5G_射频测试_测试模式解读(三)

news2024/12/26 13:44:34

Downlink test models

  • FR1 test model 1.1 (NR-FR1-TM1.1)(满PRB,QPSK)
  • FR1 test model 1.2 (NR-FR1-TM1.2)( QPSK/boosted/40% +QPSK)
  • FR1 test model 2 (NR-FR1-TM2)(64QAM 只有1个PRB 功率最低)
  • FR1 test model 2a (NR-FR1-TM2a) )(256QAM 只有1个PRB 功率最低)
  • FR1 test model 2b (NR-FR1-TM2b) (1024QAM 只有1个PRB 功率最低)
  • FR1 test model 3.1 (NR-FR1-TM3.1) (满PRB,64QAM)
  • FR1 test model 3.1a (NR-FR1-TM3.1a) (满PRB,256QAM)功率回退就是在这个TM
  • FR1 test model 3.1b (NR-FR1-TM3.1b) (满PRB,1024QAM)功率回退就是在这个TM
  • FR1 test model 3.2 (NR-FR1-TM3.2) (16QAM/deboosted/EVM60% +QPSK)
  • FR1 test model 3.3 (NR-FR1-TM3.3) (QPSK/deboosted/EVM/50% +QPSK)

Fixed Reference Channels(UP link Test models)

  • A.1 Fixed Reference Channels for
    1. reference sensitivity level,
    2. ACS,
    3. in-band blocking,
    4. out-of-band blocking,
    5. receiver intermodulation
    6. in-channel selectivity (QPSK, R=1/3)
  • A.2 Fixed Reference Channels for dynamic range (16QAM, R=2/3)

Configurations of TDD:定义了具体的帧结构以SCS30Khz为例:

  • DL:SL:UL=7:1:2,special slot=6:4:4

The set-up of physical channels for transmitter tests shall be according to one of the NR FR1 test models (NR-FR1TM) below. A reference to the applicable test model is made within each test.

The following general parameters are used by all NR test models:

- Duration is 1 radio frame (10 ms) for FDD and 2 radio frames for TDD (20 ms)

- The slots are numbered 0 to 10´2µ – 1 where µ is the numerology corresponding to the subcarrier spacing

- NRB is the maximum transmission bandwidth configuration seen in table 5.3.2-1 in TS 38.104 [2].

- Normal CP

- Virtual resource blocks of localized type

For FR1-TDD without NB-IoT operation in NR in-band, test models are derived based on the uplink/downlink configuration as shown in the table 4.9.2.2-1 using information element TDD-UL-DL-ConfigCommon as defined in TS 38.331 [19].

Table 4.9.2.2-1: Configurations of TDD for BS type 1-C and BS type 1-H test models

Field name

Value

referenceSubcarrierSpacing (kHz)

15

30

60

Periodicity (ms) for dl-UL-TransmissionPeriodicity

5

5

5

nrofDownlinkSlots

3

7

14

nrofDownlinkSymbols

10

6

12

nrofUplinkSlots

1

2

4

nrofUplinkSymbols

2

4

8

对于PDCCH/PDSCH的定义可以上5G频谱对应看看,定义了Resource数量和位置,功率的大小

Table 4.9.2.2-2: Common physical channel parameters for PDCCH for BS type 1-C and BS type 1-H test models

Parameter

Value

# of symbols used for control channel

2

Starting symbol number for control channel

0

# of CCEs allocated to PDCCH

1

Starting RB location for PDCCH

0

# of available REGs

6

Aggregation level

1

# of RBs not allocated for PDCCH in each symbol

NRB – 3

Ratio of PDCCH EPRE to DM-RS EPRE

0 dB

Boosting level of control channel

0 dB

Table 4.9.2.2-3: Common physical channel parameters for PDSCH for BS type 1-C and BS type 1-H test models

Parameter

Value

Mapping type

PDSCH mapping type A

dmrs-TypeA-Position for the first DM-RS symbol

pos2

dmrs-AdditionalPosition for additional DM-RS symbol(s)

1

dmrs-Type for comb pattern

Configuration type 1

maxLength

1

Ratio of PDSCH EPRE to DM-RS EPRE

0 dB

FR1 test model 1.1 (NR-FR1-TM1.1)(满PRB,QPSK)

This model shall be used for tests on:

- BS output power

- Transmit ON/OFF power

- TAE

- Unwanted emissions

- Occupied bandwidth

- ACLR

- Operating band unwanted emissions

- Transmitter spurious emissions

- Transmitter intermodulation

- Receiver spurious emissions

Common physical channel parameters are defined in clause 4.9.2.2. Specific physical channel parameters for NR-FR1-TM1.1 are defined in table 4.9.2.2.1-1.

Table 4.9.2.2.1-1: Specific physical channel parameters of NR-FR1-TM1.1

4.9.2.2.2 FR1 test model 1.2 (NR-FR1-TM1.2)( QPSK/boosted/40% +QPSK)

This model shall be used for tests on:

- Unwanted emissions

- ACLR

- Operating band unwanted emissions

Common physical channel parameters are defined in clause 4.9.2.2. Specific physical channel parameters for NR-FR1-TM1.2 are defined in table 4.9.2.2.2-1.

Table 4.9.2.2.2-1: Specific physical channel parameters of NR-FR1-TM1.2

4.9.2.2.3 FR1 test model 2 (NR-FR1-TM2)(64QAM 只有1个PRB 功率最低)

This model shall be used for tests on:

- Total power dynamic range (lower OFDM symbol TX power limit (OSTP) at min power)

- EVM of single 64QAM PRB allocation (at min power)

- Frequency error (at min power)

Common physical channel parameters are defined in clause 4.9.2.2. Specific physical channel parameters for NR-FR1-TM2 are defined in table 4.9.2.2.3-1.

Table 4.9.2.2.3-1: Specific physical channel parameters of NR-FR1-TM2

4.9.2.2.4 FR1 test model 2a (NR-FR1-TM2a) )(256QAM 只有1个PRB 功率最低)

This model shall be used for tests on:

- Total power dynamic range (lower OFDM symbol TX power limit (OSTP) at min power)

- EVM of single 256QAM PRB allocation (at min power)

- Frequency error (at min power)

Common physical channel parameters are defined in clause 4.9.2.2. Physical channel parameters and numbers of the allocated PRB are defined in table 4.9.2.2.3-1 with all 64QAM PDSCH PRBs replaced by 256QAM PDSCH PRBs.

4.9.2.2.4A FR1 test model 2b (NR-FR1-TM2b) (1024QAM 只有1个PRB 功率最低)

This model shall be used for tests on:

- Total power dynamic range (lower OFDM symbol TX power limit (OSTP) at min power)

- EVM of single 1024QAM PRB allocation (at min power)

- Frequency error (at min power)

Common physical channel parameters are defined in clause 4.9.2.2. Physical channel parameters and numbers of the allocated PRB are defined in table 4.9.2.2.3-1 with all 64QAM PDSCH PRBs replaced by 1024QAM PDSCH PRBs.

4.9.2.2.5 FR1 test model 3.1 (NR-FR1-TM3.1) (满PRB,64QAM)

This model shall be used for tests on:

- Output power dynamics

- Total power dynamic range (upper OFDM symbol TX power limit (OSTP) at max power with all 64QAM PRBs allocated)

- Transmitted signal quality

- Frequency error

- EVM for 64QAM modulation (at max power)

NOTE: EVM shall be evaluated over PDSCH allocated PRBs with Nrnti = 0 and Nrnti = 2

Common physical channel parameters are defined in clause 4.9.2.2. Physical channel parameters are defined in table 4.9.2.2.1-1 with all QPSK PDSCH PRBs replaced by 64QAM PDSCH PRBs.

4.9.2.2.6 FR1 test model 3.1a (NR-FR1-TM3.1a) (满PRB,256QAM)功率回退就是在这个TM

This model shall be used for tests on:

- Output power dynamics

- Total power dynamic range (upper OFDM symbol TX power limit (OSTP) at max power with all 256QAM PRBs allocated)

- Transmitted signal quality

- Frequency error

- EVM for 256QAM modulation (at max power)

NOTE: EVM shall be evaluated over PDSCH allocated PRBs with Nrnti = 0 and Nrnti = 2

Common physical channel parameters are defined in clause 4.9.2.2. Physical channel parameters are defined in table 4.9.2.2.1-1 with all QPSK PDSCH PRBs replaced by 256QAM PDSCH PRBs.

4.9.2.2.6A FR1 test model 3.1b (NR-FR1-TM3.1b) (满PRB,1024QAM)功率回退就是在这个TM

This model shall be used for tests on:

- Output power dynamics

- Total power dynamic range (upper OFDM symbol TX power limit (OSTP) at max power with all 1024QAM PRBs allocated)

- Transmitted signal quality

- Frequency error

- EVM for 1024QAM modulation (at max power)

NOTE: EVM shall be evaluated over PDSCH allocated PRBs with Nrnti = 0 and Nrnti = 2

Common physical channel parameters are defined in clause 4.9.2.2. Physical channel parameters are defined in table 4.9.2.2.1-1 with all QPSK PDSCH PRBs replaced by 1024QAM PDSCH PRBs.

4.9.2.2.7 FR1 test model 3.2 (NR-FR1-TM3.2) (16QAM/deboosted/EVM60% +QPSK)

This model shall be used for tests on:

- Transmitted signal quality

- Frequency error

- EVM for 16QAM modulation

Common physical channel parameters are defined in clause 4.9.2.2. Specific physical channel parameters for NR-FR1-TM3.2 are defined in table 4.9.2.2.7-1.

Table 4.9.2.2.7-1: Specific physical channel parameters of NR-FR1-TM3.2

4.9.2.2.8 FR1 test model 3.3 (NR-FR1-TM3.3) (QPSK/deboosted/EVM/50% +QPSK)

This model shall be used for tests on:

- Transmitted signal quality

- Frequency error

- EVM for QPSK modulation

Common physical channel parameters are defined in clause 4.9.2.2. Specific physical channel parameters for NR-FR1-TM3.3 are defined in table 4.9.2.2.8-1.

Table 4.9.2.2.8-1: Specific physical channel parameters of NR-FR1-TM3.3

A.1 Fixed Reference Channels for

  • reference sensitivity level,
  • ACS,
  • in-band blocking,
  • out-of-band blocking,
  • receiver intermodulation
  • in-channel selectivity (QPSK, R=1/3)

The parameters for the reference measurement channels are specified in table A.1-1 for FR1 reference sensitivity level, ACS, in-band blocking, out-of-band blocking, receiver intermodulation and in-channel selectivity.

Table A.1-1: FRC parameters for FR1 reference sensitivity level, ACS, in-band blocking, out-of-band blocking, receiver intermodulation and in-channel selectivity

A.2 Fixed Reference Channels for dynamic range (16QAM, R=2/3)

The parameters for the reference measurement channels are specified in table A.2-1 for FR1 dynamic range.

Table A.2-1: FRC parameters for FR1 dynamic range

 5G_射频测试_发射机测量(四)-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1400743.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Eureka使用详解

介绍主要特点主要功能与常用服务注册中心的比较Eureka与Zookeeper的区别和联系Eureka与Nacos的区别与联系Eureka与Consul的区别与联系 安装部署Eureka与CAP理论Eureka实现实时上下线Eureka常用注解Eureka架构模式 介绍 Eureka是一个基于REST的服务,主要用于AWS云中…

python222网站实战(SpringBoot+SpringSecurity+MybatisPlus+thymeleaf+layui)-帖子详情页实现

锋哥原创的SpringbootLayui python222网站实战: python222网站实战课程视频教程(SpringBootPython爬虫实战) ( 火爆连载更新中... )_哔哩哔哩_bilibilipython222网站实战课程视频教程(SpringBootPython爬虫实战) ( 火…

Element-UI 多个el-upload组件自定义上传,不用上传url,并且携带自定义传参(文件序号)

1. 需求: 有多个(不确定具体数量)的upload组件,每个都需要单独上传获取文件(JS File类型),不需要action上传到指定url,自定义上传动作和http操作。而且因为不确定组件数量&#xff0…

SpringMVC-.xml的配置

文章目录 一、对pom.xml的配置二、对web.xml1.第一种方式2. 第二种方式 三、对SpringMVC.xml的配置 一、对pom.xml的配置 <!-- 打包成war包--><packaging>war</packaging> <dependencies><!-- SpringMVC--><dependency><gro…

Shiro框架:Shiro用户访问控制鉴权流程-Aop注解方式源码解析

目录 1.Spring Aop嵌入点解析 2.Shiro框架Aop切面逻辑解析 2.1 通过注解实现切点 2.2 通过增强逻辑执行校验过程 2.2.1 增强实现类AopAllianceAnnotationsAuthorizingMethodInterceptor 2.2.1.1 类图解析 2.2.1.2 实现增强方法 2.2.1.3 Shiro校验逻辑实现 2.2.1.3.1 …

代码随想录27期|Python|Day33|贪心算法|1005.K次取反后最大化的数组和|134. 加油站|135. 分发糖果

1005. K 次取反后最大化的数组和 思路比较简单&#xff0c;把所有的负数绝对值大的全部取反之后再在新的数组里把绝对值最小的重复取反即可。 class Solution(object):def largestSumAfterKNegations(self, nums, k):""":type nums: List[int]:type k: int:rt…

VS里那些实用的调试(debug)技巧

前言——————希望现在在努力的各位都能感动以后享受成功的自己&#xff01; 首先我们要来了解什么是bug——————bug本意是“昆虫”或“虫子”&#xff0c;现在⼀般是指在电脑系统或程序中&#xff0c;隐藏着的⼀些未被发现的缺陷或 问题&#xff0c;简称程序漏洞。 “…

Java导出Excel并合并单元格

需求&#xff1a;需要在导出excel时合并指定的单元格 ruoyi excel 项目基于若伊框架二次开发&#xff0c;本着能用现成的就不自己写的原则&#xff0c;先是尝试了Excel注解中needMerge属性 /*** 是否需要纵向合并单元格,应对需求:含有list集合单元格)*/public boolean needMer…

11 - PXC集群|MySQL存储引擎

PXC集群&#xff5c;MySQL存储引擎 数据库系列文章PXC集群配置集群测试集群 MySQL存储引擎存储引擎介绍mysql服务体系结构mysql服务的工作过程处理查询访问的工作过程处理存储insert访问的工作过程 什么是搜索引擎 存储引擎管理查看存储引擎修改存储引擎 存储引擎特点myisam存储…

20240119-子数组最小值之和

题目要求 给定一个整数数组 arr&#xff0c;求 min(b) 的总和&#xff0c;其中 b 的范围涵盖 arr 的每个&#xff08;连续&#xff09;子数组。由于答案可能很大&#xff0c;因此返回答案模数 Example 1: Input: arr [3,1,2,4] Output: 17 Explanation: Subarrays are [3]…

【排序算法】五、冒泡排序(C/C++)

「前言」文章内容是排序算法之冒泡排序的讲解。&#xff08;所有文章已经分类好&#xff0c;放心食用&#xff09; 「归属专栏」排序算法 「主页链接」个人主页 「笔者」枫叶先生(fy) 目录 冒泡排序1.1 原理1.2 代码实现&#xff08;C/C&#xff09;1.3 特性总结 冒泡排序 1.1…

基于Springboot的民宿在线预定平台(有报告)。Javaee项目,springboot项目。

演示视频&#xff1a; 基于Springboot的民宿在线预定平台(有报告)。Javaee项目&#xff0c;springboot项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&#xff0c;通过Spring…

SAI实例研究

实现目标 接到特定任务后&#xff0c;召唤生物攻击当前角色 例子 creature.id 15402&#xff08;即 smart_script.entryorguid&#xff09;共分为0和1两个事件阶段 第0阶段&#xff1a;第1条(id 0&#xff09;&#xff0c;第2条(id 1&#xff09;&#xff0c;第3条(id 2…

基于YOLOv8的目标识别、计数、电子围栏的项目开发过程

0 前言 用于生产环境中物体检测、识别、跟踪&#xff0c;人、车流量统计&#xff0c;越界安全识别 1 YOLOv8概述 YOLOv8 是Ultralytics的YOLO的最新版本。作为一种前沿、最先进(SOTA)的模型&#xff0c;YOLOv8在之前版本的成功基础上引入了新功能和改进&#xff0c;以提高性…

构建STM32MP133的Buildroot环境

意法半导体ST在坚持用 Yocto构建他们的OpenSTLinux MP1系列MCU&#xff0c;编译费劲&#xff0c;而且我们的应用不需要Yocto的环境&#xff0c;所以基于Buildroot的最小Linux系统更适合我们。 STM32MP133微处理器基于单Arm Cortex-A7内核&#xff0c;运行频率可达1 GHz&#x…

PACS医学影像采集传输与存储管理、影像诊断查询与报告管理系统,MPR多平面重建

按照国际标准IHE规范&#xff0c;以高性能服务器、网络及存储设备构成硬件支持平台&#xff0c;以大型关系型数据库作为数据和图像的存储管理工具&#xff0c;以医疗影像的采集、传输、存储和诊断为核心&#xff0c;集影像采集传输与存储管理、影像诊断查询与报告管理、综合信息…

使用JFLASH实现文件程序自动化合并及下载功能

主要总结下使用 SEGGER 工具集的 JFLASH 软件实现hex/bin文件合并以及程序的自动下载使用方法。 起因是最近使用到LVGL字库文件的制作&#xff0c;每次都要将分散的bin文件按既定分配的偏移作合并处理&#xff0c;刚开始使用的是二进制文件合并工具,文件少的时候还行&#xff…

C#使用DateTime.Now静态属性动态获得系统当前日期和时间

目录 一、实例 1.源码 2.生成效果 二、相关知识点 1.Thread类 &#xff08;1&#xff09;Thread.Sleep()方法 &#xff08;2&#xff09;Thread(ThreadStart) &#xff08;3&#xff09;IsBackground &#xff08;4&#xff09;Invoke( &#xff09; 2.CreateGrap…

【c++函数重载】

文章目录 一. 命名空间二 .全缺省参数和半缺省参数三 . 函数重载 一. 命名空间 1.不指定域&#xff1a;先在局部找&#xff0c;再全局。 2. 指定域&#xff1a;到指定的命名空间去找。 3. 当把指定命名空间放开时&#xff0c;即using namespace std&#xff1b;例如放开标准c库…

分布式 session

分布式 session 种 session 的时候需要注意范围&#xff0c;也就是 cookie.domain。 比如两个域名&#xff1a;a.heo.com&#xff0c;b.heo.com。如果要共享 cookie&#xff0c;可以种一个更高层的公共域名&#xff0c;比如 heo.com。 当服务器 A &#xff08;localhost:808…