用Python实现Excel中的Vlookup功能

news2024/11/26 0:45:27

目录

一、引言

二、准备工作

三、实现Vlookup功能

1、导入pandas库

2、准备数据

3、实现Vlookup功能

4、处理结果

5、保存结果

四、完整代码示例

五、注意事项

六、总结


一、引言

在Excel中,Vlookup是一个非常实用的函数,它可以帮助我们在表格中查找并返回所需的值。如果你想在Python中实现类似的功能,可以使用pandas库来实现。Pandas库是一个强大的数据处理工具,可以轻松处理和分析各种数据。下面,我们将手把手教你如何使用Python和pandas库实现Excel中的Vlookup功能。

二、准备工作

首先,确保你已经安装了pandas库。如果没有安装,可以使用以下命令进行安装:
pip install pandas

三、实现Vlookup功能

1、导入pandas库

在Python脚本中,首先需要导入pandas库:

python
import pandas as pd

2、准备数据

假设我们有两个表格,一个是"main_data.csv",包含我们要查找的列和返回的列,另一个是"lookup_table.csv",包含查找值和对应的结果。我们将分别读取这两个表格:

python
# 读取main_data.csv表格  
main_data = pd.read_csv('main_data.csv')  
  
# 读取lookup_table.csv表格  
lookup_table = pd.read_csv('lookup_table.csv')

3、实现Vlookup功能

接下来,我们将使用pandas的merge()函数来合并两个表格。merge()函数可以根据指定的列将两个表格进行匹配,并返回匹配的结果。我们将使用left_on和right_on参数来指定用于匹配的列:

python
# 根据指定的列进行合并,并将结果存储在new_data变量中  
new_data = main_data.merge(lookup_table, left_on='查找列', right_on='查找值列')

4、处理结果

merge()函数将返回一个新的DataFrame对象,其中包含匹配的结果。我们可以使用drop()函数来删除不需要的列:

python
# 删除不需要的列,只保留返回的值列和main_data中的其他列  
new_data = new_data.drop(['查找值列', '查找列'], axis=1)

5、保存结果

最后,我们可以将结果保存到新的CSV文件中:

python
# 将结果保存到新的CSV文件output.csv中  
new_data.to_csv('output.csv', index=False)

四、完整代码示例

import pandas as pd  
  
# 读取main_data.csv表格和lookup_table.csv表格  
main_data = pd.read_csv('main_data.csv')  
lookup_table = pd.read_csv('lookup_table.csv')  
  
# 检查两个表格的列是否匹配  
if main_data.columns != lookup_table.columns:  
    print("列不匹配,请检查列名是否一致")  
    exit()  
  
# 根据指定的列进行合并,并将结果存储在new_data变量中  
new_data = main_data.merge(lookup_table, on='查找列', how='left')  # 使用'left'方式进行左连接,只保留main_data中的数据  
  
# 如果查找列有重复的值,可能会出现重复的行。我们可以使用drop_duplicates()函数去除重复行。  
new_data = new_data.drop_duplicates(subset='查找列', keep='first')  # 保留第一个匹配的结果  
  
# 删除不需要的列,只保留返回的值列和main_data中的其他列  
new_data = new_data.drop(['查找列'], axis=1)  # 注意:这里使用的是'查找列',而不是'查找值列'  
  
# 将结果保存到新的CSV文件output.csv中  
new_data.to_csv('output.csv', index=False)

这个完善后的代码做了以下几件事情:

  1. 检查两个表格的列是否匹配,如果不匹配则给出错误提示并退出程序。
  2. 使用on参数进行左连接,只保留main_data中的数据。如果你想保留lookup_table中的数据,可以使用right_on参数进行右连接。
  3. 使用drop_duplicates()函数去除重复行,只保留第一个匹配的结果。
  4. 删除不需要的列,只保留返回的值列和main_data中的其他列。注意这里使用的是查找列,而不是查找值列
  5. 将结果保存到新的CSV文件output.csv中。

五、注意事项

  1. 列名匹配:在实现Vlookup功能时,确保"查找列"和"查找值列"在两个表格中具有相同的列名,否则merge()函数将无法正确匹配。
  2. 数据类型:确保"查找列"和"查找值列"中的数据类型一致,否则可能导致匹配错误。
  3. 重复数据:如果"查找值列"中有重复的数据,merge()函数将返回所有匹配的结果。你可能需要进一步处理重复数据或筛选结果。
  4. 性能优化:对于大型数据集,merge()操作可能会比较耗时。为了提高性能,可以考虑使用pandas的其他函数或方法,如map()、apply()等。
  5. 错误处理:在实际应用中,可能存在一些异常情况,如文件不存在、列名错误等。为了提高代码的健壮性,建议添加适当的错误处理机制。

六、总结

通过使用Python和pandas库,我们可以轻松实现Excel中的Vlookup功能。在实现过程中,我们使用了pandas的merge()函数来合并两个表格,并根据指定的列进行匹配。最后,我们将结果保存到新的CSV文件中。需要注意的是,在实现过程中需要确保列名匹配、数据类型一致、处理重复数据和优化性能等。通过熟练掌握pandas库,我们可以更加高效地处理和分析各种数据。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1400093.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

有什么提高编程能力的书籍推荐吗?

数据密集型应用系统设计 原文完整版PDF:https://pan.quark.cn/s/d5a34151fee9 这本书的作者是少有的从工业界干到学术界的牛人,知识面广得惊人,也善于举一反三,知识之间互相关联,比如有个地方把读路径比作programming …

Docker进阶篇-安装MySQL主从复制

一、MySQL主服务器 1、新建主服务器容器实例3307 docker run -p 3307:3306 \--name mysql-master \--privilegedtrue \-v /mydata/mysql-master/log:/var/log/mysql \-v /mydata/mysql-master/data:/var/lib/mysql \-v /mydata/mysql-master/conf:/etc/mysql \-e MYSQL_ROOT_…

ctfshow-反序列化(web271-web276)

目录 web271 web272-273 web274 web275 web276 为什么不用分析具体为什么能成功 ,后面会有几个专题 会对php框架进行更深入的了解 这里面会专门的研究 为什么能够实现RCE 前面作为初步的熟悉 首先知道一下他的框架 知道框架的风格 知道啥版本可以用什么来打 首先先不用太研…

2024美赛数学建模思路 - 案例:感知机原理剖析及实现

文章目录 1 感知机的直观理解2 感知机的数学角度3 代码实现 4 建模资料 # 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 1 感知机的直观理解 感知机应该属于机器学习算法中最简单的一种算法,其…

leetcode:每日温度---单调栈

题目: 给定一个整数数组 temperatures ,表示每天的温度,返回一个数组 answer ,其中 answer[i] 是指对于第 i 天,下一个更高温度出现在几天后。如果气温在这之后都不会升高,请在该位置用 0 来代替。 示例&…

139:leafle加载here地图(v3软件多种形式)

第139个 点击查看专栏目录 本示例介绍如何在vue+leaflet中添加HERE地图(v3版本的软件),并且含多种的表现形式。包括地图类型,文字标记的设置、语言的选择、PPI的设定。 v3版本和v2版本有很大的区别,关键是引用方法上,请参考文章尾部的API链接。 直接复制下面的 vue+leaf…

2.1.4-相关性分析

跳转到根目录:知行合一:投资篇 已完成: 1、投资&技术   1.1.1 投资-编程基础-numpy   1.1.2 投资-编程基础-pandas   1.2 金融数据处理   1.3 金融数据可视化 2、投资方法论   2.1.1 预期年化收益率   2.1.2 一个关于yaxb的…

【redis13】集群前奏:sentinel模式

1.哨兵sentinel引入背景 我们现在来思考一个问题:如何实现服务的高可用。我们首先想到至少要满足两个要求:1.服务端能够实现主从自动切换;2.对于客户端来说,如果发生了主从切换,则能够自动连接到最新的master节点。 我…

第04章_IDEA的安装与使用(上)(认识,卸载与安装,JDK相关设置,详细设置,工程与模块管理,代码模板的使用)

文章目录 第04章_IDEA的安装与使用(上)本章专题与脉络1. 认识IntelliJ IDEA1.1 JetBrains 公司介绍1.2 IntelliJ IDEA 介绍1.3 IDEA的主要优势:(vs Eclipse)1.4 IDEA 的下载 2. 卸载与安装2.1 卸载过程2.2 安装前的准备2.3 安装过程2.4 注册2…

Django REST Framework入门之序列化器

文章目录 一、概述二、安装三、序列化与反序列化介绍四、之前常用三种序列化方式jsonDjango内置Serializers模块Django内置JsonResponse模块 五、DRF序列化器序列化器工作流程序列化(读数据)反序列化(写数据) 序列化器常用方法与属…

使用 Node 创建 Web 服务器

Node.js 提供了 http 模块,http 模块主要用于搭建 HTTP 服务端和客户端,使用 HTTP 服务器或客户端功能必须调用 http 模块,代码如下: var http require(http); 以下是演示一个最基本的 HTTP 服务器架构(使用 8080 端口)&#x…

acwing讲解篇之94. 递归实现排列型枚举

文章目录 题目描述题解思路题解代码 题目描述 题解思路 定义递归深度deep,数字使用情况used,选择的数字顺序path 进行递归 终止条件为递归深度达到n层时,打印path,然后返回 深度加一 遍历未使用的数字,选择数字&am…

web架构师编辑器内容-编辑器组件图层面板功能开发-锁定隐藏、键盘事件功能的开发

我们这一部分主要是对最右侧图层面板功能进行剖析,完成对应的功能的开发: 每个图层都对应编辑器上面的元素,有多少个元素就对应多少个图层,主要的功能如下: 锁定功能:点击锁定,在编辑器中没法编辑对应的组…

Elasticsearch的映射操作

本文来记录下Elasticsearch的映射操作 文章目录 映射的概述 映射的概述 Elasticsearch与mysql数据库对比 映射的概述 有了索引库,等于有了数据库中的 database。索引库(index)中的映射,类似于数据库(database)中的表结构(table)。创建数据库表需要设置字…

3、非数值型的分类变量

非数值型的分类变量 有很多非数字的数据,这里介绍如何使用它来进行机器学习。 在本教程中,您将了解什么是分类变量,以及处理此类数据的三种方法。 本课程所需数据集夸克网盘下载链接:https://pan.quark.cn/s/9b4e9a1246b2 提取码:uDzP 文章目录 1、简介2、三种方法的使用1…

Flutter 与 Android原生 相互通信:BasicMessageChannel、MethodChannel、EventChannel

前言 本文主要讲解,使用不同的 Channel 让 Flutter 和 Android原生 进行通信,由于只是讲解两端通信,所以可视化效果不好; 不过我写了一篇专门讲解 Flutter 嵌入 Android原生View的文章 Flutter 页面嵌入 Android原生 View-CSDN…

小程序使用echarts图表-雷达图

本文介绍下小程序中如何使用echarts 如果是通过npm安装,这样是全部安装的,体积有点大 我这边是使用echarts中的一个组件来实现的,下边是具体流程,实际效果是没有外边的红色边框的,加红色边框的效果是这篇说明 1.echa…

精品基于Uniapp+springboot疫情防控管理系统App

《[含文档PPT源码等]精品基于Uniappspringboot疫情防控管理系统App》该项目含有源码、文档、PPT、配套开发软件、软件安装教程、项目发布教程、包运行成功! 软件开发环境及开发工具: 开发语言:Java 后台框架:springboot、ssm …

keil软件仿真

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、pandas是什么?二、使用步骤 1.引入库2.读入数据总结 前言 例如:随着人工智能的不断发展,机器学习这门技术也越来越重要…

Excel 根据日期按月汇总公式

Excel 根据日期按月汇总公式 数据透视表日期那一列右击,选择“组合”,步长选择“月” 参考 Excel 根据日期按月汇总公式Excel如何按着日期来做每月求和