C++-类和对象(3)

news2024/9/20 1:11:08

1. 再谈构造函数

1.1 构造函数体赋值

我们在创建一个对象时,编译器会调用该对象的构造函数对该对象的成员进行初始化。

class Date
{
public:
	Date(int year, int month, int day)
	{
		_year = year;
		_month = month;
		_day = day;
	}
private:
	int _year;
	int _month;
	int _day;
};
虽然上述构造函数调用之后,对象中已经有了一个初始值,但是不能将其称为对对象中成员变量
的初始化, 构造函数体中的语句只能将其称为赋初值 ,而不能称作初始化。因为 初始化只能初始
化一次,而构造函数体内可以多次赋值
接下来介绍一种实用的初始化方式。

1.2 初始化列表

初始化列表:以一个 冒号开始 ,接着是一个以 逗号分隔的数据成员列表 ,每个 " 成员变量 " 后面跟
一个 放在括号中的初始值或表达式。
class Date
{
public:
	//成员变量的定义
	Date(int year, int month, int day)
		:_year(year)
		,_month(month)
		,_day(day)
	{}
private:
	//成员变量的声明
	int _year;
	int _month;
	int _day;
};

int main()
{
	//对象的整体定义
	Date d(2024, 1, 9);
	return 0;
}
注意】
1. 每个成员变量在初始化列表中 只能出现一次 ( 初始化只能初始化一次 )
2. 类中包含以下成员,必须放在初始化列表位置进行初始化:

引用成员变量
const成员变量
自定义类型成员(且该类没有默认构造函数时)

 引用必须在定义的时候初始化,所以需要的放到初始化列表。

const也必须在定义的时候初始化,因为const只有一次初始化的机会,所以需要的放到初始化列表。

需要注意的是,Date类有一个自定义类型的成员变量_a,_a它没有默认构造,因为没有给值,所以必须使用初始化列表进行初始化,如果_a有默认构造的话,就不需要使用初始化列表。

前面提到过的缺省值也是给初始化列表的,_year,_month,_day这三个成员变量是内置类型,所以如果不给缺省值,就是随机值。

class A
{
public:
	A(int a)
		:_a(a)
	{}
private:
	int _a;
};
class Date
{
public:
	//成员变量的定义
	Date(int year, int month, int day)
		:_aa(10)
		, _n(1)
		,_ref(year)
	{
		_year = year;
		_month = month;
		_day = day;
	}
private:
	//成员变量的声明
	int _year=1;
	int _month=1;
	int _day=1;
	A _aa;
	const int _n;
	int& _ref;
};
3. 尽量使用初始化列表初始化,因为不管你是否使用初始化列表,对于自定义类型成员变量,
一定会先使用初始化列表初始化。
4. 成员变量 在类中 声明次序 就是其在初始化列表中的 初始化顺序 ,与其在初始化列表中的先后
次序无关
大家看下面这段代码会是什么结果?
A . 输出 1   1
B . 程序崩溃
C . 编译不通过
D . 输出 1   随机值
class A
{
public:
	A(int a)
		:_a1(a)
		, _a2(_a1)
	{}

	void Print() {
		cout << _a1 << " " << _a2 << endl;
	}
private:
	int _a2;
	int _a1;
};
int main() {
	A aa(1);
	aa.Print();
}

答案是d,因为成员变量在类中声明次序就是其在初始化列表中的初始化顺序,所以是_a2先进行初始化,那么此时的_a1还是一个内置类型,所以是随机值,那么_a2就会使用随机值进行初始化,此时的_a1才会使用1来初始化。

所以建议声明顺序和初始化列表顺序保持一致,避免出现理解问题。

1.3 explicit关键字

构造函数不仅可以构造与初始化对象, 对于单个参数或者除第一个参数无默认值其余均有默认值 的构造函数,还具有类型转换的作用
1. 单参构造函数,没有使用 explicit 修饰,具有类型转换作用
2. 虽然有多个参数,但是创建对象时后两个参数可以不传递,没有使用 explicit 修饰,具
有类型转换作用
但是如果我们不想这个构造函数进行隐式类型转换的话, explicit 修饰构造函数,将会禁止构造函数的隐式转换

2. static成员

2.1 概念

声明为 static 的类成员 称为 类的静态成员 ,用 static 修饰的 成员变量 ,称之为 静态成员变量 ;用
static 修饰 成员函数 ,称之为 静态成员函数 静态成员变量一定要在类外进行初始。
假设我们想实现一个类,计算程序中创建出了多少个类对象,那么下面这段代码肯定是不行的,因为这个count只属于一个对象,所以结果只++了一次。
class A
{
public:
	A() { count++; }
	~A() { count--; }
	A(const A& x) { count++;}

private:
	int count = 0;
};
A fun()
{
	A aa;
	return aa;
}
int main()
{
	A aa;
	fun();
	return 0;
}

那么正确的方法就是将count定义为静态的成员变量。

class A
{
public:
	A() { ++_scount; }
	A(const A & t) { ++_scount; }
	~A() { --_scount; }
	static int GetACount() { return _scount; }
private:
	static int _scount;
};
int A::_scount = 0;
void TestA()
{
	cout << A::GetACount() << endl;
	A a1, a2;
	A a3(a1);
	cout << A::GetACount() << endl;
}

2.2 特性

1. 静态成员 所有类对象所共享 ,不属于某个具体的对象,存放在静态区
2. 静态成员变量 必须在 类外定义 ,定义时不添加 static 关键字,类中只是声明
3. 类静态成员即可用 类名 :: 静态成员 或者 对象 . 静态成员 来访问
4. 静态成员函数 没有 隐藏的 this 指针 ,不能访问任何非静态成员
5. 静态成员也是类的成员,受 public protected private 访问限定符的限制

总结一下:静态成员函数和成员变量跟全局函数和全部变量差不多,只是在类里面,收到访问限定符和类域的限制,它的生命周期就是全局的,类似于一种封装。 

【问题】
1. 静态成员函数可以调用非静态成员函数吗?不能
2. 非静态成员函数可以调用类的静态成员函数吗?可以

3. 友元

友元提供了一种突破封装的方式,有时提供了便利。但是友元会增加耦合度,破坏了封装,所以
友元不宜多用。
友元分为: 友元函数 友元类

3.1 友元函数

问题:现在尝试去重载 operator<< ,然后发现没办法将 operator<< 重载成成员函数。 因为 cout
输出流对象和隐含的 this 指针在抢占第一个参数的位置 this 指针默认是第一个参数也就是左操作
数了。但是实际使用中 cout 需要是第一个形参对象,才能正常使用。所以要将 operator<< 重载成
全局函数。但又会导致类外没办法访问成员,此时就需要友元来解决。 operator>> 同理。
class Date
{
public:
	Date(int year, int month, int day)
		: _year(year)
		, _month(month)
		, _day(day)
	{}
// d1 << cout; -> d1.operator<<(&d1, cout); 不符合常规调用
// 因为成员函数第一个参数一定是隐藏的this,所以d1必须放在<<的左侧
	ostream& operator<<(ostream& _cout)
	{
		_cout << _year << "-" << _month << "-" << _day << endl;
		return _cout;
	}
private:
	int _year;
	int _month;
	int _day;
};
友元函数 可以 直接访问 类的 私有 成员,它是 定义在类外部 普通函数 ,不属于任何类,但需要在
类的内部声明,声明时需要加 friend 关键字。
class Date
{
	friend ostream& operator<<(ostream& _cout, const Date& d);
	friend istream& operator>>(istream& _cin, Date& d);
public:
	Date(int year = 1900, int month = 1, int day = 1)
		: _year(year)
		, _month(month)
		, _day(day)
	{}
private:
	int _year;
	int _month;
	int _day;
};
ostream& operator<<(ostream& _cout, const Date& d)
{
	_cout << d._year << "-" << d._month << "-" << d._day;
	return _cout;
}
istream& operator>>(istream& _cin, Date& d)
{
	_cin >> d._year;
	_cin >> d._month;
	_cin >> d._day;
	return _cin;
}
int main()
{
	Date d;
	cin >> d;
	cout << d << endl;
	return 0;
}
说明:
友元函数 可访问类的私有和保护成员,但 不是类的成员函数
友元函数 不能用 const 修饰
友元函数 可以在类定义的任何地方声明, 不受类访问限定符限制
一个函数可以是多个类的友元函数
友元函数的调用与普通函数的调用原理相同

3.2 友元类  

友元类的所有成员函数都可以是另一个类的友元函数,都可以访问另一个类中的非公有成员。
友元关系是单向的,不具有交换性。
比如上述 Time 类和 Date 类,在 Time 类中声明 Date 类为其友元类,那么可以在 Date 类中直接
访问 Time 类的私有成员变量,但想在 Time 类中访问 Date 类中私有的成员变量则不行。
友元关系不能传递
如果 C B 的友元, B A 的友元,则不能说明 C A 的友元。
class Time
{
	friend class Date;   // 声明日期类为时间类的友元类,则在日期类中就直接访问Time类
	中的私有成员变量
public:
	Time(int hour = 0, int minute = 0, int second = 0)
		: _hour(hour)
		, _minute(minute)
		, _second(second)
	{}

private:
	int _hour;
	int _minute;
	int _second;
};
class Date
{
public:
	Date(int year = 1900, int month = 1, int day = 1)
		: _year(year)
		, _month(month)
		, _day(day)
	{}

	void SetTimeOfDate(int hour, int minute, int second)
	{
		// 直接访问时间类私有的成员变量
		_t._hour = hour;
		_t._minute = minute;
		_t._second = second;
	}

private:
	int _year;
	int _month;
	int _day;
	Time _t;
};

4. 内部类

概念: 如果一个类定义在另一个类的内部,这个内部类就叫做内部类 。内部类是一个独立的类,
它不属于外部类,更不能通过外部类的对象去访问内部类的成员。外部类对内部类没有任何优越
的访问权限。
注意: 内部类就是外部类的友元类 ,参见友元类的定义,内部类可以通过外部类的对象参数来访
问外部类中的所有成员。但是外部类不是内部类的友元。
特性:
1. 内部类可以定义在外部类的 public protected private 都是可以的。
2. 注意内部类可以直接访问外部类中的 static 成员,不需要外部类的对象 / 类名。
3. sizeof( 外部类 )= 外部类,和内部类没有任何关系。
class A
{
private:
	static int k;
	int h;
public:
	class B // B天生就是A的友元
	{
	public:
		void foo(const A& a)
		{
			cout << k << endl;//OK
			cout << a.h << endl;//OK
		}
	};
};
int A::k = 1;
int main()
{
	A::B b;
	b.foo(A());

	return 0;
}

5.匿名对象

class A
{
public:
	A(int a = 0)
		:_a(a)
	{
		cout << "A(int a)" << endl;
	}
	~A()
	{
		cout << "~A()" << endl;
	}
private:
	int _a;
};
class Solution {
public:
	int Sum_Solution(int n) {
		//...
		return n;
	}
};
int main()
{
	A aa1;
	// 不能这么定义对象,因为编译器无法识别下面是一个函数声明,还是对象定义
	//A aa1();
	// 但是我们可以这么定义匿名对象,匿名对象的特点不用取名字,
	// 但是他的生命周期只有这一行,我们可以看到下一行他就会自动调用析构函数
	A();
	A aa2(2);
	// 匿名对象在这样场景下就很好用,当然还有一些其他使用场景,这个我们以后遇到了再说
	Solution().Sum_Solution(10);
	return 0;
}


6.拷贝对象时的一些编译器优化

在传参和传返回值的过程中,一般编译器会做一些优化,减少对象的拷贝,这个在一些场景下还
是非常有用的。
class A
{
public:
	A(int a = 0)
		:_a(a)
	{
		cout << "A(int a)" << endl;
	}
	A(const A& aa)
		:_a(aa._a)
	{
		cout << "A(const A& aa)" << endl;
	}
	A& operator=(const A& aa)
	{
		cout << "A& operator=(const A& aa)" << endl;
		if (this != &aa)
		{
			_a = aa._a;
		}
		return *this;
	}
	~A()
	{
		cout << "~A()" << endl;
	}
private:
	int _a;
};
void f1(A aa)
{}
A f2()
{
	A aa;
	return aa;
}
int main()
{
	// 传值传参
	A aa1;
	f1(aa1);
	cout << endl;
	// 传值返回
	f2();
	cout << endl;
	// 隐式类型,连续构造+拷贝构造->优化为直接构造
	f1(1);
	// 一个表达式中,连续构造+拷贝构造->优化为一个构造
	f1(A(2));
	cout << endl;
	// 一个表达式中,连续拷贝构造+拷贝构造->优化一个拷贝构造
	A aa2 = f2();
	cout << endl;
	// 一个表达式中,连续拷贝构造+赋值重载->无法优化
	aa1 = f2();
	cout << endl;
	return 0;
}

总的来说:

     构造+构造->构造
     构造+拷贝构造->构造
     拷贝构造+拷贝构造->拷贝构造


这次的分享到这里就结束了,感谢大家的阅读! 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1399055.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

通过代理如何调通openai的api

调通openai的api 一、前提二、通过curl调通openai的api三、通过python调通openai的api 一、前提 会魔法上网本地运行代理软件&#xff0c;知道端口号&#xff08;如1081&#xff09;。 127.0.0.1:1081二、通过curl调通openai的api 如果在国外&#xff0c;没有qiang&#xff…

AWS 专题学习 P7 (FSx、SQS、SNS)

文章目录 Amazon FSx – 概述Amazon FSx for LustreFSx Lustre - 文件系统部署选项 Amazon FSx for NetApp ONTAPAmazon FSx for OpenZFSHybrid Cloud 存储AWS 存储云原生选项AWS 存储网关Amazon S3 File GatewayAmazon FSx File GatewayVolume GatewayTape GatewayStorage Gat…

设计一个Key-Value缓存去存储最近的Web Server查询的结果

1: 定义Use Case和约束 Use Cases 我们可以定义如下 Scope: User 发送一个 search request, 缓存命中成功返回DataUser 发送一个 search request, 缓存未命中&#xff0c;未成功返回DataService 有高可用 约束和假设 状态假设 Traffic 分布不是均匀的 热度高的查询总是被…

HarmonyOS鸿蒙学习基础篇 - 什么是HarmonyOS

概述 HarmonyOS是华为开发的一款面向未来的全场景分布式智慧操作系统&#xff0c;将逐步覆盖18N全场景终端设备&#xff1b; 对消费者而言 HarmonyOS用一个‘统一的软件系统’ 从根本上解决消费者面对大量智能终端体验割裂的问题&#xff0c;为消费者带来同意便利安全的智慧化全…

使用 Python 创造你自己的计算机游戏(游戏编程快速上手)第四版:第十五章到第十八章

十五、反转棋游戏 原文&#xff1a;inventwithpython.com/invent4thed/chapter15.html 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 在本章中&#xff0c;我们将制作反转棋&#xff0c;也称为黑白棋或奥赛罗。这个双人棋盘游戏是在网格上进行的&#xff0c;因此我们…

【Qt5】QString的成员函数trimmed

2024年1月19日&#xff0c;周五下午 QString 的 trimmed 方法是用于移除字符串两端的空白字符&#xff08;空格、制表符、换行符等&#xff09;的方法。它返回一个新的字符串&#xff0c;该字符串是原始字符串去除两端空白后的结果。 下面是一个简单的示例&#xff1a; #incl…

【Linux 内核源码分析】堆内存管理

堆 堆是一种动态分配内存的数据结构&#xff0c;用于存储和管理动态分配的对象。它是一块连续的内存空间&#xff0c;用于存储程序运行时动态申请的内存。 堆可以被看作是一个由各个内存块组成的堆栈&#xff0c;其中每个内存块都有一个地址指针&#xff0c;指向下一个内存块…

实体类(VO,DO,DTO)的划分

实体类&#xff08;VO&#xff0c;DO&#xff0c;DTO&#xff09;的划分 什么是“实体类” 实体类的主要职责是存储和管理系统内部的信息&#xff0c;它也可以有行为&#xff0c;甚至很复杂的行为&#xff0c;但这些行为必须与它所代表的实体对象密切相关。实体类有两方面内容…

51单片机8*8点阵屏

8*8点阵屏 8*8点阵屏是一种LED显示屏&#xff0c;它由8行和8列的LED灯组成。每个LED灯的开闭状态都可以独立控制&#xff0c;从而可以显示出数字、字母、符号、图形等信息。 8*8点阵屏的原理是通过行列扫描的方式&#xff0c;控制LED灯的亮灭&#xff0c;从而显示出所需的图案或…

使用MySQL建立外键约束时,报错3780的问题分析,和解决办法

今天在用语句给两个表建立外键约束时&#xff0c;报了3780的错误–具体描述如下&#xff1a; 大概意思就是或说&#xff0c;主表和从表的create_use 和 user_id 两个字段这不兼容 经过一顿分析之后发现&#xff0c;是因为这两个表的这两列数据类型不一样 解决办法–修改表中…

毫米波雷达4D点云生成(基于实测数据)

本期文章分享TI毫米波雷达实测4D点云生成的代码&#xff0c;包含距离、速度、水平角度、俯仰角度&#xff0c;可用于日常学习。 处理流程包含&#xff1a;数据读取和解析、MTI、距离估计、速度估计、非相干累积、2D-CFAR、水平角估计、俯仰角估计、点云生成、坐标转换等内容。…

【大数据Hive】hive 行列转换使用详解

目录 一、前言 二、使用场景介绍 2.1 使用场景1 2.2 使用场景2 三、多行转多列 3.1 case when 函数 语法一 语法二 操作演示 3.2 多行转多列操作演示 四、多行转单列 4.1 concat函数 语法 4.2 concat_ws函数 语法 4.3 collect_list函数 语法 4.4 collect_set函…

数据结构之二叉树的性质与存储结构

数据结构之二叉树的性质与存储结构 1、二叉树的性质2、二叉树的存储结构 数据结构是程序设计的重要基础&#xff0c;它所讨论的内容和技术对从事软件项目的开发有重要作用。学习数据结构要达到的目标是学会从问题出发&#xff0c;分析和研究计算机加工的数据的特性&#xff0c;…

谁说知识库都是英文的 今天就来一个中文版的

1.安装 1.1创建目录 mkdir -p /opt/trilium-cn cd /opt/trilium-cn 1.2.编写docker-compose.yml文件 version: 3 services:trilium-cn:image: nriver/trilium-cnrestart: alwaysports:- "10012:8080"volumes:# 把同文件夹下的 trilium-data 目录映射到容器内- /opt…

5 python快速上手

数据类型&#xff08;上&#xff09; 1.整型1.1 定义1.2 独有功能1.3 公共功能1.4 转换1.5 其他1.5.1 长整型1.5.2 地板除 2. 布尔类型2.1 定义2.2 独有功能2.3 公共功能2.4 转换2.5 其他2.5.1 做条件自动转换 3.字符串类型3.1 定义3.2 独有功能&#xff08;18/48&#xff09;练…

SpringBoot教程(十五) | SpringBoot集成RabbitMq

SpringBoot教程(十五) | SpringBoot集成RabbitMq RabbitMq是我们在开发过程中经常会使用的一种消息队列。今天我们来研究研究rabbitMq的使用。 rabbitMq的官网&#xff1a; rabbitmq.com/ rabbitMq的安装这里先略过&#xff0c;因为我尝试了几次都失败了&#xff0c;后面等我…

【数据结构】详谈队列的顺序存储及C语言实现

循环队列及其基本操作的C语言实现 前言一、队列的顺序存储1.1 队尾指针与队头指针1.2 基本操作实现的底层逻辑1.2.1 队列的创建与销毁1.2.2 队列的增加与删除1.2.3 队列的判空与判满1.2.4 逻辑的局限性 二、循环队列2.1 循环队列的实现逻辑一2.2 循环队列的实现逻辑二2.3 循环队…

西瓜书读书笔记整理(十二) —— 第十二章 计算学习理论

第十二章 计算学习理论&#xff08;上&#xff09; 12.1 基础知识12.1.1 什么是计算学习理论&#xff08;computational learning theory&#xff09;12.1.2 什么是独立同分布&#xff08;independent and identically distributed, 简称 i . i . d . i.i.d. i.i.d.&#xff0…

USRP相关报错解决办法

文章目录 前言一、本地环境二、相关报错信息二、解决办法1、更换电脑操作系统2、升级最新版固件 前言 在进行 USRP 开发时遇到了一些报错&#xff0c;这里做个记录解决问题的方法。 一、本地环境 电脑操作系统&#xff1a;Windows11MATLAB 版本&#xff1a;MATLAB 2021aUSRP …

JVM:Java类加载机制

Java类加载机制的全过程&#xff1a; 加载、验证、准备、初始化和卸载这五个阶段的顺序是确定的&#xff0c;类型的加载过程必须按照这种顺序按部就班地开始&#xff0c;而解析阶段则不一定&#xff1a;它在某些情况下可以在初始化阶段之后再开始&#xff0c; 这是为了支持Java…