图像分割实战-系列教程15:deeplabV3+ VOC分割实战3-------网络结构1

news2025/1/24 4:42:42

在这里插入图片描述

🍁🍁🍁图像分割实战-系列教程 总目录

有任何问题欢迎在下面留言
本篇文章的代码运行界面均在Pycharm中进行
本篇文章配套的代码资源已经上传

本项目的网络结构在network文件夹中,主要在modeling.py和_deeplab.py中:
modeling.py:指定要用的骨干网络是什么
_deeplab.py:根据modeling.py指定的骨干网络构建实际的网络结构

5、modeling.py的 _segm_resnet函数

def _segm_resnet(name, backbone_name, num_classes, output_stride, pretrained_backbone):

    if output_stride==8:
        replace_stride_with_dilation=[False, True, True]
        aspp_dilate = [12, 24, 36]
    else:
        replace_stride_with_dilation=[False, False, True]
        aspp_dilate = [6, 12, 18]
  • 如果输出步长为8,则
  • 替换步长用膨胀率,如果为None,设置默认值为[False, False, False],表示不使用空洞卷积,通过使用空洞卷积替代增加步长的标准卷积
  • 膨胀率为[12, 24, 36],用于调整空洞卷积
  • 如果输出步长不是8,则设置另外的参数
    backbone = resnet.__dict__[backbone_name](
        pretrained=pretrained_backbone, replace_stride_with_dilation=replace_stride_with_dilation)
    inplanes = 2048
    low_level_planes = 256
  • 使用指定的ResNet版本构建backbone
  • resnet.__dict__是一个指向不同ResNet模型的字典
  • pretrained=pretrained_backbone指定是否加载预训练权重
  • replace_stride_with_dilation用于控制网络中卷积层的步长和膨胀
  • inplanes = 2048:设置网络最后一层的通道数
  • low_level_planes = 256:设置低层特征的通道数
    if name=='deeplabv3plus':
        return_layers = {'layer4': 'out', 'layer1': 'low_level'}#
        classifier = DeepLabHeadV3Plus(inplanes, low_level_planes, num_classes, aspp_dilate)
    elif name=='deeplabv3':
        return_layers = {'layer4': 'out'}
        classifier = DeepLabHead(inplanes , num_classes, aspp_dilate)
    # 提取网络的第几层输出结果并给一个别名
    backbone = IntermediateLayerGetter(backbone, return_layers=return_layers)
    model = DeepLabV3(backbone, classifier)
    return model
  • return_layers 是一个字典,定义返回层,这个键值不用管,out对应的是带有高维度特征的输出对应的是比较大的物体的分割,low_level即小物体
  • classifier 初始化分类器,inplanes 传入分类器的特征通道数, low_level_planes 是低层特征的通道数,num_classes 是目标分类的类别数,aspp_dilate 是ASPP模块中使用的膨胀率
  • IntermediateLayerGetter(backbone, return_layers=return_layers),这里的backbone是之前定义的基础网络如resnet,return_layers定义了要从哪些层输出,IntermediateLayerGetter使得我们可以在后续的网络部分中使用这些特定层的输出进行进一步的处理和特征融合,最后得到修改后的backbone
  • model = DeepLabV3(backbone, classifier)使用修改后的backbone 和定义好的classifier构建DeepLabHeadV3Plus模型

6、_deeplab.py的 DeepLabHeadV3Plus类

在前面的_segm_resnet函数我们调用了DeepLabHeadV3Plus类来构建我们的网络,这部分介绍一下DeepLabHeadV3Plus类

6.1 构造函数

class DeepLabHeadV3Plus(nn.Module):
    def __init__(self, in_channels, low_level_channels, num_classes, aspp_dilate=[12, 24, 36]):
        super(DeepLabHeadV3Plus, self).__init__()
        self.project = nn.Sequential( 
            nn.Conv2d(low_level_channels, 48, 1, bias=False),
            nn.BatchNorm2d(48),
            nn.ReLU(inplace=True),
        )
        self.aspp = ASPP(in_channels, aspp_dilate)
        self.classifier = nn.Sequential(
            nn.Conv2d(304, 256, 3, padding=1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, num_classes, 1)
        )
        self._init_weight()
  1. self.project,定义一个执行序列,包含一个二维卷积、一个批归一化、一个ReLU激活
  2. self.aspp,调用ASPP类初始化一个对象
  3. self.classifier,定义一个执行序列包含一个二维卷积、一个批归一化、一个ReLU激活、一个二维卷积
  4. self._init_weight(),调用此类中一个函数,这个函数主要用于初始化权重

6.2 前向传播函数

    def forward(self, feature):
        #print(feature.shape)
        low_level_feature = self.project( feature['low_level'] )#return_layers = {'layer4': 'out', 'layer1': 'low_level'}
        #print(low_level_feature.shape)
        output_feature = self.aspp(feature['out'])
        #print(output_feature.shape)
        output_feature = F.interpolate(output_feature, size=low_level_feature.shape[2:], mode='bilinear', align_corners=False)
        #print(output_feature.shape)
        return self.classifier( torch.cat( [ low_level_feature, output_feature ], dim=1 ) )

6.3 def _init_weight(self):函数

    def _init_weight(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight)
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1397258.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

利用浏览器开发者工具进行网页性能优化

目录 学习目标: 学习内容: 学习时间: 学习产出: 网页性能优化的基本概念和指标: 浏览器开发者工具的基本功能和使用方法: 使用网络面板进行网页加载性能分析: 使用性能面板进行网页渲染性能分析…

最长上升子序列模型(LIS)

最长上升子序列模型就像它的名字一样,用来从区间中找出最长上升的子序列。它主要用来处理区间中的挑选问题,可以处理上升序列也可以处理下降序列,原序列本身的顺序并不重要。 模型 895. 最长上升子序列(活动 - AcWing&#xff0…

机器学习:何为监督学习和无监督学习

目录 一、监督学习 (一)回归 (二)分类 二、无监督学习 聚类 一、监督学习 介绍:监督学习是指学习输入到输出(x->y)映射的机器学习算法,监督即理解为:已知正确答案…

【算法】斐波那契数列 [递推,矩阵快速幂]

方法一. 递推 class Solution { public:int fib(int n) {int MOD 1e9 7;if (n < 2) return n;int p 0, q 0, r 1;for (int i 2; i < n; i) {p q;q r;r (p q) % MOD;}return r;} }; 方法二&#xff1a;矩阵快速幂 class Solution { public:const int MOD 1e…

AI 编程的机会和未来:从 Copilot 到 Code Agent

大模型的快速发展带来了 AI 应用的井喷。统计 GPT 使用情况&#xff0c;编程远超其他成为落地最快、使用率最高的场景。如今&#xff0c;大量程序员已经习惯了在 AI 辅助下进行编程。数据显示&#xff0c;GitHub Copilot 将程序员工作效率提升了 55%&#xff0c;一些实验中 AI …

《Python数据分析技术栈》第01章 03 Python基础(Python Basics)

03 Python基础&#xff08;Python Basics&#xff09; 《Python数据分析技术栈》第01章 03 Python基础&#xff08;Python Basics&#xff09; In this section, we get familiar with the syntax of Python, commenting, conditional statements, loops, and functions. 在…

dns正反解析配置

1.配置正向解析baidu.com 1、下载bind包 [rootlocalhost ~]# yum install bind -y 2、对配置文件修改 [rootlocalhost ~]# vim /etc/named.conf 3、对数据文件修改 [rootlocalhost ~]# vim /var/named/baidu 4、重启服务 [rootlocalhost ~]# systemctl restart named.service 5…

2.【C语言】(函数指针||sizeof||笔试题)

0x01.函数指针 void test(const char* str) {printf("%s\n", str); }int main() {void (*pf)(const char*) test;//pf是函数指针变量void (*pfarr[10])(const char*);//pfarr是存放函数指针的数组void (*(*p)[10])(const char*) &pfarr;//p是指向函数指针数组…

ROS学习笔记8——实现ROS通信时的常用命令

机器人系统中启动的节点少则几个&#xff0c;多则十几个、几十个&#xff0c;不同的节点名称各异&#xff0c;通信时使用话题、服务、消息、参数等等都各不相同&#xff0c;一个显而易见的问题是: 当需要自定义节点和其他某个已经存在的节点通信时&#xff0c;如何获取对方的话…

【Docker】Nacos的单机部署及集群部署

一、Nacos的介绍 Nacos是一个更易于构建云原生应用的动态服务发现、配置管理和服务管理平台。 动态服务发现&#xff1a;Nacos支持DNS与RPC服务发现&#xff0c;提供原生SDK、OpenAPI等多种服务注册方式和DNS、HTTP与API等多种服务发现方式。服务健康监测&#xff1a;Nacos提供…

VUE组件--动态组件、组件保持存活、异步组件

动态组件 有些场景可能会需要在多个组件之间进行来回切换&#xff0c;在vue中则使用<component :is"..."> 来实现组件间的来回切换 // App.vue <template><component :is"tabComponent"></component><button click"change…

基于Springboot+vue图书管理系统(前后端分离)

该项目完全免费 项目技术栈前后端分离&#xff1a; 后端&#xff1a;Springboot Mybatis-plus 前端&#xff1a;Vue ElementUI 数据库&#xff1a; MySQL 项目功能描述 管理员&#xff1a; 登录、个人信息、修改密码、管理后台管理系统所有数据 首页统计&#xff1a;…

64.Spring事件监听的核心机制是什么?

Spring事件监听的核心机制是什么? spring的事件监听有三个部分组成 事件(ApplicationEvent) 负责对应相应监听器 事件源发生某事件是特定事件监听器被触发的原因监听器(ApplicationListener) 对应于观察者模式中的观察者。监听器监听特定事件,并在内部定义了事件发生后的响应…

0.96寸OLED-单独驱动和U8g2驱动-硬件软件IIC

0.96寸OLED-单独驱动和U8g2驱动-硬件软件IIC 博主平时DIY经常使用OLED&#xff0c;其中以4脚的I2C屏最多&#xff0c;就想着总结一下子&#xff0c;让广大DIY朋友更容易找到资源。 驱动采用的时SSD1306 同学们拿到代码后&#xff0c;可以直接用&#xff0c;其中博主给的代码默认…

MySQL面试总结

MySQL优化 1.MySQL如何定位慢查询 1.1开源工具 1.2MySQL自带慢日志 1.3解答 2.EXPLAIN 2.1解答 3.什么是索引 4.B树 4.1数据结构对比 5.聚簇索引&#xff08;聚集索引&#xff09; 6.覆盖索引 7.索引创建原则 8.什么情况下索引失效 9.你对sql优化经验 10.事务 11.MVCC 11.主从…

bgp--大AS分小AS

最后效果:r1能ping通r8,r4路由表有r1-r8环回,r4bgp路由表已优化 代码; [r1] ospf 1 router-id 1.1.1.1 area 0.0.0.0 network 1.1.1.1 0.0.0.0 network 12.1.1.1 0.0.0.0 bgp 64512 router-id 1.1.1.1 confederation id …

Qt/QML编程之路:OpenGL的示例(39)

Qt编程之后,会发现有版本问题,有时候一个示例不同的版本下可能会跑不同,有些Qt5跑不同Qt6已经完善,可以跑通。 我就看到有个关于OpenGL的示例: 这个示例是演示怎么基于OpenGL编程的,但是调试时却发现glViewXXX等gl打头的函数说找不到reference,或者什么link不上之类的错…

nvm-nodejs版本控制工具(window操作系统)

一、概述 可以在电脑上同时安装多个nodejs版本&#xff0c;随意切换使用&#xff1b; 二、下载和安装mvn 参考&#xff1a;window操作系统安装多个版本的nodejs——nodejs版本控制工具nvm_windows node多版本共存-CSDN博客 1. 下载 官网地址&#xff1a;https://github.com…

java数组在多线程中安全问题,HashMap是不安全的,Hashtable安全(但每次都加锁,效率低),ConcurrentHashMap完美

package com.controller;import com.myThread.AdminThread; import com.myThread.MyCallable; import com.myThread.MyRunnable; import org.springframework.web.bind.annotation.*;import java.util.concurrent.*; //上面引入*&#xff0c;所以这个可以注销 //import java.ut…

Java中锁的分类

乐观锁、悲观锁 乐观锁&#xff1a;不加锁的并发操作是安全的 可重入锁 RerntrantLock 当一个线程进入到一个同步方法中&#xff0c;然后在此方法中要调用另一个同步方法&#xff0c; 而且两个方法公用同一把锁 此时线程是可以进入到另一个同步方法中的。 读写锁 Reent…