什么是中间件?

news2025/1/11 10:06:27

文章目录

    • 为什么需要中间件?
    • 中间件生态漫谈
    • 数据库中间件
      • 读写分离
      • 分库分表
      • 引进数据库中间件
        • MyCat 服务端代理模式
        • ShardingJDBC 客户端代理模式
    • 总结

IT 系统从单体应用逐渐向分布式架构演变,高并发、高可用、高性能、分布式等话题变得异常火热,中间件也在这一时期如雨后春笋般涌现出来,那到底什么是中间件呢?存在哪些类型的中间件呢?同一类型的中间件,我们该怎么选择?

为什么需要中间件?

先来说说什么是中间件,我认为中间件是游离于业务需求之外,专门为了处理项目中涉及高可用、高性能、高并发等技术需求而引入的一个个技术组件。它的一个重要作用就是能够实现业务代码与技术功能之间解耦合。

这么说是不是还有点抽象?在这里定义里,我提到了业务需求和技术需求,关于这两个词我需要再解释一下。

业务需求,笼统地说就是特定用户的特定诉求。以我们快递行业为例:人与人之间需要跨城市传递物品,逢年过节我们需要给远方的亲人寄礼物,这就是所谓的业务需求。

技术需求,就是随着业务的不断扩展,形成规模效应后带来的使用上的需求。例如上面提到的寄件服务,原先只需要服务 1 万个客户,用户体验非常好,但现在需要服务几个亿的用户,用户在使用的过程中就会出现卡顿、系统异常等问题,因此产生可用性、稳定性方面的技术诉求。

为了解决各式各样的业务和技术诉求,代码量会越来越多。如果我们任凭业务代码与技术类代码没有秩序地纠缠在一起,系统会变得越来越不可维护,运营成本也会成指数级增加,故障频发,最终直接导致项目建设失败。

怎么解决这个问题呢?计算机领域有一个非常经典的分层架构思想,还有这样一句话“计算机领域任何一个问题都可以通过分层来解决,如果不行,那就再增加一层。”要想让系统做得越来越好,我们通常会基于分层的架构思想引入一个中间层,专门来解决可用性、稳定性、高性能方面的技术类诉求,这个中间层就是中间件,这也正是“中间件”这个词的来源。

中间件生态漫谈

明白了中间件的内涵,我们再来看看市面上有哪些中间件。我在开篇词中已经提到过了,中间件的种类繁多,我整理了一版分布式架构体系中常见的中间件,你可以先打开图片仔细看一看。

在这里插入图片描述
特别是对互联网主流分布式架构体系的研读,我发现微服务中间件、消息中间件、定时调度的使用频率极高,在解决分布式架构相关问题中是排头兵,具有无可比拟的普适性。这三者的设计理念和案例能对分布式、高可用和高并发等理念实现全覆盖。

  • 微服务
    具体而言,作为软件架构从单体应用向分布式演进出现的第一个新名词,微服务涉及分布式领域中服务注册、服务动态发现、RPC 调用、负载均衡、服务聚合等核心技术,而 Dubbo 在微服务领域是当仁不让的王者。所以在微服务这一部分,我们会以 Dubbo 为例进行实战演练。

  • 消息中间件
    随着微服务的蓬勃发展,系统的复杂度越来越高,加上互联网秒杀、双十一、618 等各种大促活动层出不穷,我们急切需要对系统解耦和应对突发流量的解决办法,这时候消息中间件应运而生了,它同样成为我们架构设计工作中最常用的工具包。常用的消息中间件包括 RocketMQ、Kafka,它们在适用性上有所不同,如何保障消息中间件的稳定性是一大挑战。

  • 定时调度
    而定时调度呢?我们既可以认为它是个技术需求,也可以认为它是一个业务类需求,通过研读 ElasticJob、XXL-Job 等定时调度框架,可以很好地提升我们对业务需求的架构设计能力。

数据库中间件

数据库中间件应该是我们接触得最早也是最为常见的中间件,在引入数据库中间件之前,由于单体应用向分布式架构演进的过程中单表日数据急速增长,单个数据库的节点很容易成为系统瓶颈,无法提供稳定的服务。因此,为了解决可用性问题,在技术架构领域通常有如下两种解决方案:

  • 读写分离
  • 分库分表

我们先分别解析下这两个方案。最后再来看一看,引入数据库中间件给技术带来的简化。

读写分离

这是我在没有接触中间件之前,在一个项目中使用过的方案:
在这里插入图片描述
这个方案的实现要点有三个。

第一,在编写业务接口时,要通过在接口上添加注解来指示运行时应该使用的数据源。例如,@SlaveofDB 表示使用 Slave 数据库,@MasterOfDB 表示使用主库。

第二,当用户发起请求时,要先经过一个拦截器获取用户请求的具体接口,然后使用反射机制获取该方法上的注解。举个例子,如果存在 @SlaveofDB,则往线程上下文环境中存储一个名为 dbType 的变量,赋值为 slave,表示走从库;如果存在 @MasterOfDB,则存储为 master,表示走主库。

第三,在 Dao 层采用 Spring 提供的路由选择机制,继承自 AbastractRoutingDataSource。应用程序启动时自动注入两个数据源 (master-slave),采用 key-value 键值对的方式存储。在真正需要获取链接时,根据上下文环境中存储的数据库类型,从内部持有的 dataSourceMap 中获取对应的数据源,从而实现数据库层面的读写分离。

总结一下,读写分离的思路就是通过降低写入节点的负载,将耗时的查询类请求转发到从节点,从而有效提升写入的性能。

但是,当业务量不断增加,单个数据库节点已无法再满足业务需求时,我们就要对数据进行切片,分库分表的技术思想就应运而生了。

分库分表

分库分表是负载均衡在数据库领域的应用,主要的原理你可以参考下面这张图。
在这里插入图片描述
简单说明一下。分库分表主要是通过引入多个写入节点来缓解数据压力的。因此,在接受写入请求后,负载均衡算法会将数据路由到其中一个节点上,多个节点共同分担数据写入请求,降低单个节点的压力,提升扩展性,解决单节点的性能瓶颈。

不过,要实现数据库层面的分库分表还是存在一定技术难度的。因为分库分表和读写分离一样,最终要解决的都是如何选择数据源的问题。所以在分库分表方案中,首先我们要有两个算法。

  • 一个分库字段和分库算法,即在进行数据查询、数据写入时,根据分库字段的值算出要路由到哪个数据库实例上;
  • 一个分表字段和分表算法,即在进行数据查询、数据写入时,根据分表字段的值算出要路由到哪个表上。

不管是上面的分库、还是分表都需要解决一个非常关键的问题:SQL 解析。你可以看下面这张图。

在这里插入图片描述
如果订单库的分库字段设置为 order_no,要想正确执行这条 SQL 语句,我们首先要解析这条 SQL 语句,提取 order_no 的字段值,再根据分库算法 (负载均衡算法) 计算应该发送到哪一个具体的库上执行。

SQL 语句语法非常复杂,要实现一套高性能的 SQL 解析引擎绝非易事,如果按照上面我提供的解决方案,将会带来几个明显的弊端。

  • 技术需求会污染业务代码,维护成本高

在业务控制器中需要使用注解来声明读写分离按相关的规则进行,随着业务控制的不断增加、或者读写分离规则的变化,我们需要对系统所有注解进行修改,但业务逻辑其实并没有改变。这就造成两者之间相互影响,后期维护成本较高。

  • 技术实现难度大,极大增加开发成本

由于 SQL 语句的格式太复杂、太灵活,如果不是数据库专业人才,很难全面掌握 SQL 语法。在这样的情况下,你写出的 SQL 解析引擎很难覆盖所有的场景,容易出现遗漏最终导致故障的发生;这也给产品的性能带来极大挑战。

那怎么办呢?其实,我们完全可以使用业界大神的开源作品来解决问题,这就要说到数据库中间件了。

引进数据库中间件

技术类诉求往往是相通的,极具普适性,为了解决上面的通病,根据分层的架构理念,我们通常会引入一个中间层,专门解决数据库方面的技术类需求

MyCat 和 ShardingJDBC/ShardingSphere 是目前市面最主流的两个数据库中间件,二者各有优势。

MyCat 服务端代理模式

先来看下 MyCat 代理数据库。它的工作模式可以用下面这张图概括:

在这里插入图片描述
面对应用程序,MyCat 会伪装成一个数据库服务器 (例如 MySQL 服务端)。它会根据各个数据库的通信协议,从二进制请求中根据协议进行解码,然后提取 SQL,并根据配置的分库分表、读写分离规则计算出需要发送到哪个物理数据库。

随后,面对真实的数据库资源,MyCat 会伪装成一个数据库客户端。它会根据通信协议将 SQL 语句封装成二进制流,发送请求到真实的物理资源,真实的物理数据库收到请求后解析请求并进行对应的处理,再将结果层层返回到应用程序。

这种架构的优势是它对业务代码无任何侵入性,应用程序只需要修改项目中数据库的连接配置就可以了,而且使用简单,易于推广。同时它也有劣势:

  • 存在性能损耗

数据库中间件需要对应用程序发送过来的请求进行解码并计算路由,随后它还要再次对请求进行编码并转发到真实的数据库,这就增加了性能开销。

  • 高度中心化,数据库中间件容易成为性能瓶颈

数据库中间件需要处理所有的数据库请求,返回结果都需要在数据库中进行聚合,虽然减少了后端数据库的压力,但中间件本身很容易成为系统的瓶颈,扩展能力受到一定制约

  • 代理层实现复杂,普适性差

数据库中间件本身的实现比较复杂,需要适配市面上各主流数据库,例如 MySQL、Oracle 等,通用性大打折扣。

ShardingJDBC 客户端代理模式

下面我们再来看下 ShardingJDBC 客户端代理数据库。ShardingJDBC 的工作模式如下图所示:

在这里插入图片描述

ShardingJDBC 主要实现的是 JDBC 协议。实现 JDBC 协议,其实主要是面向 java.sql.Datasource、Connection、ResultSet 等对象编程。它通常以客户端 Jar 包的方式嵌入到业务系统中,ShardingjJDBC 根据分库分表的配置信息,初始化一个 ShardingJdbcDatasource 对象,随后解析 SQL 语句来提取分库、分表字段值,再根据配置的路由规则选择正确的后端真实数据库,最后,ShardingJDBC 用各种类型数据库的驱动包将 SQL 发送到真实的物理数据库上。

我们同样来分析一下这个方案的优缺点。

主要的优势有如下几点:

  • 无性能损耗

ShardingJDBC 使用的是基于客户端的代理模式,不需要对 SQL 进行编码解码等操作,只要根据 SQL 语句进行路由选择就可以了,没有太多性能损耗。

  • 无单点故障,扩展性强

ShardingJDBC 以 Jar 包的形式存在于项目中,其分布式特性随着应用的增加而增加,扩展性极强。

  • 基于JDBC协议,可无缝支持各主流数据库

JDBC 协议是应用程序与关系型数据库交互的业界通用标准,市面上所有关系型数据库都天然支持 JDBC,故不存在兼容性问题。

当然缺点也很明显,对于分库分表,它没有一个统一的视图,运维类成本较高。举个例子,如果订单表被分成了 1024 个表,这时候如果你想根据订单编号去查询数据,必须人为计算出这条数据存在于哪个库的哪个表中,然后再去对应的库上执行 SQL 语句。

为了解决 ShardingJDBC 存在的问题,官方提供了 ShardingSphere,其工作机制基于代理模式,与 MyCat 的设计理念一致,作为数据库的代理层,提供统一的数据聚合层,可以有效弥补 ShardingJDBC 在运维层面的缺陷,因此项目通常采用 ShardingDBC 的编程方式,然后再搭建一套 ShardingSphere 供数据查询。

在没有 ShardingSphere 之前,使用 MyCat 也有一定优势。MyCat 对业务代码无侵入性,接入成本也比较低。但 ShardingSphere 弥补了 ShardingJDBC 对运维的不友好,而且它的性能损耗低、扩展性强、支持各类主流数据库,可以说相比 MyCat 已经占有明显的优势了。

所以如果要在实践生产中选择数据库中间件,我更加推荐 ShardingJDBC。

除了上面的原因,从资源利用率和社区活跃度的角度讲,首先,MyCat 的“前身”是阿里开源的 Cobar,是数据库中间件的开山鼻祖,技术架构稍显古老,而 ShardingJDBC 在设计之初就可以规避 MyCat 的固有缺陷,摒弃服务端代理模式。代理模式需要额外的机器搭建 MyCat 进程,引入了新的进程,势必需要增加硬件资源的投入。

其次,ShardingJDBC 目前已经是 Apache 的顶级项目,它的社区活跃度也是 MyCat 无法比拟的。一个开源项目社区越活跃,寻求帮助后问题得到解决的概率就会越大,越多人使用,系统中存在的 Bug 也更容易被发现、被修复,这就使得中间件本身的稳定性更有保障。

在这里插入图片描述

总结

通过刚才的学习,我们知道了中间件的概念,它是为了解决系统中的技术需求,将技术需求与业务需求进行解耦,让我们专注于业务代码开发的一个个技术组件。中间件的存在,就是为了解决高并发、高可用性、高性能等各领域的技术难题。

在项目中,合理引用中间件能极大提升我们系统的稳定性、可用性,但同时也会提升系统维护的复杂度,对我们的技术能力提出了更高的要求,我们必须要熟练掌握项目中引用的各种中间件,深入理解其工作原理、实现细节,提高对中间件的驾驭能力,否则一旦运用不当,很可能给系统带来灾难性的故障。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1400168.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

开源项目_一键发布 markdown 到各个平台_Wechatsync

1 使用场景 最近文章更新比较频繁,基本是日更。因此花费了相当多的时间在不同平台之间同步。时间主要消耗在:需要大致浏览一遍文章内容,另外某些平台需要手动上传图片,有时还需要调整排版。 为了解决这个问题,我选择…

Addressables(1) 从安装到加载单个/多个资源

不想再配改那些狗屎路径,准备研究一下Adressable,据说可以用key加载指定的资源 刚安装下来,随便搞了个资源勾选了一下addressable的框框,多了好多东西啊 概念铺天盖地而来,ok 没事的 慢慢来! 前置知识 P…

【llm 使用llama 小案例】

huggingfacehttps://huggingface.co/meta-llama from transformers import AutoTokenizer, LlamaForCausalLMPATH_TO_CONVERTED_WEIGHTS PATH_TO_CONVERTED_TOKENIZER # 一般和模型地址一样model LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) tokenize…

短视频解析单页源码

这个一个网页html解析短视频无水印视频的源码&#xff0c;电脑直接打开也可以本地使用&#xff0c;也可以上传到网站搭建成网页使用。 代码如下&#xff1a; <!DOCTYPE html> <html> <head><meta charset"UTF-8"><title>短视频解析&l…

计算机毕业设计选题分享-ssm租房小程序42196(赠送源码数据库)JAVA、PHP,node.js,C++、python,大屏数据可视化等

毕业设计 ssm租房小程序 院 系&#xff1a; 姓 名&#xff1a; 学 号&#xff1a; 专 业&#xff1a; 年 级&#xff1a; 指导教师&#xff1a; 职 称&#xff1…

HYBBS 表白墙网站PHP程序源码 可封装成APP

源码介绍 PHP表白墙网站源码&#xff0c;可以做校园内的&#xff0c;也可以做校区间的&#xff0c;可封装成APP。告别QQ空间的表白墙吧。 安装PHP5.6以上随意 上传程序安装&#xff0c;然后设置账号密码&#xff0c;登陆后台切换模板手机PC都要换开启插件访问前台。 安装完…

MySQL隔离性的进阶理解

数据库的并发场景有三种 读-读&#xff1a;没有问题读-写&#xff1a;有线程安全问题&#xff0c;可能会造成事务隔离性问题&#xff0c;如&#xff1a;脏读&#xff0c;幻读&#xff0c;不可重复读写-写&#xff1a;有线程安全问题&#xff0c;可能会存在更新丢失问题&#xf…

使用OpenCV绘制图形

使用OpenCV绘制图形 绘制黄色的线&#xff1a; # 绘制一个黑色的背景画布 canvas np.zeros((300, 300, 3), np.uint8) # 在画布上&#xff0c;绘制一条起点坐标为(150, 50)、终点坐标为(150, 250)&#xff0c;黄色的&#xff0c;线条宽度为20的线段 canvas cv2.line(canvas,…

AI基于近邻图的向量搜索案例(二)

Graph部分 Graph部分&#xff0c;通过先构建KNN图&#xff0c;再根据RNG Rule移除不符合要求的边&#xff0c;得到RNG。 KNN图的构建 KNN图是指对于样本数据中的每一个点&#xff0c;将其自身与K个近邻点连接而形成的图。 由于样本数据规模非常大&#xff0c;我们采用了一定…

AI+量化02_金融市场的基础概念

文章目录 问答之纯小白 vs GPT4Q1. 请用尽可能简短的语句或例子&#xff0c;给小白讲解宏观经济Q2. 给小白讲解资本边际效率 思维导图 目标: 掌握量化金融知识、使用Python进行量化开发 背景&#xff1a;纯小白 参考资料&#xff1a;https://github.com/datawhalechina/whale-q…

Haxe-UnrealEngine5

Haxe-UnrealEngine5 结论 UE C header > External/**.hx.hx > .h/.cpp&#xff0c;和 UE C 一起编译使用 hxcpp 来调试 .hx good&#xff1a; 理论上不仅限反射代码走 UE C&#xff0c;无需维护 backend&#xff0c;比如 Lua Binding理论上接近 UE C 的性能 bad&…

Python-基础篇-数据结构-列表、元组、字典、集合

文章目录 思维导图❓ 大抵是何物数据结构切片 &#x1f4ac;具体是何物列表&#x1f4bb; list&#x1f4bb; [ ]自我介绍精神面貌使用说明生理体征增删查改 方法汇总 元组&#x1f4bb; tuple&#x1f4bb; ( )自我介绍使用说明精神面貌生理体征增删查改 字典&#x1f4bb; di…

【网络安全】【密码学】【北京航空航天大学】实验五、古典密码(中)【C语言实现】

实验五、古典密码&#xff08;中&#xff09; 实验目的和原理简介参见博客&#xff1a;古典密码&#xff08;上&#xff09; 一、实验内容 1、弗纳姆密码&#xff08;Vernam Cipher&#xff09; &#xff08;1&#xff09;、算法原理 加密原理&#xff1a; 加密过程可以用…

【网站项目】329网月科技公司门户网站

&#x1f64a;作者简介&#xff1a;多年一线开发工作经验&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。&#x1f339;赠送计算机毕业设计600个选题excel文件&#xff0c;帮助大学选题。赠送开题报告模板&#xff…

一个简单的ETCD GUI工具

使用ETCD没有好用的GUI工具&#xff0c;随手用c#写了一个&#xff0c; 做得好玩的一个ETCD GUI工具&#xff0c;后面加上CLI 工具&#xff0c;类似于 redis Cli工具一样&#xff0c;简化在 Linux下面的操作&#xff0c;不知道有没有必要&#xff0c; git 地址如下&#xff0c;…

KDJ指标的算法、原理和特性

KDJ的完整中文名称是随机摆动指标&#xff0c;是短线交易者最常用的指标之一。作为应用最广泛的指标之一&#xff0c;KDJ的用法网上随处可见&#xff0c;但大部分介绍都只会告诉你超买超卖&#xff0c;金叉死叉&#xff0c;详细点的讲讲背离和钝化&#xff0c;至于为什么这么用…

竞赛保研 机器视觉opencv答题卡识别系统

0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 答题卡识别系统 - opencv python 图像识别 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;学长非常推荐&#xff01; &#x1f947;学长这里给一个题目综合评分(每项满分5分…

Erp读书笔记20240121

ERP&#xff08;Enterprise Resource Planning&#xff0c;企业资源计划&#xff09;是一种集成的企业管理软件系统&#xff0c;它可以帮助企业实现内部和外部资源的整合和管理。 ERP 系统具有纵观全局的特点&#xff0c;它可以涵盖企业的各个部门和业务流程&#xff0c;实现信…

力扣每日一练(24-1-20)

大脑里的第一想法是排列组合&#xff0c;直接给出超级准确的最优解。 但不适用&#xff0c;hhh 只要连续的n个元素大于或者等于target就可以了 题目比自己想象的要好解决 解法是使用滑动窗口算法。这个算法的基本思想是维护一个窗口&#xff0c;使得窗口内的元素总和大于等于目…

初识MQ-同步异步

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、同步通讯二、异步通讯2.1.异步调用方案2.2.异步的优缺点 三、什么时MQ3.1 mq和broker3.2几种mq的优缺点对比 总结 前言 一、同步通讯 同步调用问题&#…