered:pagination"false"></a-table></div> </template> <script> export default…

sshpass的安装与使用

一.简介 1.定义&#xff1a; ssh 登陆不能在命令行中指定密码&#xff0c;sshpass 的出现则解决了这一问题。它允许你用 -p 参数指定明文密码&#xff0c;然后直接登录远程服务器&#xff0c;它支持密码从命令行、文件、环境变量中读取。 2.使用 sshpass 原因 使用 sshpass…

代码随想录 Leetcode20. 有效的括号

题目&#xff1a; 代码(首刷自解 2024年1月21日&#xff09;&#xff1a; class Solution {bool check(char ch1,char ch2) {if(ch1 ) && ch2 ! () return true;else if(ch1 ] && ch2 ! [) return true;else if(ch1 } && ch2 ! {) return true;els…

C++——数组、多维数组、简单排序、模板类vector

个人简介 &#x1f440;个人主页&#xff1a; 前端杂货铺 &#x1f64b;‍♂️学习方向&#xff1a; 主攻前端方向&#xff0c;正逐渐往全干发展 &#x1f4c3;个人状态&#xff1a; 研发工程师&#xff0c;现效力于中国工业软件事业 &#x1f680;人生格言&#xff1a; 积跬步…

FaFu--练习复盘--2

3、函数练习 3.1、函数表达式&#xff08;1&#xff09; 描述 根据以下公式计算数学表达式的值&#xff0c;并将结果作为函数值返回。在main()函数中输入x&#xff0c;调用函数fun(x)&#xff0c;并输出fun(x)的值。 输入 输入1行&#xff0c;包含1个double类型的浮点数&…

数学建模实战Matlab绘图

二维曲线、散点图 绘图命令&#xff1a;plot(x,y,’line specifiers’,’PropertyName’,PropertyValue) 例子&#xff1a;绘图表示年收入与年份的关系 ‘--r*’:--设置线型&#xff1b;r:设置颜色为红色&#xff1b;*节点型号 ‘linewidth’&#xff1a;设置线宽&#xff1…

基于springboot+vue考编论坛

摘要 近年来&#xff0c;随着互联网的迅猛发展&#xff0c;编程论坛成为程序员们交流学术、分享经验的重要平台之一。为了满足广大程序员的需求&#xff0c;本文基于Spring Boot和Vue框架&#xff0c;设计并实现了一个功能强大的编程论坛。首先&#xff0c;我们选择Spring Boot…

RHEL - 更新升级软件或系统

《OpenShift / RHEL / DevSecOps 汇总目录》 文章目录 小版本软件更新yum update 和 yum upgrade 的区别升级软件和升级系统检查软件包是否可升级指定升级软件使用的发行版本方法1方法2方法3方法4 查看软件升级类型更新升级指定的 RHSA/RHBA/RHEA更新升级指定的 CVE更新升级指定…

当 OpenTelemetry 遇上阿里云 Prometheus

作者&#xff1a;逸陵 背景 在云原生可观测蓬勃发展的当下&#xff0c;想必大家对 OpenTelemetry & Prometheus 并不是太陌生。OpenTelemetry 是 CNCF&#xff08;Cloud Native Computing Foundation&#xff09;旗下的开源项目&#xff0c;它的目标是在云原生时代成为应…

Softmax函数介绍

Softmax函数是一种常用的激活函数&#xff0c;用于将一组实数值转换为概率分布。它常用于多类别分类问题中&#xff0c;将输入向量映射为各个类别的概率。 Softmax函数的公式如下&#xff1a; 其中&#xff0c;示输入向量的第 &#xfffd;i 个元素&#xff0c;&#xfffd;n …

【目标检测】YOLOv5算法实现(九):模型预测

本系列文章记录本人硕士阶段YOLO系列目标检测算法自学及其代码实现的过程。其中算法具体实现借鉴于ultralytics YOLO源码Github&#xff0c;删减了源码中部分内容&#xff0c;满足个人科研需求。   本系列文章主要以YOLOv5为例完成算法的实现&#xff0c;后续修改、增加相关模…

RHCE上课笔记(前半部分)

第一部分 网络服务 第一章 例行性工作 1.单一执行的例行性工作 单一执行的例行性工作&#xff08;就像某一个时间点 的闹钟&#xff09;&#xff1a;仅处理执行一次 1.1 at命令&#xff1a;定时任务信息 [rhellocalhost ~]$ rpm -qa |grep -w at at-spi2-core-2.40.3-1.el9.x…

SDCMS靶场通过

考察核心&#xff1a;MIME类型检测文件内容敏感语句检测 这个挺搞的&#xff0c;一开始一直以为检查文件后缀名的&#xff0c;每次上传都失败&#xff0c;上传的多了才发现某些后缀名改成php也可通过&#xff0c;png图片文件只把后缀名改成php也可以通过&#xff0c;之前不成功…