【C++干货铺】C++异常处理机制

news2024/10/5 15:32:13

=========================================================================

个人主页点击直达:小白不是程序媛

C++系列专栏:C++干货铺

代码仓库:Gitee

=========================================================================

目录

C语言传统的处理错误的方式

C++处理异常方式

异常的使用

异常的抛出和捕获

异常的重新抛出

 异常安全

异常规范

自定义异常体系

C++标准库中的异常体系

​编辑C++异常的优缺点

C++异常的优点

C++异常的缺点


C语言传统的处理错误的方式

传统的错误处理机制:

  • 1. 终止程序,如assert,缺陷:用户难以接受。如发生内存错误,除0错误时就会终止程序。
  • 2. 返回错误码,缺陷:需要程序员自己去查找对应的错误。如系统的很多库的接口函数都是通过把错误码放到errno中,表示错误实际中C语言基本都是使用返回错误码的方式处理错误,部分情况下使用终止程序处理非常严重的错误。 

C++处理异常方式

异常是一种处理错误的方式,当一个函数发现自己无法处理的错误时就可以抛出异常,让函数的
直接或间接的调用者处理这个错误。

  • throw: 当问题出现时,程序会抛出一个异常。这是通过使用 throw 关键字来完成的。
  • catch: 在您想要处理问题的地方,通过异常处理程序捕获异常.catch 关键字用于捕获异常,可以有多个catch进行捕获。
  • try: try 块中的代码标识将被激活的特定异常,它后面通常跟着一个或多个 catch 块。

如果有一个块抛出一个异常,捕获异常的方法会使用 try 和 catch 关键字。try 块中放置可能抛出异常的代码,try 块中的代码被称为保护代码。使用 try/catch 语句的语法如下所示:

try
{
  // 保护的标识代码
}catch( ExceptionName e1 )
{
  // catch 块
}catch( ExceptionName e2 )
{
  // catch 块
}catch( ExceptionName eN )
{
  // catch 块
}

异常的使用

异常的抛出和捕获

异常的抛出和匹配原则

  • 1. 异常是通过抛出对象而引发的,该对象的类型决定了应该激活哪个catch的处理代码。
  • 2. 被选中的处理代码是调用链中与该对象类型匹配且离抛出异常位置最近的那一个。
  • 3. 抛出异常对象后,会生成一个异常对象的拷贝,因为抛出的异常对象可能是一个临时对象,所以会生成一个拷贝对象,这个拷贝的临时对象会在被catch以后销毁。(这里的处理类似于函数的传值返回)
  • 4. catch(...)可以捕获任意类型的异常,问题是不知道异常错误是什么。
  • 5. 实际中抛出和捕获的匹配原则有个例外,并不都是类型完全匹配,可以抛出的派生类对象,使用基类捕获,这个在实际中非常实用,我们后面会详细讲解这个。 

在函数调用链中异常栈展开匹配原则

  • 1. 首先检查throw本身是否在try块内部,如果是再查找匹配的catch语句。如果有匹配的,则调到catch的地方进行处理。
  • 2. 没有匹配的catch则退出当前函数栈,继续在调用函数的栈中进行查找匹配的catch。
  • 3. 如果到达main函数的栈,依旧没有匹配的,则终止程序。上述这个沿着调用链查找匹配的catch子句的过程称为栈展开。所以实际中我们最后都要加一个catch(...)捕获任意类型的异常,否则当有异常没捕获,程序就会直接终止。
  • 4. 找到匹配的catch子句并处理以后,会继续沿着catch子句后面继续执行。
#include <iostream>
using namespace std;
double Division(int a, int b)
{
	// 当b == 0时抛出异常
	if (b == 0)
		throw "Division by zero condition!";
	else
		return ((double)a / (double)b);
}
void Func()
{
	int len, time;
	cin >> len >> time;
	cout << Division(len, time) << endl;
	cout << "Division()函数调用成功" << endl;
}
int main()
{
	try 
	{
		Func();
	}
	catch (const char* errmsg){
	cout << errmsg << endl;
	}
	//不知道捕获的异常的类型可以使用 . . . 代表任意类型
	catch (...) 
	{
			cout << "unkown exception" << endl;
	}
		return 0;
}

异常的重新抛出

继续分析上面的代码当我们捕捉到异常后,后面的代码就不执行了;如果我们想要后面的代码执行就要继续捕捉和抛出。

#include <iostream>
using namespace std;
double Division(int a, int b)
{
	// 当b == 0时抛出异常
	if (b == 0)
		throw "Division by zero condition!";
	else
		return ((double)a / (double)b);
}
void Func()
{
	try
	{
		int len, time;
		cin >> len >> time;
		cout << Division(len, time) << endl;
	}
	//不知道捕捉到什么异常
	catch (...)
	{
		cout << "Division()函数调用成功" << endl;
		//仍出去
		throw;
	}
}
int main()
{
	try 
	{
		Func();
	}
	//再次捕捉
	catch (const char* errmsg){
	cout << errmsg << endl;
	}
	//不知道捕获的异常的类型可以使用 . . . 代表任意类型
	catch (...) 
	{
			cout << "unkown exception" << endl;
	}
		return 0;
}

 异常安全

  • 构造函数完成对象的构造和初始化,最好不要在构造函数中抛出异常,否则可能导致对象不完整或没有完全初始化
  • 析构函数主要完成资源的清理,最好不要在析构函数内抛出异常,否则可能导致资源泄漏(内存泄漏、句柄未关闭等)
  • C++中异常经常会导致资源泄漏的问题,比如在new和delete中抛出了异常,导致内存泄漏,在lock和unlock之间抛出了异常导致死锁,C++经常使用RAII来解决以上问题,关于RAII我们智能指针会在下篇文章中讲解。

异常规范

  • 1. 异常规格说明的目的是为了让函数使用者知道该函数可能抛出的异常有哪些。 可以在函数的后面接throw(类型),列出这个函数可能抛掷的所有异常类型。
  • 2. 函数的后面接throw(),表示函数不抛异常。
  • 3. 若无异常接口声明,则此函数可以抛掷任何类型的异常。
// 这里表示这个函数会抛出A/B/C/D中的某种类型的异常
void fun() throw(A,B,C,D);
// 这里表示这个函数只会抛出bad_alloc的异常
void* operator new (std::size_t size) throw (std::bad_alloc);
// 这里表示这个函数不会抛出异常
void* operator delete (std::size_t size, void* ptr) throw();
// C++11 中新增的noexcept,表示不会抛异常
thread() noexcept;
thread (thread&& x) noexcept;

C++11之后,一个函数如果不抛异常,就在其函数后面加上一个 noexcept,如果不抛异常可以不做任何处理。


自定义异常体系

实际使用中很多公司都会自定义自己的异常体系进行规范的异常管理,因为一个项目中如果大家
随意抛异常,那么外层的调用者基本就没办法玩了,所以实际中都会定义一套继承的规范体系。
这样大家抛出的都是继承的派生类对象,捕获一个基类就可以了。


C++标准库中的异常体系

C++ 提供了一系列标准的异常,定义在  中,我们可以在程序中使用这些标准的异常。它们是以父
子类层次结构组织起来的,如下所示:


C++异常的优缺点

C++异常的优点

  • 1. 异常对象定义好了,相比错误码的方式可以清晰准确的展示出错误的各种信息,甚至可以包含堆栈调用的信息,这样可以帮助更好的定位程序的bug。
  • 2. 返回错误码的传统方式有个很大的问题就是,在函数调用链中,深层的函数返回了错误,那么我们得层层返回错误,最外层才能拿到错误,具体看下面的详细解释。
  • 3. 很多的第三方库都包含异常,比如boost、gtest、gmock等等常用的库,那么我们使用它们也需要使用异常。
  • 4. 部分函数使用异常更好处理,比如构造函数没有返回值,不方便使用错误码方式处理。比如T& operator这样的函数,如果pos越界了只能使用异常或者终止程序处理,没办法通过返回值表示错误。

C++异常的缺点

  • 1. 异常会导致程序的执行流乱跳,并且非常的混乱,并且是运行时出错抛异常就会乱跳。这会导致我们跟踪调试时以及分析程序时,比较困难。
  • 2. 异常会有一些性能的开销。当然在现代硬件速度很快的情况下,这个影响基本忽略不计。
  • 3. C++没有垃圾回收机制,资源需要自己管理。有了异常非常容易导致内存泄漏、死锁等异常安全问题。这个需要使用RAII来处理资源的管理问题。学习成本较高。
  • 4. C++标准库的异常体系定义得不好,导致大家各自定义各自的异常体系,非常的混乱。
  • 5. 异常尽量规范使用,否则后果不堪设想,随意抛异常,外层捕获的用户苦不堪言。所以异常规范有两点:一、抛出异常类型都继承自一个基类。二、函数是否抛异常、抛什么异常,都使用 func() throw();的方式规范化。

总结:异常总体而言,利大于弊,所以工程中我们还是鼓励使用异常的。另外OO的语言基本都是用异常处理错误,这也可以看出这是大势所趋。


 今天给大家分享介绍了C++中的异常。如果觉得文章还不错的话,可以三连支持一下,个人主页还有很多有趣的文章,欢迎小伙伴们前去点评,您的三连支持就是我前进的动力!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1400750.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Linux系统编程二十八】基于条件变量的阻塞队列(生产消费模型)

【Linux系统编程二十八】基于条件变量的阻塞队列(生产消费模型&#xff09; 一.同步问题二.条件变量1.实现原理2.等待的前提3.使用接口①.【定义条件变量】②.【初始化条件变量】③.【让线程去条件变量下等待】④.【为什么第二个参数是锁&#xff1f;】条件变量和锁的关系是什么…

swift基础语法

swift学习笔记 参考教程 https://www.runoob.com/swift/swift-data-types.html swift代码规范 https://juejin.cn/post/7129465308376465422 1 环境搭建 必须要有苹果电脑且安装Xcode 2 基本语法 Swift是类型安全的语言&#xff0c;编译时会进行类型检查 import Cocoa var m…

从方法论到最佳实践,深度解析企业云原生 DevSecOps 体系构建

作者&#xff1a;匡大虎 引言 安全一直是企业上云关注的核心问题。随着云原生对云计算基础设施和企业应用架构的重定义&#xff0c;传统的企业安全防护架构已经不能够满足新时期下的安全防护要求。为此企业安全人员需要针对云原生时代的安全挑战重新进行系统性的威胁分析并构…

5G_射频测试_测试模式解读(三)

Downlink test models FR1 test model 1.1 (NR-FR1-TM1.1)&#xff08;满PRB&#xff0c;QPSK&#xff09;FR1 test model 1.2 (NR-FR1-TM1.2)( QPSK/boosted/40% QPSK)FR1 test model 2 (NR-FR1-TM2)(64QAM 只有1个PRB 功率最低)FR1 test model 2a (NR-FR1-TM2a) )(256QAM 只…

Eureka使用详解

介绍主要特点主要功能与常用服务注册中心的比较Eureka与Zookeeper的区别和联系Eureka与Nacos的区别与联系Eureka与Consul的区别与联系 安装部署Eureka与CAP理论Eureka实现实时上下线Eureka常用注解Eureka架构模式 介绍 Eureka是一个基于REST的服务&#xff0c;主要用于AWS云中…

python222网站实战(SpringBoot+SpringSecurity+MybatisPlus+thymeleaf+layui)-帖子详情页实现

锋哥原创的SpringbootLayui python222网站实战&#xff1a; python222网站实战课程视频教程&#xff08;SpringBootPython爬虫实战&#xff09; ( 火爆连载更新中... )_哔哩哔哩_bilibilipython222网站实战课程视频教程&#xff08;SpringBootPython爬虫实战&#xff09; ( 火…

Element-UI 多个el-upload组件自定义上传,不用上传url,并且携带自定义传参(文件序号)

1. 需求&#xff1a; 有多个&#xff08;不确定具体数量&#xff09;的upload组件&#xff0c;每个都需要单独上传获取文件&#xff08;JS File类型&#xff09;&#xff0c;不需要action上传到指定url&#xff0c;自定义上传动作和http操作。而且因为不确定组件数量&#xff0…

SpringMVC-.xml的配置

文章目录 一、对pom.xml的配置二、对web.xml1.第一种方式2. 第二种方式 三、对SpringMVC.xml的配置 一、对pom.xml的配置 <!-- 打包成war包--><packaging>war</packaging> <dependencies><!-- SpringMVC--><dependency><gro…

Shiro框架:Shiro用户访问控制鉴权流程-Aop注解方式源码解析

目录 1.Spring Aop嵌入点解析 2.Shiro框架Aop切面逻辑解析 2.1 通过注解实现切点 2.2 通过增强逻辑执行校验过程 2.2.1 增强实现类AopAllianceAnnotationsAuthorizingMethodInterceptor 2.2.1.1 类图解析 2.2.1.2 实现增强方法 2.2.1.3 Shiro校验逻辑实现 2.2.1.3.1 …

代码随想录27期|Python|Day33|贪心算法|1005.K次取反后最大化的数组和|134. 加油站|135. 分发糖果

1005. K 次取反后最大化的数组和 思路比较简单&#xff0c;把所有的负数绝对值大的全部取反之后再在新的数组里把绝对值最小的重复取反即可。 class Solution(object):def largestSumAfterKNegations(self, nums, k):""":type nums: List[int]:type k: int:rt…

VS里那些实用的调试(debug)技巧

前言——————希望现在在努力的各位都能感动以后享受成功的自己&#xff01; 首先我们要来了解什么是bug——————bug本意是“昆虫”或“虫子”&#xff0c;现在⼀般是指在电脑系统或程序中&#xff0c;隐藏着的⼀些未被发现的缺陷或 问题&#xff0c;简称程序漏洞。 “…

Java导出Excel并合并单元格

需求&#xff1a;需要在导出excel时合并指定的单元格 ruoyi excel 项目基于若伊框架二次开发&#xff0c;本着能用现成的就不自己写的原则&#xff0c;先是尝试了Excel注解中needMerge属性 /*** 是否需要纵向合并单元格,应对需求:含有list集合单元格)*/public boolean needMer…

11 - PXC集群|MySQL存储引擎

PXC集群&#xff5c;MySQL存储引擎 数据库系列文章PXC集群配置集群测试集群 MySQL存储引擎存储引擎介绍mysql服务体系结构mysql服务的工作过程处理查询访问的工作过程处理存储insert访问的工作过程 什么是搜索引擎 存储引擎管理查看存储引擎修改存储引擎 存储引擎特点myisam存储…

20240119-子数组最小值之和

题目要求 给定一个整数数组 arr&#xff0c;求 min(b) 的总和&#xff0c;其中 b 的范围涵盖 arr 的每个&#xff08;连续&#xff09;子数组。由于答案可能很大&#xff0c;因此返回答案模数 Example 1: Input: arr [3,1,2,4] Output: 17 Explanation: Subarrays are [3]…

【排序算法】五、冒泡排序(C/C++)

「前言」文章内容是排序算法之冒泡排序的讲解。&#xff08;所有文章已经分类好&#xff0c;放心食用&#xff09; 「归属专栏」排序算法 「主页链接」个人主页 「笔者」枫叶先生(fy) 目录 冒泡排序1.1 原理1.2 代码实现&#xff08;C/C&#xff09;1.3 特性总结 冒泡排序 1.1…

基于Springboot的民宿在线预定平台(有报告)。Javaee项目,springboot项目。

演示视频&#xff1a; 基于Springboot的民宿在线预定平台(有报告)。Javaee项目&#xff0c;springboot项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&#xff0c;通过Spring…

SAI实例研究

实现目标 接到特定任务后&#xff0c;召唤生物攻击当前角色 例子 creature.id 15402&#xff08;即 smart_script.entryorguid&#xff09;共分为0和1两个事件阶段 第0阶段&#xff1a;第1条(id 0&#xff09;&#xff0c;第2条(id 1&#xff09;&#xff0c;第3条(id 2…

基于YOLOv8的目标识别、计数、电子围栏的项目开发过程

0 前言 用于生产环境中物体检测、识别、跟踪&#xff0c;人、车流量统计&#xff0c;越界安全识别 1 YOLOv8概述 YOLOv8 是Ultralytics的YOLO的最新版本。作为一种前沿、最先进(SOTA)的模型&#xff0c;YOLOv8在之前版本的成功基础上引入了新功能和改进&#xff0c;以提高性…

构建STM32MP133的Buildroot环境

意法半导体ST在坚持用 Yocto构建他们的OpenSTLinux MP1系列MCU&#xff0c;编译费劲&#xff0c;而且我们的应用不需要Yocto的环境&#xff0c;所以基于Buildroot的最小Linux系统更适合我们。 STM32MP133微处理器基于单Arm Cortex-A7内核&#xff0c;运行频率可达1 GHz&#x…

PACS医学影像采集传输与存储管理、影像诊断查询与报告管理系统,MPR多平面重建

按照国际标准IHE规范&#xff0c;以高性能服务器、网络及存储设备构成硬件支持平台&#xff0c;以大型关系型数据库作为数据和图像的存储管理工具&#xff0c;以医疗影像的采集、传输、存储和诊断为核心&#xff0c;集影像采集传输与存储管理、影像诊断查询与报告管理、综合信息…