【动态规划】【二分查找】【C++算法】730. 统计不同回文子序列

news2024/11/18 7:42:57

作者推荐

【动态规划】【数学】【C++算法】18赛车

涉及知识点

动态规划 二分查找

LeetCode730. 统计不同回文子序列

给你一个字符串 s ,返回 s 中不同的非空回文子序列个数 。由于答案可能很大,请返回对 109 + 7 取余 的结果。
字符串的子序列可以经由字符串删除 0 个或多个字符获得。
如果一个序列与它反转后的序列一致,那么它是回文序列。
如果存在某个 i , 满足 ai != bi ,则两个序列 a1, a2, … 和 b1, b2, … 不同。
示例 1:
输入:s = ‘bccb’
输出:6
解释:6 个不同的非空回文子字符序列分别为:‘b’, ‘c’, ‘bb’, ‘cc’, ‘bcb’, ‘bccb’。
注意:‘bcb’ 虽然出现两次但仅计数一次。
示例 2:

输入:s = ‘abcdabcdabcdabcdabcdabcdabcdabcddcbadcbadcbadcbadcbadcbadcbadcba’
输出:104860361
解释:共有 3104860382 个不同的非空回文子序列,104860361 是对 109 + 7 取余后的值。
提示:
1 <= s.length <= 1000
s[i] 仅包含 ‘a’, ‘b’, ‘c’ 或 ‘d’

动态规划

动态规划的转移方程

s[left,right] 中不重复 回文的数量,分类:

  • 情况一:长度1的回文: 如果a 出现,则必定有回文a。b,c,d。类似。
  • 情况二:长度为2的回文:如果a出现两次则必定有aa。bb或cc或dd类似。
  • 情况三:长度为x(x>2)的回文:分四种 a+长度为x-2的回文+a b+长度为x-2的回文+b c+长度为x-2的回文+c d+长度为x-2的回文+d 。如果多个a,取最左、最右的a,b,c,d类似。
    first(ch) 是ch在s[left,r]的最小下标,end(ch)是s[left,r]的最大下标。Cnt(ch)表示ch在s[left,r]中出现次数。 转移方程为:
    dp[left][right] = Sum ′ a ′ , ′ b ′ , ′ c ′ , ′ d ′ c h \Large^{ch}_{'a','b','c','d'} a,b,c,dch(Cnt(ch)>=1 + Cnt(ch)>=2 + dp[first(ch)+1,end(ch)-1]
    dp[first(ch)+1,end(ch)-1] 之间不会重复,因为左右各有ch。由于长度不同,所以情况一、情况二、情况三之间不会重复。由于长度不同,不同层次的dp[first(ch)+1,end(ch)-1] 也不会相同。

代码

封装类

template<int MOD = 1000000007>
class C1097Int
{
public:
	C1097Int(long long llData = 0) :m_iData(llData% MOD)
	{

	}
	C1097Int  operator+(const C1097Int& o)const
	{
		return C1097Int(((long long)m_iData + o.m_iData) % MOD);
	}
	C1097Int& operator+=(const C1097Int& o)
	{
		m_iData = ((long long)m_iData + o.m_iData) % MOD;
		return *this;
	}
	C1097Int& operator-=(const C1097Int& o)
	{
		m_iData = (m_iData + MOD - o.m_iData) % MOD;
		return *this;
	}
	C1097Int  operator-(const C1097Int& o)
	{
		return C1097Int((m_iData + MOD - o.m_iData) % MOD);
	}
	C1097Int  operator*(const C1097Int& o)const
	{
		return((long long)m_iData * o.m_iData) % MOD;
	}
	C1097Int& operator*=(const C1097Int& o)
	{
		m_iData = ((long long)m_iData * o.m_iData) % MOD;
		return *this;
	}
	bool operator<(const C1097Int& o)const
	{
		return m_iData < o.m_iData;
	}
	C1097Int pow(long long n)const
	{
		C1097Int iRet = 1, iCur = *this;
		while (n)
		{
			if (n & 1)
			{
				iRet *= iCur;
			}
			iCur *= iCur;
			n >>= 1;
		}
		return iRet;
	}
	C1097Int PowNegative1()const
	{
		return pow(MOD - 2);
	}
	int ToInt()const
	{
		return m_iData;
	}
private:
	int m_iData = 0;;
};

核心代码

class Solution {
public:
	int countPalindromicSubsequences(string s) {
		m_c = s.length();
		for (int i = 0; i < s.length(); i++)
		{
			m_indexs[s[i] - 'a'].emplace_back(i);
		}
		m_dp.assign(m_c, vector<C1097Int<>>(m_c));
		m_bDo.assign(m_c, vector<bool>(m_c));
		return Cal(0, m_c - 1).ToInt();
	}
	C1097Int<> Cal(const int left, const int r)
	{
		if (left> r)
		{
			return 0;
		}
		if (m_bDo[left][r])
		{
			return m_dp[left][r];
		}
		m_bDo[left][r] = true;
		C1097Int<> biRet;
		for (int i = 0; i < 4; i++)
		{
			auto it1 = std::lower_bound(m_indexs[i].begin(), m_indexs[i].end(), left);
			auto it2 = std::upper_bound(m_indexs[i].begin(), m_indexs[i].end(), r);
			const int iCnt = it2 - it1 ;
			biRet += min(2, iCnt);
			if (iCnt >= 2)
			{
				biRet += Cal(*it1 + 1, *std::prev(it2) - 1);
			}
		}
		return m_dp[left][r] = biRet;
	}
	int m_c;
	vector<int> m_indexs[4];
	vector<vector<C1097Int<>>> m_dp;
	vector<vector<bool>> m_bDo;
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{
	assert(t1 == t2);
}

template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
	if (v1.size() != v2.size())
	{
		assert(false);
		return;
	}
	for (int i = 0; i < v1.size(); i++)
	{
		Assert(v1[i], v2[i]);
	}
}


int main()
{
	string s;
	{
		Solution sln;
		s = "bccb";
		auto res = sln.countPalindromicSubsequences(s);
		Assert(6, res);
	}
	{
		Solution sln;
		s = "abcdabcdabcdabcdabcdabcdabcdabcddcbadcbadcbadcbadcbadcbadcbadcba";
		auto res = sln.countPalindromicSubsequences(s);
		Assert(104860361, res);
	}
	{
		Solution sln;
		s = "dcabdacadbbabdabbacbdbadcacaadddabbdccadbaacdacacaadacccbadaccaddcccabccdcbdccdccaadbbcbcccbaadbccddcdbdbcbbadcdccbcabcddcdbcadcadaccacbdcccaacccbdccdcbbccbdbccbacabdbddaacccdccbaaadbbcdccdbddbbcbaacddbbacdbdcdacddbabdcdcbdcbbbcdcdaacbaacdacadacdcdcdcbdbbbaacccdddddddbbdadcaacaddbabbddccabacccaacbdddccaabbdcdccabadccbcdbdaccdcaadaccdbaaaababddddbdacdbdbaabbabcbbabbabcbadacdbccbbcccabaddddcbadbbadcabdbbddbbaacbdbbbbacdddbcdddbdbdcbcdadcccccdccddacddccbddbacababbbcbcadaddbdddcbddbaadacdbdabbabbbcdbdcccdadcbddbacccbacbcbcdccbadcaabdbacbdcddadcbddcadccddaddcdacdabbcbcdadbaacdadacacadbabcbdcabbdcbdbcbddbcddabbaaabadccdbccddcabddabcdbccaacbabacaccbbaccdcbcbdbcbdbccaddcadaaabcaaaaabcbdcadaacadbbbcdddbaabdcdabdbcacdcaaccdcbabadddddcaabbbacabdadcabdacddcdcadadbddccbabbabbcdbadcccacdcaaaadabcadaabcdaacadccdbbbacddabdadaabcbddcdabcaabbbdcccbcaaabaccbbcbbdbcadcdaadddacdbaccccdbcbbaccadacdbaccadabbbbcabcacabaaccbdcdbaddccdbdbdaacbdbcdadbdaddccbdddaadabdabadbacaabbbbabcdabbcbbddbcaadabadbbdacadadabd";
		auto res = sln.countPalindromicSubsequences(s);
		Assert(369668464, res);
	}
}

2023年1月版

class CBigMath
{
public:
static void AddAssignment(int* dst, const int& iSrc)
{
*dst = (*dst + iSrc) % s_iMod;
}

 static void AddAssignment(int* dst, const int& iSrc, const int& iSrc1)
 {
	 *dst = (*dst + iSrc) % s_iMod;
	 *dst = (*dst + iSrc1) % s_iMod;
 }

 static void AddAssignment(int* dst, const int& iSrc, const int& iSrc1, const int& iSrc2)
 {
	 *dst = (*dst + iSrc) % s_iMod;
	 *dst = (*dst + iSrc1) % s_iMod;
	 *dst = (*dst + iSrc2) % s_iMod;
 }

 static void SubAssignment(int* dst, const int& iSrc)
 {
	 *dst = (s_iMod - iSrc + *dst) % s_iMod;
 }
 static int Add(const int& iAdd1, const int& iAdd2)
 {
	 return (iAdd1 + iAdd2) % s_iMod;
 }
 static int Mul(const int& i1, const int& i2)
 {
	 return((long long)i1 *i2) % s_iMod;
 }

private:
static const int s_iMod = 1000000007;
};

class Solution {
public:
int countPalindromicSubsequences(string s) {
m_c = s.length();
for (int i = 0; i < 4; i++)
{
m_dp[i].assign(m_c, vector(m_c,-1));
}
int iRet = 0;
for (char ch = ‘a’; ch <= ‘d’; ch++)
{
CBigMath::AddAssignment(&iRet, Rec(ch, s, 0, s.length() - 1));
}
return iRet;
}
int Rec(const char& ch,const string& s, int left, int right)
{
while ((left <= right) && (ch != s[left]))
{
left++;
}
if (left > right)
{
return 0;
}
while ((right > left) && (ch != s[right]))
{
right–;
}
if (left == right)
{
return 1;
}
auto& iNum = m_dp[ch - ‘a’][left][right];
if (-1 != iNum)
{
return iNum;
}
iNum = 2;
for (char ch1 = ‘a’; ch1 <= ‘d’; ch1++)
{
CBigMath::AddAssignment(&iNum, Rec(ch1, s, left + 1, right - 1));
}
return iNum;
}
int m_c;
vector<vector> m_dp[4];
};

2023年6月版

using namespace std;

template
void OutToConsoleInner(const vector& vec,const string& strSep = " ")
{
for (int i = 0; i < vec.size(); i++)
{
if (0 != i%25)
{
std::cout << strSep.c_str();
}
std::cout << setw(3) << setfill(’ ') << vec[i];
if (0 == (i+1) % 25)
{
std::cout << std::endl;
}
else if (0 == (i + 1) % 5)
{
std::cout << strSep.c_str();
}
}
}

class CConsole
{
public :

template<class T>
static void Out(const vector<T>& vec, const string& strColSep = " ", const string& strRowSep = "\r\n")
{
	OutToConsoleInner(vec, strColSep);
	std::cout << strRowSep.c_str();
}

template<class T>
static void Out(const vector<vector<T>>& matrix, const string& strColSep = " ", const string& strRowSep = "\r\n")
{
	for (int i = 0; i < matrix.size(); i++)
	{
		OutToConsoleInner(matrix[i], strColSep);
		std::cout << strRowSep.c_str();
	}
}

template<class T>
static void Out(const std::map<T, std::vector<int> >& mTopPointToPoints, const string& strColSep = " ", const string& strRowSep = "\r\n")
{
	for (auto kv : mTopPointToPoints)
	{
		std::cout << kv.first << ":";
		OutToConsoleInner(kv.second, strColSep);
		std::cout << strRowSep.c_str();
	}
}


static void Out(const  std::string& t, const string& strColSep = " ", const string& strRowSep = "\r\n")
{
	std::cout << t.c_str() << strColSep.c_str();
}

template<class T  >
static void Out(const T& t, const string& strColSep = " ", const string& strRowSep = "\r\n")
{
	std::cout << t << strColSep.c_str();
}

};

void GenetateSum(vector& sums, const vector& nums)
{
sums.push_back(0);
for (int i = 0; i < nums.size(); i++)
{
sums.push_back(nums[i] + sums[i]);
}
}

//[iBegin,iEnd]之和
long long Total(int iBegin,int iEnd)
{
return (long long)(iBegin + iEnd)*(iEnd - iBegin + 1) / 2;
}

class CLadderhlp
{
public:
CLadderhlp( int ladders)
{
m_uLadderNum = ladders;
}
void AddNeedBick(int iNeedBick)
{
if (0 == m_uLadderNum)
{
return;
}
if (m_ladders.size() < m_uLadderNum)
{
m_ladders.push(iNeedBick);
m_iEaqualBicks += iNeedBick;
return;
}
int iTop = m_ladders.top();
if (iTop >= iNeedBick)
{
return;
}
m_iEaqualBicks -= iTop;
m_iEaqualBicks += iNeedBick;
m_ladders.pop();
m_ladders.push(iNeedBick);
}
std::priority_queue<int,vector,std::greater > m_ladders;
unsigned int m_uLadderNum;
long long m_iEaqualBicks = 0;
};

struct CPeo
{
CPeo(string strName, CPeo* pParent=nullptr)
{
m_strName = strName;
m_pParent = pParent;
}
string m_strName;
vector<CPeo*> m_childs;
CPeo* m_pParent = nullptr;
};

class CNeighborTable
{
public:
void Init(const vector<vector>& edges)
{

 }
 vector<vector<int>> m_vTable;

};

//通过 x &= (x-1)实现
int bitcount(unsigned x) {
int countx = 0;
while (x) {
countx++;
x &= (x - 1);
}
return countx;
}

int bitcount(unsigned long long x) {
int countx = 0;
while (x) {
countx++;
x &= (x - 1);
}
return countx;
}

class CRange
{
public:
template
CRange(const T& v)
{
m_iBegin = 0;
m_iEnd = v.size();
}
bool In(int iIndex)
{
return (iIndex >= m_iBegin) && (iIndex < m_iEnd);
}
const int End()
{
return m_iEnd;
}
protected:
int m_iBegin;
int m_iEnd;
};

template
class CTrie
{
public:
CTrie() :m_vPChilds(iTypeNum)
{

 }
 template<class IT>
 void Add(IT begin, IT end)
 {
	 CTrie<iTypeNum, cBegin> * pNode = this;
	 for (; begin != end; ++begin)
	 {
		 pNode = pNode->AddChar(*begin).get();
	 }
 }
 template<class IT>
 bool Search(IT begin, IT end)
 {
	 if (begin == end)
	 {
		 return true;
	 }

	 if ('.' == *begin)
	 {
		 for (auto& ptr : m_vPChilds)
		 {
			 if (!ptr)
			 {
				 continue;
			 }
			 if (ptr->Search(begin + 1, end))
			 {
				 return true;
			 }
		 }
	 }

	 auto ptr = GetChild(*begin);
	 if (nullptr == ptr)
	 {
		 return false;
	 }
	 return ptr->Search(begin + 1, end);
 }

protected:
std::shared_ptr AddChar(char ch)
{
if ((ch < cBegin) || (ch >= cBegin + iTypeNum))
{
return nullptr;
}
const int index = ch - cBegin;
auto ptr = m_vPChilds[index];
if (!ptr)
{
m_vPChilds[index] = std::make_shared<CTrie<iTypeNum, cBegin>>();
}
return m_vPChilds[index];
}
std::shared_ptr GetChild(char ch)const
{
if ((ch < cBegin) || (ch >= cBegin + iTypeNum))
{
return nullptr;
}
return m_vPChilds[ch - cBegin];
}
std::vector<std::shared_ptr> m_vPChilds;
};

class CWords
{
public:
void Add(const string& word)
{
m_strStrs.insert(word);
}
bool Search(const string& word)
{
return Search(m_strStrs.begin(), m_strStrs.end(), 0, word.length(), word);
}
protected:
bool Search(std::set::const_iterator begin, std::set::const_iterator end, int iStrBegin, int iStrEnd, const string& str)
{
int i = iStrBegin;
for (; (i < iStrEnd) && (str[i] != ‘.’); i++);
auto it = std::equal_range(begin, end, str, [&iStrBegin, &i](const string& s, const string& sFind)
{
return s.substr(iStrBegin, i - iStrBegin) < sFind.substr(iStrBegin, i - iStrBegin);
});
if (i == iStrBegin)
{
it.first = begin;
it.second = end;
}
if (it.first == it.second)
{
return false;
}
if (i == iStrEnd)
{
return true;
}
if (i + 1 == iStrEnd)
{
return true;
}
string tmp = str;
for (char ch = ‘a’; ch <= ‘z’; ch++)
{
tmp[i] = ch;
auto ij = std::equal_range(it.first, it.second, tmp, [&ch, &i](const string& s, const string& sFind)
{
return s[i] < sFind[i];
});
if (ij.first == ij.second)
{
continue;
}

		 if (Search(ij.first, ij.second, i + 1, iStrEnd, str))
		 {
			 return true;
		 }
	 }
	 return false;
 }

 std::set<string> m_strStrs;

};
class WordDictionary {
public:
WordDictionary() {
for (int i = 0; i < 26; i++)
{
m_str[i] = std::make_unique();
}
}

 void addWord(string word) {
	 m_str[word.length()]->Add(word);
 }

 bool search(string word) {
	 return m_str[word.length()]->Search(word);
 }
 std::unique_ptr<CWords> m_str[26];

};

template
class C1097Int
{
public:
C1097Int(long long llData = 0) :m_iData(llData%MOD)
{

 }
 C1097Int  operator+(const C1097Int& o)const
 {
	 return C1097Int(((long long)m_iData + o.m_iData) % MOD);
 }
 C1097Int&  operator+=(const C1097Int& o)
 {
	 m_iData = ((long long)m_iData + o.m_iData) % MOD;
	 return *this;
 }
 C1097Int&  operator-=(const C1097Int& o)
 {
	 m_iData = (m_iData + MOD - o.m_iData) % MOD;
	 return *this;
 }
 C1097Int  operator-(const C1097Int& o)
 {
	 return C1097Int((m_iData + MOD - o.m_iData) % MOD);
 }
 C1097Int  operator*(const C1097Int& o)const
 {
	 return((long long)m_iData *o.m_iData) % MOD;
 }
 C1097Int&  operator*=(const C1097Int& o)
 {
	 m_iData = ((long long)m_iData *o.m_iData) % MOD;
	 return *this;
 }
 bool operator<(const C1097Int& o)const
 {
	 return m_iData < o.m_iData;
 }
 C1097Int pow( int n)const
 {
	 C1097Int iRet = 1, iCur = *this;
	while (n)
	{
		if (n & 1)
		{
			iRet *= iCur;
		}
		iCur *= iCur;
		n >>= 1;
	}
	return iRet;
 }
 C1097Int PowNegative1()const
 {
	 return pow(MOD - 2);
 }
 int ToInt()const
 {
	 return m_iData;
 }

private:
int m_iData = 0;;
};

template
int operator+(int iData, const C1097Int& int1097)
{
int iRet = int1097.operator+(C1097Int(iData)).ToInt();
return iRet;
}

template
int& operator+=(int& iData, const C1097Int& int1097)
{
iData = int1097.operator+(C1097Int(iData)).ToInt();
return iData;
}

template
int operator*(int iData, const C1097Int& int1097)
{
int iRet = int1097.operator*(C1097Int(iData)).ToInt();
return iRet;
}

template
int& operator*=(int& iData, const C1097Int& int1097)
{
iData = int1097.operator*(C1097Int(iData)).ToInt();
return iData;
}

template
void MinSelf(T* seft, const T& other)
{
*seft = min(*seft, other);
}

template
void MaxSelf(T* seft, const T& other)
{
*seft = max(*seft, other);
}

int GetNotRepeateNum(int len, int iHasSel)
{
if (0 == len)
{
return 1;
}
if ((0 == iHasSel) && (1 == len))
{
return 10;
}
int iRet = 1;
if (iHasSel > 0)
{
for (int tmp = 10 - iHasSel; (tmp >= 2)&& len ; tmp–,len–)
{
iRet *= tmp;
}
}
else
{
iRet *= 9;
len–;
for (int tmp=9; (tmp>=2)&&len; len–,tmp–)
{
iRet *= tmp;
}
}
return iRet;
}

int GCD(int n1, int n2)
{
int t1 = min(n1, n2);
int t2 = max(n1, n2);
if (0 == t1)
{
return t2;
}
return GCD(t2%t1, t1);
}

void CreateMaskVector(vector& v,const int* const p,int n )
{
const int iMaxMaskNum = 1 << n;
v.resize(iMaxMaskNum);
for (int i = 0; i < n; i++)
{
v[1 << i] = p[i];
}
for (int mask = 1; mask < iMaxMaskNum ; mask++)
{
const int iSubMask = mask&(-mask);
v[mask] = v[iSubMask] + v[mask-iSubMask];
}
}

class CMaxLineTree
{
public:
CMaxLineTree(int iArrSize) :m_iArrSize(iArrSize), m_vData(iArrSize * 4)
{

 }
 //iIndex 从0开始
 void Modify( int iIndex, int iValue)
 {
	 Modify(1, 1, m_iArrSize, iIndex + 1, iValue);
 }
 //iNeedQueryLeft iNeedQueryRight 从0开始
 int Query(const int iNeedQueryLeft, const int iNeedQueryRight)
 {
	 return Query(1, 1, m_iArrSize, iNeedQueryLeft + 1, iNeedQueryRight + 1);
 }

protected:
int Query(const int iTreeNodeIndex, const int iRecordLeft, const int iRecordRight, const int iNeedQueryLeft, const int iNeedQueryRight)
{
if ((iNeedQueryLeft <= iRecordLeft) && (iNeedQueryRight >= iRecordRight))
{
return m_vData[iTreeNodeIndex];
}
const int iMid = (iRecordLeft + iRecordRight) / 2;
int iRet = 0;
if (iNeedQueryLeft <= iMid)
{
iRet = Query(iTreeNodeIndex * 2, iRecordLeft, iMid, iNeedQueryLeft, iNeedQueryRight);
}
if (iNeedQueryRight > iMid)
{
iRet = max(iRet, Query(iTreeNodeIndex * 2 + 1, iMid + 1, iRecordRight, iNeedQueryLeft, iNeedQueryRight));
}
return iRet;
}
void Modify(int iTreeNodeIndex, int iLeft, int iRight, int iIndex, int iValue)
{
if (iLeft == iRight)
{
m_vData[iTreeNodeIndex] = max(m_vData[iTreeNodeIndex],iValue);
return;
}
const int iMid = (iLeft + iRight) / 2;
if (iIndex <= iMid)
{
Modify(iTreeNodeIndex * 2, iLeft, iMid, iIndex, iValue);
}
else
{
Modify(iTreeNodeIndex * 2 + 1, iMid + 1, iRight, iIndex, iValue);
}
m_vData[iTreeNodeIndex] = max(m_vData[iTreeNodeIndex * 2], m_vData[iTreeNodeIndex * 2 + 1]);
}
const int m_iArrSize;
std::vector m_vData;
};

class CMaxLineTreeMap
{
public:
CMaxLineTreeMap(int iArrSize) :m_iArrSize(iArrSize)
{

 }
 //iIndex 从0开始
 void Modify(int iIndex, int iValue)
 {
	 Modify(1, 1, m_iArrSize, iIndex + 1, iValue);
 }
 //iNeedQueryLeft iNeedQueryRight 从0开始
 int Query(const int iNeedQueryLeft, const int iNeedQueryRight)
 {
	 return Query(1, 1, m_iArrSize, iNeedQueryLeft + 1, iNeedQueryRight + 1);
 }

protected:
int Query(const int iTreeNodeIndex, const int iRecordLeft, const int iRecordRight, const int iNeedQueryLeft, const int iNeedQueryRight)
{
if ((iNeedQueryLeft <= iRecordLeft) && (iNeedQueryRight >= iRecordRight))
{
return m_mData[iTreeNodeIndex];
}
const int iMid = (iRecordLeft + iRecordRight) / 2;
int iRet = 0;
if (iNeedQueryLeft <= iMid)
{
iRet = Query(iTreeNodeIndex * 2, iRecordLeft, iMid, iNeedQueryLeft, iNeedQueryRight);
}
if (iNeedQueryRight > iMid)
{
iRet = max(iRet, Query(iTreeNodeIndex * 2 + 1, iMid + 1, iRecordRight, iNeedQueryLeft, iNeedQueryRight));
}
return iRet;
}
void Modify(int iTreeNodeIndex, int iLeft, int iRight, int iIndex, int iValue)
{
if (iLeft == iRight)
{
m_mData[iTreeNodeIndex] = max(m_mData[iTreeNodeIndex], iValue);
return;
}
const int iMid = (iLeft + iRight) / 2;
if (iIndex <= iMid)
{
Modify(iTreeNodeIndex * 2, iLeft, iMid, iIndex, iValue);
}
else
{
Modify(iTreeNodeIndex * 2 + 1, iMid + 1, iRight, iIndex, iValue);
}
m_mData[iTreeNodeIndex] = max(m_mData[iTreeNodeIndex * 2], m_mData[iTreeNodeIndex * 2 + 1]);
}
const int m_iArrSize;
std::unordered_map<int, int> m_mData;
};

template
class CSumLineTree
{
public:
CSumLineTree(int iEleSize) :m_iEleSize(iEleSize), m_vArr(m_iEleSize * 4), m_vChildAdd(m_iEleSize * 4)
{

 }
 void Add(int iLeftIndex, int iRightIndex, int iValue)
 {
	 Add(1, 1, m_iEleSize, iLeftIndex+1, iRightIndex+1, iValue);
 }
 T Query(int iLeftIndex, int iRightIndex)
 {
	 return Query(1, 1, m_iEleSize, iLeftIndex + 1, iRightIndex + 1);
 }

private:
T Query(int iNode, int iDataLeft, int iDataRight, int iOpeLeft, int iOpeRight)
{
if ((iOpeLeft <= iDataLeft) && (iOpeRight >= iDataRight))
{
return m_vArr[iNode];
}
Fresh(iNode, iDataLeft, iDataRight);
const int iMid = iDataLeft + (iDataRight - iDataLeft) / 2;
T ret(0);
if (iMid >= iOpeLeft)
{
ret += Query(iNode * 2, iDataLeft, iMid, iOpeLeft, iOpeRight);
}
if (iMid + 1 <= iOpeRight)
{
ret += Query(iNode * 2 + 1, iMid + 1, iDataRight, iOpeLeft, iOpeRight);
}
return ret;
}
/* 暴力解法
void Add(int iNode, int iDataLeft, int iDataRight, int iOpeLeft, int iOpeRight, int iValue)
{
m_vArr[iNode] += T(iValue)*(min(iDataRight, iOpeRight) - max(iDataLeft, iOpeLeft)+1);
if (iDataLeft == iDataRight)
{
return;
}
const int iMid = iDataLeft + (iDataRight - iDataLeft) / 2;
if (iMid >= iOpeLeft)
{
Add(iNode * 2, iDataLeft, iMid, iOpeLeft, iOpeRight, iValue);
}
if (iMid + 1 <= iOpeRight)
{
Add(iNode * 2 + 1, iMid + 1, iDataRight, iOpeLeft, iOpeRight, iValue);
}
}
/
void Fresh(int iNode, int iDataLeft, int iDataRight)
{
const int iMid = iDataLeft + (iDataRight - iDataLeft) / 2;
if (m_vChildAdd[iNode] != 0)
{
Add(iNode * 2, iDataLeft, iMid, iDataLeft, iMid, m_vChildAdd[iNode]);
Add(iNode * 2 + 1, iMid + 1, iDataRight, iMid + 1, iDataRight, m_vChildAdd[iNode]);
m_vChildAdd[iNode] = 0;
}
}
//懒惰法
void Add(int iNode, int iDataLeft, int iDataRight, int iOpeLeft, int iOpeRight, int iValue)
{
m_vArr[iNode] += T(iValue)
(min(iDataRight, iOpeRight) - max(iDataLeft, iOpeLeft) + 1);
if ((iOpeLeft <= iDataLeft) && (iOpeRight >= iDataRight))
{
m_vChildAdd[iNode] += T(iValue);
return;
}

	 Fresh(iNode,iDataLeft,iDataRight);
	 const int iMid = iDataLeft + (iDataRight - iDataLeft) / 2;
	 if (iMid >= iOpeLeft)
	 {
		 Add(iNode * 2, iDataLeft, iMid, iOpeLeft, iOpeRight, iValue);
	 }
	 if (iMid + 1 <= iOpeRight)
	 {
		 Add(iNode * 2 + 1, iMid + 1, iDataRight, iOpeLeft, iOpeRight, iValue);
	 }
 }

 const int m_iEleSize;
 vector<T> m_vArr;
 vector<int> m_vChildAdd;

};

template
class CTreeArr
{
public:
CTreeArr(int iSize) :m_vData(iSize+1)
{

 }
 void Add(int index, T value)
 {
	 index++;
	 while (index < m_vData.size())
	 {
		 m_vData[index] += value;
		 index += index&(-index);
	 }
 }
 T Sum(int index)
 {
	 index++;
	 T ret = 0;
	 while (index )
	 {
		 ret += m_vData[index];
		 index -= index&(-index);
	 }
	 return ret;
 }
 T Get(int index)
 {
	 return Sum(index) - Sum(index - 1);
 }

private:
vector m_vData;
};

//iCodeNum 必须大于等于可能的字符数
template
class CHashStr {
public:
CHashStr(string s, int iCodeNum, int iCodeBegin = 1, char chBegin = ‘a’) {
m_c = s.length();
m_vP.resize(m_c + 1);
m_vP[0] = 1;
m_vHash.resize(m_c + 1);
for (int i = 0; i < m_c; i++)
{
const int P = iCodeBegin + iCodeNum;
m_vHash[i + 1] = m_vHash[i] * P + s[i] - chBegin + iCodeBegin;
m_vP[i + 1] = m_vP[i] * P;
}
}
int GetHash(int left, int right)
{
return ( m_vHash[right + 1] - m_vHash[left] * m_vP[right - left + 1]).ToInt();
}
inline int GetHash(int right)
{
return m_vHash[right + 1].ToInt();
}
int m_c;
vector<C1097Int> m_vP;
vector<C1097Int> m_vHash;
};

template
class C2HashStr
{
public:
C2HashStr(string s) {
m_pHash1 = std::make_unique<CHashStr<>>(s, 26);
m_pHash2 = std::make_unique < CHashStr>(s, 27, 0);
}

 long long GetHash(int left, int right)
 {
	 return (long long)m_pHash1->GetHash(left, right)*(MOD2 + 1) + m_pHash2->GetHash(left, right);
 }
 long long GetHash( int right)
 {
	 return (long long)m_pHash1->GetHash( right)*(MOD2 + 1) + m_pHash2->GetHash( right);
 }

private:
std::unique_ptr<CHashStr<>> m_pHash1;
std::unique_ptr<CHashStr> m_pHash2;
};

template
class CDynaHashStr {
public:
CDynaHashStr(int iCodeNum, int iCodeBegin = 1, char chBegin = ‘a’) :m_iUnit(iCodeNum + iCodeBegin), m_iP(1), m_iBegin(iCodeBegin - chBegin)
{

 }
 inline void push_back(const char& ch)
 {
	const int iNum = ch + m_iBegin;
	m_iHash *= m_iUnit;
	m_iHash += iNum;
	m_iP *= m_iUnit;
 }
 inline void push_front(const char& ch)
 {
	 const int iNum = ch + m_iBegin;
	 m_iHash +=  m_iP*iNum;
	 m_iP *= m_iUnit;
 }
 inline int GetHash() const
 {
	 return m_iHash;
 }
 const int m_iUnit;
 const int m_iBegin;
 C1097Int<MOD> m_iHash;
 C1097Int<MOD> m_iP;

};

template
class C2DynaHashStr {
public:
C2DynaHashStr(int iCodeNum, int iCodeBegin = 1, char chBegin = ‘a’)
{
m_pHash1 = new CDynaHashStr<>(iCodeNum, iCodeBegin, chBegin);
m_pHash2 = new CDynaHashStr(iCodeNum, iCodeBegin, chBegin);
}
~C2DynaHashStr()
{
delete m_pHash1;
delete m_pHash2;
}
inline void push_back(const char& ch)
{
m_pHash1->push_back(ch);
m_pHash2->push_back(ch);
}
inline void push_front(const char& ch)
{
m_pHash1->push_front(ch);
m_pHash2->push_front(ch);
}
long long Hash()const
{
return (long long)MOD2m_pHash1->m_iHash.ToInt() + m_pHash2->m_iHash.ToInt();
}
bool operator==(const C2DynaHashStr& other) const
{
return (m_pHash1->m_iHash.ToInt() == other.m_pHash1->m_iHash.ToInt()) && (m_pHash2->m_iHash.ToInt() == other.m_pHash2->m_iHash.ToInt());
}
CDynaHashStr<>
m_pHash1;
CDynaHashStr* m_pHash2 ;
};
namespace NSort
{
template
bool SortVecVec(const vector& v1, const vector& v2)
{
return v1[ArrIndex] < v2[ArrIndex];
};
}

namespace NCmp
{
template
bool Less(const std::pair<Class1, int>& p, Class1 iData)
{
return p.first < iData;
}

 template<class Class1>
 bool  Greater(const std::pair<Class1, int>& p, Class1 iData)
 {
	 return p.first > iData;
 }

template<class _Ty1,class _Ty2>
class CLessPair
{
public:
	bool operator()(const std::pair<_Ty1, _Ty2>& p1, const std::pair<_Ty1, _Ty2>& p2)const
	{
		return p1.first < p2.first;
	}
};

template<class _Ty1, class _Ty2>
class CGreatePair
{
public:
	bool operator()(const std::pair<_Ty1, _Ty2>& p1, const std::pair<_Ty1, _Ty2>& p2)const
	{
		return p1.first > p2.first;
	}
};

}

class CIndexVector
{
public:
template
CIndexVector(vector& data)
{
for (int i = 0; i < data.size(); i++)
{
m_indexs.emplace_back(i);
}
std::sort(m_indexs.begin(), m_indexs.end(), [data](const int& i1, const int& i2)
{
return data[i1] < data[i2];
});
}
int GetIndex(int index)
{
return m_indexs[index];
}
private:
vector m_indexs;
};

class CMedian
{
public:
void AddNum(int iNum)
{
m_queTopMin.emplace(iNum);
MakeNumValid();
MakeSmallBig();
}
void Remove(int iNum)
{
if (m_queTopMax.size() && (iNum <= m_queTopMax.top()))
{
m_setTopMaxDel.insert(iNum);
}
else
{
m_setTopMinDel.insert(iNum);
}

	PopIsTopIsDel(m_queTopMin, m_setTopMinDel);
	PopIsTopIsDel(m_queTopMax, m_setTopMaxDel);
	MakeNumValid();
	MakeSmallBig();
}
double Median()
{
	const int iMaxNum = m_queTopMin.size() - m_setTopMinDel.size();
	const int iMinNum = m_queTopMax.size() - m_setTopMaxDel.size();
	if (iMaxNum > iMinNum)
	{
		return m_queTopMin.top();
	}
	return ((double)m_queTopMin.top() + m_queTopMax.top())/2.0;
}
template<class T>
void PopIsTopIsDel(T& que, std::unordered_multiset<int>& setTopMaxDel)
{
	while (que.size() && (setTopMaxDel.count(que.top())))
	{
		setTopMaxDel.erase(setTopMaxDel.find(que.top()));
		que.pop();
	}
}
void MakeNumValid()
{
	const int iMaxNum = m_queTopMin.size() - m_setTopMinDel.size();
	const int iMinNum = m_queTopMax.size() - m_setTopMaxDel.size();
	//确保两个队的数量
	if (iMaxNum > iMinNum + 1)
	{
		int tmp = m_queTopMin.top();
		m_queTopMin.pop();
		m_queTopMax.emplace(tmp);
		PopIsTopIsDel(m_queTopMin, m_setTopMinDel);
	}
	if (iMinNum > iMaxNum)
	{
		int tmp = m_queTopMax.top();
		m_queTopMax.pop();
		m_queTopMin.push(tmp);
		PopIsTopIsDel(m_queTopMax, m_setTopMaxDel);
	}
}
void MakeSmallBig()
{
	if (m_queTopMin.empty() || m_queTopMax.empty())
	{
		return;
	}
	while (m_queTopMin.top() < m_queTopMax.top())
	{
		const int iOldTopMin = m_queTopMin.top();
		const int iOldTopMax = m_queTopMax.top();
		m_queTopMin.pop();
		m_queTopMax.pop();
		m_queTopMin.emplace(iOldTopMax);
		m_queTopMax.emplace(iOldTopMin);
		PopIsTopIsDel(m_queTopMin, m_setTopMinDel);
		PopIsTopIsDel(m_queTopMax, m_setTopMaxDel);
	}
}
std::priority_queue<int> m_queTopMax;
std::priority_queue<int, vector<int>, greater<int>> m_queTopMin;
std::unordered_multiset<int> m_setTopMaxDel, m_setTopMinDel;

};

template
class CDistanceGrid
{
public:
CDistanceGrid(const vector<vector>& grid) :m_grid(grid), m_r(grid.size()), m_c(grid[0].size())
{

}
//单源路径 D 算法 ,时间复杂度:r*c*log(r*c)
inline int Dis(int r1, int c1, int r2, int c2)
{	
	vector<vector<int>> vDis(iMaxRow, vector<int>(iMaxCol, INT_MAX));

	auto Add = [&vDis, this](std::priority_queue<pair<int, int>, vector<std::pair<int, int>>, greater<pair<int, int>>>& queCur, int iDis, int r, int c)
	{
		const int iRowColMask = iMaxCol * r + c;
		if (iDis >= vDis[r][c])
		{
			return;
		}
		queCur.emplace(iDis,iRowColMask);
		vDis[r][c] = iDis;
	};
	auto Move = [&](std::priority_queue<pair<int, int>, vector<std::pair<int, int>>, greater<pair<int, int>>>& queCur, int iDis, int r, int c)
	{
		if ((r < 0) || (r >= m_r))
		{
			return;
		}
		if ((c < 0) || (c >= m_c))
		{
			return;
		}
		if (m_grid[r][c] < 1)
		{
			return;
		}
		Add(queCur,iDis, r, c);
	};

	std::priority_queue<pair<int, int>, vector<std::pair<int, int>>, greater<pair<int, int>>> que;		
	Add(que,0,r1, c1);
	while (que.size())
	{
		const int iDis = que.top().first;
		const int iStart = que.top().second;
		que.pop();
		const int r = iStart / iMaxCol;
		const int c = iStart % iMaxCol;
		if ((r == r2) && (c == c2))
		{
			return iDis;
		}
		if (iDis > vDis[r][c])
		{
			continue;
		}
		
		Move(que, iDis + 1, r + 1, c);
		Move(que, iDis + 1, r - 1, c);
		Move(que, iDis + 1, r, c + 1);
		Move(que, iDis + 1, r, c - 1);
	}

	return -1;
}

private:
virtual bool IsCanMoveStatue(int r, int c)
{
return m_grid[r][c] >= 1;
}
const int m_r;
const int m_c;
const vector<vector>& m_grid;

};

class CBFSGridDist
{
public:
CBFSGridDist(const vector<vector>& bCanVisit, int r, int c) :m_bCanVisit(bCanVisit), m_r(m_bCanVisit.size()), m_c(m_bCanVisit[0].size())
{
m_vDis.assign(m_r, vector(m_c,INT_MAX/2));
Dist(r, c);
}
bool Vilid(const int r,const int c )
{
if ((r < 0) || (r >= m_r))
{
return false;
}
if ((c < 0) || (c >= m_c))
{
return false;
}
return true;
}
const vector<vector>& Dis()const
{
return m_vDis;
}
const vector<vector>& m_bCanVisit;
private:
//INT_MAX/2 表示无法到达
void Dist(int r, int c)
{
m_vDis.assign(m_r, vector(m_c, INT_MAX / 2));
vector<vector> vHasDo(m_r, vector(m_c));
std::queue<std::pair<int, int>> que;
auto Add = [&](const int& r, const int& c, const int& iDis)
{
if (!Vilid(r, c))
{
return;
}
if (vHasDo[r][c])
{
return;
}
if (!m_bCanVisit[r][c])
{
vHasDo[r][c] = true;
return;
}
if (iDis >= m_vDis[r][c])
{
return;
}

		que.emplace(r, c);
		m_vDis[r][c] = iDis;
		vHasDo[r][c] = true;
	};
	Add(r, c, 0);
	while (que.size())
	{
		const int r = que.front().first;
		const int c = que.front().second;
		que.pop();
		const int iDis = m_vDis[r][c];
		Add(r + 1, c, iDis + 1);
		Add(r - 1, c, iDis + 1);
		Add(r, c + 1, iDis + 1);
		Add(r, c - 1, iDis + 1);
	}

}
vector<vector<int>> m_vDis;
const int m_r;
const int m_c;

};

class C2BNumTrieNode
{
public:
C2BNumTrieNode()
{
m_childs[0] = m_childs[1] = nullptr;
}
bool GetNot0Child(bool bFirstRight)
{
auto ptr = m_childs[bFirstRight];
if (ptr && (ptr->m_iNum >0))
{
return bFirstRight;
}
return !bFirstRight;
}
int m_iNum = 0;
C2BNumTrieNode* m_childs[2];
};

template
class C2BNumTrie
{
public:
C2BNumTrie()
{
m_pRoot = new C2BNumTrieNode();
}
void Add(int iNum)
{
m_setHas.emplace(iNum);
C2BNumTrieNode* p = m_pRoot;
for (int i = iLeveNum - 1; i >= 0; i–)
{
p->m_iNum++;
bool bRight = iNum & (1 << i);
if (nullptr == p->m_childs[bRight])
{
p->m_childs[bRight] = new C2BNumTrieNode();
}
p = p->m_childs[bRight];
}
p->m_iNum++;
}
void Del(int iNum)
{
auto it = m_setHas.find(iNum);
if (m_setHas.end() == it)
{
return;
}
m_setHas.erase(it);
C2BNumTrieNode* p = m_pRoot;
for (int i = iLeveNum - 1; i >= 0; i–)
{
p->m_iNum–;
bool bRight = iNum & (1 << i);
p = p->m_childs[bRight];
}
p->m_iNum–;
}
int MaxXor(int iNum)
{
C2BNumTrieNode* p = m_pRoot;
int iRet = 0;
for (int i = iLeveNum - 1; i >= 0; i–)
{
bool bRight = !(iNum & (1 << i));
bool bSel = p->GetNot0Child(bRight);
p = p->m_childs[bSel];
if (bSel == bRight)
{
iRet |= (1 << i);
}
}
return iRet;
}
C2BNumTrieNode* m_pRoot;
std::unordered_multiset m_setHas;
};

struct SValueItem
{
SValueItem()
{

}
SValueItem(int iValue)
{
	m_iCoefficient = iValue;
}
SValueItem operator*(const SValueItem& o)const
{
	SValueItem ret(m_iCoefficient*o.m_iCoefficient);
	int i = 0, j = 0;
	while ((i < m_vVars.size()) && (j < o.m_vVars.size()))
	{
		if (m_vVars[i] < o.m_vVars[j])
		{
			ret.m_vVars.emplace_back(m_vVars[i]);
			i++;
		}
		else
		{
			ret.m_vVars.emplace_back(o.m_vVars[j]);
			j++;
		}
	}
	ret.m_vVars.insert(ret.m_vVars.end(), m_vVars.begin()+i, m_vVars.end());
	ret.m_vVars.insert(ret.m_vVars.end(), o.m_vVars.begin()+j, o.m_vVars.end());
	return ret;
}
bool operator<(const SValueItem& o)const
{
	if (m_vVars.size() == o.m_vVars.size())
	{
		return m_vVars < o.m_vVars;
	}
	return m_vVars.size() > o.m_vVars.size();
}
vector<std::string> m_vVars;
int m_iCoefficient=1;//系数、倍率
std::string ToString()const
{
	std::ostringstream os;
	os << m_iCoefficient ;
	for (const auto&s : m_vVars)
	{
		os << "*" << s;
	}
	return os.str();
}

};

struct SValue
{
SValue()
{

}
SValue(int iValue)
{
	SValueItem item;
	item.m_iCoefficient = iValue;
	m_items.emplace(item);
}
SValue(std::string strName)
{
	SValueItem item;
	item.m_vVars.emplace_back(strName);
	m_items.emplace(item);
}
SValue operator-(const SValue& o)const
{
	SValue ret;
	ret.m_items = m_items;
	for (auto it : o.m_items)
	{
		ret -= it;
	}
	return ret;
}
SValue operator+(const SValue& o)const
{
	SValue ret;
	ret.m_items = m_items;
	for (auto it : o.m_items)
	{
		ret += it;
	}			
	return ret;
}
SValue operator*(const SValue& o)const
{
	SValue ret;
	for (const auto it : m_items)
	{
		for (const auto ij : o.m_items)
		{
			ret += it*ij;
		}
	}
	return ret;
}
SValue& operator+=(const SValueItem& item)
{
	auto it = m_items.find(item);
	if (m_items.end() == it)
	{
		m_items.emplace(item);
	}
	else
	{
		auto tmp = *it;
		tmp.m_iCoefficient += item.m_iCoefficient;
		m_items.erase(it);
		m_items.emplace(tmp);
	}
	return *this;
}
SValue& operator-=(const SValueItem& item)
{
	auto it = m_items.find(item);
	if (m_items.end() == it)
	{
		auto tmp = item;
		tmp.m_iCoefficient *= -1;
		m_items.emplace(tmp);
	}
	else
	{
		auto tmp = *it;
		tmp.m_iCoefficient -= item.m_iCoefficient;
		m_items.erase(it);
		m_items.emplace(tmp);
	}
	return *this;
}
vector<std::string> ToStrings()const
{
	vector<std::string> vRet;
	for (const auto& item : m_items)
	{
		if (0 == item.m_iCoefficient)
		{
			continue;
		}
		vRet.emplace_back(item.ToString());
	}
	return vRet;
}
std::set<SValueItem> m_items;

};

class CDelIndexs
{
public:
CDelIndexs()
{

}
CDelIndexs(int iSize)
{
	Init(iSize);
}
void Init(int iSize)
{
	m_bDels.assign(iSize, false);
	m_vNext.resize(iSize);
	for (int i = 0; i < iSize; i++)
	{
		m_vNext[i] = i + 1;
	}
}
void Del(int index)
{
	if ((index < 0) || (index >= m_vNext.size()))
	{
		return;
	}
	if (m_bDels[index])
	{
		return;
	}
	m_bDels[index] = true;

}
void SetCur(int index)
{
	if (index < 0)
	{
		m_iCur = m_vNext.size();
	}
	else
	{
		m_iCur = FreshCur(index);
	}
}
int NextIndex()
{
	if (m_iCur >= m_vNext.size())
	{
		return -1;
	}
	auto ret = m_iCur;
	SetCur(m_vNext[m_iCur]);
	return ret;
}

private:
int FreshCur(int index)
{
if (index >= m_vNext.size())
{
return m_vNext.size();
}
if (!m_bDels[index])
{
return index;
}

	return m_vNext[index] = FreshCur(m_vNext[index]);
}
int m_iCur = 0;
vector<bool> m_bDels;
vector<int> m_vNext;

};

class CUnionFind
{
public:
CUnionFind(int iSize) :m_vConnetNO(iSize), m_vConnectSize(iSize, 1)
{
for (int i = 0; i < iSize; i++)
{
m_vConnetNO[i] = i;
}
m_iConnetSize = iSize;
}
int GetConnectNO(int iNode)
{
int& iConnectNO = m_vConnetNO[iNode];
if (iNode == iConnectNO)
{
return iNode;
}
return iConnectNO = GetConnectNO(iConnectNO);
}
void Union(int iNode1, int iNode2)
{
const int iConnectNO1 = GetConnectNO(iNode1);
const int iConnectNO2 = GetConnectNO(iNode2);
if (iConnectNO1 == iConnectNO2)
{
return ;
}
m_iConnetSize–;
if (iConnectNO1 > iConnectNO2)
{
UnionConnect(iConnectNO1, iConnectNO2);
}
else
{
UnionConnect(iConnectNO2, iConnectNO1);
}
}
int GetAConnectSizeByNode(int iNode)
{
return m_vConnectSize[GetConnectNO(iNode)];
}
bool IsConnect(int iNode1, int iNode2)
{
return GetConnectNO(iNode1) == GetConnectNO(iNode2);
}
int ConnetSize()const
{
return m_iConnetSize;
}
private:
void UnionConnect(int iFrom, int iTo)
{
m_vConnectSize[iTo] += m_vConnectSize[iFrom];
m_vConnetNO[iFrom] = iTo;
}
vector m_vConnetNO;//各点所在联通区域的编号,本联通区域任意一点的索引,为了增加可理解性,用最小索引
vector m_vConnectSize;//各联通区域点数量
int m_iConnetSize;
};

class CUnionFindMST
{
public:
CUnionFindMST(const int iNodeSize) :m_uf(iNodeSize)
{

}
void AddEdge(const int iNode1, const int iNode2, int iWeight)
{
	if (m_uf.IsConnect(iNode1, iNode2))
	{
		return;
	}
	m_iMST += iWeight;
	m_uf.Union(iNode1, iNode2);
}
void AddEdge(const vector<int>& v )
{
	AddEdge(v[0], v[1], v[2]);
}
int MST()
{
	if (m_uf.ConnetSize() > 1)
	{
		return -1;
	}
	return m_iMST;
}

private:
int m_iMST = 0;
CUnionFind m_uf;
};

class CNearestMST
{
public:
CNearestMST(const int iNodeSize) :m_bDo(iNodeSize), m_vDis(iNodeSize, INT_MAX), m_vNeiTable(iNodeSize)
{

}
void Init(const vector<vector<int>>& edges)
{
	for (const auto& v : edges)
	{
		Add(v);
	}
}
void Add(const vector<int>& v )
{
	m_vNeiTable[v[0]].emplace_back(v[1], v[2]);
	m_vNeiTable[v[1]].emplace_back(v[0], v[2]);
}
int MST(int start)
{
	int next = start;
	while ((next = AddNode(next)) >= 0);
	return m_iMST;
}
int MST(int iNode1, int iNode2,int iWeight)
{
	m_bDo[iNode1] = true;
	for (const auto& it : m_vNeiTable[iNode1])
	{
		if (m_bDo[it.first])
		{
			continue;
		}
		m_vDis[it.first] = min(m_vDis[it.first],(long long) it.second);
	}
	m_iMST = iWeight;

	int next = iNode2;
	while ((next = AddNode(next)) >= 0);
	return m_iMST;
}

private:
int AddNode(int iCur)
{
m_bDo[iCur] = true;
for (const auto& it : m_vNeiTable[iCur])
{
if (m_bDo[it.first])
{
continue;
}
m_vDis[it.first] = min(m_vDis[it.first], (long long)it.second);
}

	int iMinIndex = -1;
	for (int i = 0; i < m_vDis.size(); i++)
	{
		if (m_bDo[i])
		{
			continue;
		}
		if ((-1 == iMinIndex) || (m_vDis[i] < m_vDis[iMinIndex]))
		{
			iMinIndex =i;		
		}
	}
	if ( -1 != iMinIndex)
	{
		if (INT_MAX == m_vDis[iMinIndex])
		{
			m_iMST = -1;
			return -1;
		}
		m_iMST += m_vDis[iMinIndex];
	}
	
	return iMinIndex;
}
vector<bool> m_bDo;
vector<long long> m_vDis;
vector < vector<std::pair<int, int>>> m_vNeiTable;
long long m_iMST = 0;

};

typedef pair<long long,int> PAIRLLI;
class CDis
{
public:
static void Dis(vector& vDis, int start, const vector<vector<pair<int, int>>>& vNeiB)
{
std::priority_queue<PAIRLLI, vector, greater> minHeap;
minHeap.emplace(0, start);
while (minHeap.size())
{
const long long llDist = minHeap.top().first;
const int iCur = minHeap.top().second;
minHeap.pop();
if (-1 != vDis[iCur])
{
continue;
}
vDis[iCur] = llDist;
for (const auto& it : vNeiB[iCur])
{
minHeap.emplace(llDist + it.second, it.first);
}
}

}

};

class CNearestDis
{
public:
CNearestDis(int iSize) :m_iSize(iSize), DIS(m_vDis), PRE(m_vPre)
{

}
void Cal(int start, const vector<vector<pair<int, int>>>& vNeiB)
{
	m_vDis.assign(m_iSize, -1);
	m_vPre.assign(m_iSize, -1);
	vector<bool> vDo(m_iSize);//点是否已处理
	auto AddNode = [&](int iNode)
	{
		//const int iPreNode = m_vPre[iNode];
		long long llPreDis = m_vDis[iNode];

		vDo[iNode] = true;
		for (const auto& it : vNeiB[iNode])
		{
			if (vDo[it.first])
			{
				continue;
			}

			if ((-1 == m_vDis[it.first]) || (it.second + llPreDis < m_vDis[it.first]))
			{
				m_vDis[it.first] = it.second + llPreDis;
				m_vPre[it.first] = iNode;
			}				
		}

		long long llMinDis = LLONG_MAX;
		int iMinIndex = -1;
		for (int i = 0; i < m_vDis.size(); i++)
		{
			if (vDo[i])
			{
				continue;
			}
			if (-1 == m_vDis[i])
			{
				continue;
			}
			if (m_vDis[i] < llMinDis)
			{
				iMinIndex = i;
				llMinDis = m_vDis[i];
			}
		}
		return (LLONG_MAX == llMinDis) ? -1 : iMinIndex;
	};

	int next = start;
	m_vDis[start] = 0;
	while (-1 != (next= AddNode(next)));
}
void Cal(const int start, vector<vector<int>>& edges)
{
	vector<vector<pair<int, int>>> vNeiB(m_iSize);
	for (int i = 0; i < edges.size(); i++)
	{
		const auto& v = edges[i];
		vNeiB[v[0]].emplace_back(v[1], v[2]);
		vNeiB[v[1]].emplace_back(v[0], v[2]);
	}
	Cal(start, vNeiB);
}
const vector<long long>& DIS;
const vector<int>& PRE;

private:
const int m_iSize;
vector m_vDis;//各点到起点的最短距离
vector m_vPre;//最短路径的前一点
};

class CNeiBo2
{
public:
CNeiBo2(int n, vector<vector>& edges, bool bDirect)
{
m_vNeiB.resize(n);
for (const auto& v : edges)
{
m_vNeiB[v[0]].emplace_back(v[1]);
if (!bDirect)
{
m_vNeiB[v[1]].emplace_back(v[0]);
}
}
}
vector<vector> m_vNeiB;
};

struct SDecimal
{
SDecimal(int iNum=0, int iDeno = 1)
{
m_iNum = iNum;
m_iDeno = iDeno;
int iGCD = GCD(abs(m_iNum), abs(m_iDeno));
m_iNum /= iGCD;
m_iDeno /= iGCD;
if (m_iDeno < 0)
{
m_iDeno = -m_iDeno;
m_iNum = -m_iNum;
}
}
SDecimal operator*(const SDecimal& o)const
{
return SDecimal(m_iNumo.m_iNum, m_iDenoo.m_iDeno);
}
SDecimal operator/(const SDecimal& o)const
{
return SDecimal(m_iNumo.m_iDeno, m_iDenoo.m_iNum);
}
SDecimal operator+(const SDecimal& o)const
{
const int iGCD = GCD(m_iDeno, o.m_iDeno);
const int iDeno = m_iDenoo.m_iDeno / iGCD;
return SDecimal(m_iNum
(iDeno / m_iDeno) + o.m_iNum*(iDeno / o.m_iDeno), iDeno);
}
SDecimal operator-(const SDecimal& o)const
{
const int iGCD = GCD(m_iDeno, o.m_iDeno);
const int iDeno = m_iDenoo.m_iDeno / iGCD;
return SDecimal(m_iNum
(iDeno / m_iDeno) - o.m_iNum*(iDeno / o.m_iDeno), iDeno);
}
bool operator==(const SDecimal& o)const
{
return (m_iNum == o.m_iNum) && (m_iDeno == o.m_iDeno);
}
bool operator<(const SDecimal& o)const
{
auto tmp = *this - o;
return tmp.m_iNum < 0;
}
int m_iNum=0;//分子
int m_iDeno=1;//分母
};

struct point{
double x, y;
point(double i, double j) :x(i), y(j){}
};

//算两点距离
double dist(double x1, double y1, double x2, double y2){
return sqrt((x1 - x2)(x1 - x2) + (y1 - y2)(y1 - y2));
}

//计算圆心
point CircleCenter(point& a, point& b, int r){
//算中点
point mid((a.x + b.x) / 2.0, (a.y + b.y) / 2.0);
//AB距离的一半
double d = dist(a.x, a.y, mid.x, mid.y);
//计算h
double h = sqrt(rr - dd);
//计算垂线
point ba(b.x - a.x, b.y - a.y);
point hd(-ba.y, ba.x);
double len = sqrt(hd.xhd.x + hd.yhd.y);
hd.x /= len, hd.y /= len;
hd.x *= h, hd.y *= h;
return point(hd.x + mid.x, hd.y + mid.y);
}

class C01LineTree
{
public:
C01LineTree(const vector& nums) :m_iEleSize(nums.size())
{
m_arr.resize(m_iEleSize * 4);
Init(nums,1, 1, m_iEleSize);
m_vNeedFreshChilds.assign(m_iEleSize * 4, false);
}
void Rotato(int iLeftZeroIndex,int iRightZeroIndex )
{
int iRotatoLeft = iLeftZeroIndex + 1;
int iRotatoRight = iRightZeroIndex + 1;
Rotato(1, 1, m_iEleSize, iRotatoLeft, iRotatoRight);
}
int Query()
{
return m_arr[1];
}
private:
void Rotato(int iSaveIndex, int iDataBegin, int iDataEnd, int iRotatoLeft, int iRotatoRight)
{
if ((iRotatoLeft <= iDataBegin) && (iRotatoRight >= iDataEnd))
{//整个范围需要更新
RotatoSelf(iSaveIndex, iDataBegin, iDataEnd);
return;
}

	int iMid = iDataBegin + (iDataEnd - iDataBegin) / 2;
	if (m_vNeedFreshChilds[iSaveIndex])
	{
		RotatoSelf(iSaveIndex * 2, iDataBegin, iMid);
		RotatoSelf(iSaveIndex * 2 + 1, iMid + 1, iDataEnd);
		m_vNeedFreshChilds[iSaveIndex] = false;
	}	
	if (iMid >= iRotatoLeft)
	{
		Rotato(iSaveIndex * 2, iDataBegin, iMid, iRotatoLeft, iRotatoRight);
	}
	if (iMid + 1 <= iRotatoRight)
	{
		Rotato(iSaveIndex * 2 + 1, iMid + 1, iDataEnd, iRotatoLeft, iRotatoRight);
	}
	m_arr[iSaveIndex] = m_arr[iSaveIndex * 2] + m_arr[iSaveIndex * 2 + 1];
}
void RotatoSelf(int iSaveIndex, int iDataBegin, int iDataEnd)
{
	//总数量 - 翻转后0(翻转前1)的数量
	m_arr[iSaveIndex] = (iDataEnd - iDataBegin + 1) - m_arr[iSaveIndex];
	//懒惰法,标记本节点的子孙节点没更新
	m_vNeedFreshChilds[iSaveIndex] = !m_vNeedFreshChilds[iSaveIndex];
}
void Init(const vector<int>& nums, int iSaveIndex,int iDataBegin, int iDataEnd)
{
	if (iDataBegin == iDataEnd)
	{
		m_arr[iSaveIndex] = nums[iDataBegin - 1];
		return;
	}
	int iMid = iDataBegin + (iDataEnd - iDataBegin) / 2;
	Init(nums, iSaveIndex * 2  , iDataBegin, iMid);
	Init(nums, iSaveIndex * 2 + 1, iMid + 1, iDataEnd);
	m_arr[iSaveIndex] = m_arr[iSaveIndex * 2] + m_arr[iSaveIndex * 2 + 1];
}
const int m_iEleSize;
vector<int> m_arr;
vector<bool> m_vNeedFreshChilds;

};

/*
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
TreeNode(int x, int iLeft) : val(x), left(new TreeNode(iLeft)), right(nullptr) {}
TreeNode(int x, int iLeft, int iRghit) : val(x), left(new TreeNode(iLeft)), right(new TreeNode(iRghit)) {}
};

namespace NTree
{
TreeNode* Init(const vector& nums, int iNull = 10000)
{
if (0 == nums.size())
{
return nullptr;
}
vector<TreeNode*> ptrs(nums.size() + 1), ptrParent(1);
for (int i = 0; i < nums.size(); i++)
{
if (iNull == nums[i])
{
continue;
}
const int iNO = i + 1;
ptrs[iNO] = new TreeNode(nums[i]);
ptrParent.emplace_back(ptrs[iNO]);
if (1 == iNO)
{
continue;
}
if (iNO & 1)
{//奇数是右支
ptrParent[iNO / 2]->right = ptrs[iNO];
}
else
{
ptrParent[iNO / 2]->left = ptrs[iNO];
}
}
return ptrs[1];
}
}
*/

class Solution {
public:
int countPalindromicSubsequences(const string s) {
m_c = s.length();
//m_ret.assign(m_c + 1, vector<vector<C1097Int<>>>(m_c, vector<C1097Int<>>(26)));
for (int i = 0; i <= m_c; i++)
{
for (int j = 0; j < m_c; j++)
{
for (int k = 0; k < 4; k++)
{
m_ret[i][j][k] = ((1==i)&&(s[j]==k+‘a’)) ? 1 : 0;
}
}
}
for (int len = 2; len <= m_c; len++)
{
for (int begin = 0; begin + len - 1 < m_c; begin++)
{
for (int iC = 0; iC < 4; iC++)
{
C1097Int<>& iNum = m_ret[len][begin][iC];
int end = begin + len - 1;
if (s[begin] == iC + ‘a’)
{
while (s[end] != iC + ‘a’ )
{
end–;
}
if (begin == end)
{
iNum = 1;
continue;
}
iNum = 2;
for (int iC2 = 0; iC2 < 4; iC2++)
{
iNum += m_ret[(end-1) - (begin + 1) + 1][begin + 1][iC2];
}
continue;
}
iNum = m_ret[len - 1][begin + 1][iC];
}
}
}
C1097Int<> iRet = 0;
for (int iC = 0; iC < 4; iC++)
{
iRet += m_ret[m_c][0][iC];
}
return iRet.ToInt();
}
int m_c;
C1097Int<> m_ret[1001][1000][4];//一维:长度;二维:起始位置;三维:回文起始字符-‘a’
};

2023年8月

using namespace std;

template
void OutToConsoleInner(const vector& vec, const string& strSep = " ")
{
for (int i = 0; i < vec.size(); i++)
{
if (0 != i % 25)
{
std::cout << strSep.c_str();
}
std::cout << setw(3) << setfill(’ ') << vec[i];
if (0 == (i + 1) % 25)
{
std::cout << std::endl;
}
else if (0 == (i + 1) % 5)
{
std::cout << strSep.c_str();
}
}
}

class CConsole
{
public:

template<class ELE>
static void Out(const vector<ELE>& vec, const string& strColSep = " ", const string& strRowSep = "\r\n")
{
	OutToConsoleInner(vec, strColSep);
	std::cout << strRowSep.c_str();
}

template<class ELE>
static void Out(const vector<vector<ELE>>& matrix, const string& strColSep = " ", const string& strRowSep = "\r\n")
{
	for (int i = 0; i < matrix.size(); i++)
	{
		OutToConsoleInner(matrix[i], strColSep);
		std::cout << strRowSep.c_str();
	}
}

template<class ELE>
static void Out(const std::map<ELE, std::vector<int> >& mTopPointToPoints, const string& strColSep = " ", const string& strRowSep = "\r\n")
{
	for (auto kv : mTopPointToPoints)
	{
		std::cout << kv.first << ":";
		OutToConsoleInner(kv.second, strColSep);
		std::cout << strRowSep.c_str();
	}
}


static void Out(const  std::string& t, const string& strColSep = " ", const string& strRowSep = "\r\n")
{
	std::cout << t.c_str() << strColSep.c_str();
}

template<class ELE  >
static void Out(const ELE& t, const string& strColSep = " ", const string& strRowSep = "\r\n")
{
	std::cout << t << strColSep.c_str();
}

};

void GenetateSum(vector& sums, const vector& nums)
{
sums.push_back(0);
for (int i = 0; i < nums.size(); i++)
{
sums.push_back(nums[i] + sums[i]);
}
}

//[iBegin,iEnd]之和
long long Total(int iBegin, int iEnd)
{
return (long long)(iBegin + iEnd) * (iEnd - iBegin + 1) / 2;
}

class CLadderhlp
{
public:
CLadderhlp(int ladders)
{
m_uLadderNum = ladders;
}
void AddNeedBick(int iNeedBick)
{
if (0 == m_uLadderNum)
{
return;
}
if (m_ladders.size() < m_uLadderNum)
{
m_ladders.push(iNeedBick);
m_iEaqualBicks += iNeedBick;
return;
}
int iTop = m_ladders.top();
if (iTop >= iNeedBick)
{
return;
}
m_iEaqualBicks -= iTop;
m_iEaqualBicks += iNeedBick;
m_ladders.pop();
m_ladders.push(iNeedBick);
}
std::priority_queue<int, vector, std::greater > m_ladders;
unsigned int m_uLadderNum;
long long m_iEaqualBicks = 0;
};

struct CPeo
{
CPeo(string strName, CPeo* pParent = nullptr)
{
m_strName = strName;
m_pParent = pParent;
}
string m_strName;
vector<CPeo*> m_childs;
CPeo* m_pParent = nullptr;
};

//通过 x &= (x-1)实现
int bitcount(unsigned x) {
int countx = 0;
while (x) {
countx++;
x &= (x - 1);
}
return countx;
}

int bitcount(unsigned long long x) {
int countx = 0;
while (x) {
countx++;
x &= (x - 1);
}
return countx;
}

class CRange
{
public:
template
CRange(const ELE& v)
{
m_iBegin = 0;
m_iEnd = v.size();
}
bool In(int iIndex)
{
return (iIndex >= m_iBegin) && (iIndex < m_iEnd);
}
const int End()
{
return m_iEnd;
}
protected:
int m_iBegin;
int m_iEnd;
};

template
class CTrie
{
public:
CTrie() :m_vPChilds(iTypeNum)
{

}
template<class IT>
void Add(IT begin, IT end)
{
	CTrie<iTypeNum, cBegin>* pNode = this;
	for (; begin != end; ++begin)
	{
		pNode = pNode->AddChar(*begin).get();
	}
}
template<class IT>
bool Search(IT begin, IT end)
{
	if (begin == end)
	{
		return true;
	}

	if ('.' == *begin)
	{
		for (auto& ptr : m_vPChilds)
		{
			if (!ptr)
			{
				continue;
			}
			if (ptr->Search(begin + 1, end))
			{
				return true;
			}
		}
	}

	auto ptr = GetChild(*begin);
	if (nullptr == ptr)
	{
		return false;
	}
	return ptr->Search(begin + 1, end);
}

protected:
std::shared_ptr AddChar(char ch)
{
if ((ch < cBegin) || (ch >= cBegin + iTypeNum))
{
return nullptr;
}
const int index = ch - cBegin;
auto ptr = m_vPChilds[index];
if (!ptr)
{
m_vPChilds[index] = std::make_shared<CTrie<iTypeNum, cBegin>>();
}
return m_vPChilds[index];
}
std::shared_ptr GetChild(char ch)const
{
if ((ch < cBegin) || (ch >= cBegin + iTypeNum))
{
return nullptr;
}
return m_vPChilds[ch - cBegin];
}
std::vector<std::shared_ptr> m_vPChilds;
};

class CWords
{
public:
void Add(const string& word)
{
m_strStrs.insert(word);
}
bool Search(const string& word)
{
return Search(m_strStrs.begin(), m_strStrs.end(), 0, word.length(), word);
}
protected:
bool Search(std::set::const_iterator begin, std::set::const_iterator end, int iStrBegin, int iStrEnd, const string& str)
{
int i = iStrBegin;
for (; (i < iStrEnd) && (str[i] != ‘.’); i++);
auto it = std::equal_range(begin, end, str, [&iStrBegin, &i](const string& s, const string& sFind)
{
return s.substr(iStrBegin, i - iStrBegin) < sFind.substr(iStrBegin, i - iStrBegin);
});
if (i == iStrBegin)
{
it.first = begin;
it.second = end;
}
if (it.first == it.second)
{
return false;
}
if (i == iStrEnd)
{
return true;
}
if (i + 1 == iStrEnd)
{
return true;
}
string tmp = str;
for (char ch = ‘a’; ch <= ‘z’; ch++)
{
tmp[i] = ch;
auto ij = std::equal_range(it.first, it.second, tmp, [&ch, &i](const string& s, const string& sFind)
{
return s[i] < sFind[i];
});
if (ij.first == ij.second)
{
continue;
}

		if (Search(ij.first, ij.second, i + 1, iStrEnd, str))
		{
			return true;
		}
	}
	return false;
}

std::set<string> m_strStrs;

};
class WordDictionary {
public:
WordDictionary() {
for (int i = 0; i < 26; i++)
{
m_str[i] = std::make_unique();
}
}

void addWord(string word) {
	m_str[word.length()]->Add(word);
}

bool search(string word) {
	return m_str[word.length()]->Search(word);
}
std::unique_ptr<CWords> m_str[26];

};

template
class C1097Int
{
public:
C1097Int(long long llData = 0) :m_iData(llData% MOD)
{

}
C1097Int  operator+(const C1097Int& o)const
{
	return C1097Int(((long long)m_iData + o.m_iData) % MOD);
}
C1097Int& operator+=(const C1097Int& o)
{
	m_iData = ((long long)m_iData + o.m_iData) % MOD;
	return *this;
}
C1097Int& operator-=(const C1097Int& o)
{
	m_iData = (m_iData + MOD - o.m_iData) % MOD;
	return *this;
}
C1097Int  operator-(const C1097Int& o)
{
	return C1097Int((m_iData + MOD - o.m_iData) % MOD);
}
C1097Int  operator*(const C1097Int& o)const
{
	return((long long)m_iData * o.m_iData) % MOD;
}
C1097Int& operator*=(const C1097Int& o)
{
	m_iData = ((long long)m_iData * o.m_iData) % MOD;
	return *this;
}
bool operator<(const C1097Int& o)const
{
	return m_iData < o.m_iData;
}
C1097Int pow(int n)const
{
	C1097Int iRet = 1, iCur = *this;
	while (n)
	{
		if (n & 1)
		{
			iRet *= iCur;
		}
		iCur *= iCur;
		n >>= 1;
	}
	return iRet;
}
C1097Int PowNegative1()const
{
	return pow(MOD - 2);
}
int ToInt()const
{
	return m_iData;
}

private:
int m_iData = 0;;
};

template
int operator+(int iData, const C1097Int& int1097)
{
int iRet = int1097.operator+(C1097Int(iData)).ToInt();
return iRet;
}

template
int& operator+=(int& iData, const C1097Int& int1097)
{
iData = int1097.operator+(C1097Int(iData)).ToInt();
return iData;
}

template
int operator*(int iData, const C1097Int& int1097)
{
int iRet = int1097.operator*(C1097Int(iData)).ToInt();
return iRet;
}

template
int& operator*=(int& iData, const C1097Int& int1097)
{
iData = int1097.operator*(C1097Int(iData)).ToInt();
return iData;
}

template
void MinSelf(ELE* seft, const ELE& other)
{
*seft = min(*seft, other);
}

template
void MaxSelf(ELE* seft, const ELE& other)
{
*seft = max(*seft, other);
}

int GetNotRepeateNum(int len, int iHasSel)
{
if (0 == len)
{
return 1;
}
if ((0 == iHasSel) && (1 == len))
{
return 10;
}
int iRet = 1;
if (iHasSel > 0)
{
for (int tmp = 10 - iHasSel; (tmp >= 2) && len; tmp–, len–)
{
iRet *= tmp;
}
}
else
{
iRet *= 9;
len–;
for (int tmp = 9; (tmp >= 2) && len; len–, tmp–)
{
iRet *= tmp;
}
}
return iRet;
}

int GCD(int n1, int n2)
{
int t1 = min(n1, n2);
int t2 = max(n1, n2);
if (0 == t1)
{
return t2;
}
return GCD(t2 % t1, t1);
}

void CreateMaskVector(vector& v, const int* const p, int n)
{
const int iMaxMaskNum = 1 << n;
v.resize(iMaxMaskNum);
for (int i = 0; i < n; i++)
{
v[1 << i] = p[i];
}
for (int mask = 1; mask < iMaxMaskNum; mask++)
{
const int iSubMask = mask & (-mask);
v[mask] = v[iSubMask] + v[mask - iSubMask];
}
}

class CMaxLineTree
{
public:
CMaxLineTree(int iArrSize) :m_iArrSize(iArrSize), m_vData(iArrSize * 4)
{

}
//iIndex 从0开始
void Modify(int iIndex, int iValue)
{
	Modify(1, 1, m_iArrSize, iIndex + 1, iValue);
}
//iNeedQueryLeft iNeedQueryRight 从0开始
int Query(const int iNeedQueryLeft, const int iNeedQueryRight)
{
	return Query(1, 1, m_iArrSize, iNeedQueryLeft + 1, iNeedQueryRight + 1);
}
//返回第一个大于等于iMax的节点索引,没有大于等于iMax,则返回-1
int GetFirstMaxIndex(int iMax)
{
	int iNO = 1;
	if (m_vData[1] < iMax)
	{
		return -1;
	}
	int left = 1, r = m_iArrSize;
	while (r > left)
	{
		const int mid = (left + r) / 2;
		if (m_vData[iNO * 2] < iMax)
		{
			iNO = iNO * 2 + 1;
			left = mid + 1;
		}
		else
		{
			iNO *= 2;
			r = mid;
		}
	}
	return r - 1;
}

protected:
int Query(const int iTreeNodeIndex, const int iRecordLeft, const int iRecordRight, const int iNeedQueryLeft, const int iNeedQueryRight)
{
if ((iNeedQueryLeft <= iRecordLeft) && (iNeedQueryRight >= iRecordRight))
{
return m_vData[iTreeNodeIndex];
}
const int iMid = (iRecordLeft + iRecordRight) / 2;
int iRet = 0;
if (iNeedQueryLeft <= iMid)
{
iRet = Query(iTreeNodeIndex * 2, iRecordLeft, iMid, iNeedQueryLeft, iNeedQueryRight);
}
if (iNeedQueryRight > iMid)
{
iRet = max(iRet, Query(iTreeNodeIndex * 2 + 1, iMid + 1, iRecordRight, iNeedQueryLeft, iNeedQueryRight));
}
return iRet;
}
void Modify(int iTreeNodeIndex, int iLeft, int iRight, int iIndex, int iValue)
{
if (iLeft == iRight)
{
m_vData[iTreeNodeIndex] = iValue;
return;
}
const int iMid = (iLeft + iRight) / 2;
if (iIndex <= iMid)
{
Modify(iTreeNodeIndex * 2, iLeft, iMid, iIndex, iValue);
}
else
{
Modify(iTreeNodeIndex * 2 + 1, iMid + 1, iRight, iIndex, iValue);
}
m_vData[iTreeNodeIndex] = max(m_vData[iTreeNodeIndex * 2], m_vData[iTreeNodeIndex * 2 + 1]);
}
const int m_iArrSize;
std::vector m_vData;
};

class CMaxLineTreeMap
{
public:
CMaxLineTreeMap(int iArrSize) :m_iArrSize(iArrSize)
{

}
//iIndex 从0开始
void Modify(int iIndex, int iValue)
{
	Modify(1, 1, m_iArrSize, iIndex + 1, iValue);
}
//iNeedQueryLeft iNeedQueryRight 从0开始
int Query(const int iNeedQueryLeft, const int iNeedQueryRight)
{
	return Query(1, 1, m_iArrSize, iNeedQueryLeft + 1, iNeedQueryRight + 1);
}

protected:
int Query(const int iTreeNodeIndex, const int iRecordLeft, const int iRecordRight, const int iNeedQueryLeft, const int iNeedQueryRight)
{
if ((iNeedQueryLeft <= iRecordLeft) && (iNeedQueryRight >= iRecordRight))
{
return m_mData[iTreeNodeIndex];
}
const int iMid = (iRecordLeft + iRecordRight) / 2;
int iRet = 0;
if (iNeedQueryLeft <= iMid)
{
iRet = Query(iTreeNodeIndex * 2, iRecordLeft, iMid, iNeedQueryLeft, iNeedQueryRight);
}
if (iNeedQueryRight > iMid)
{
iRet = max(iRet, Query(iTreeNodeIndex * 2 + 1, iMid + 1, iRecordRight, iNeedQueryLeft, iNeedQueryRight));
}
return iRet;
}
void Modify(int iTreeNodeIndex, int iLeft, int iRight, int iIndex, int iValue)
{
if (iLeft == iRight)
{
m_mData[iTreeNodeIndex] = iValue;
return;
}
const int iMid = (iLeft + iRight) / 2;
if (iIndex <= iMid)
{
Modify(iTreeNodeIndex * 2, iLeft, iMid, iIndex, iValue);
}
else
{
Modify(iTreeNodeIndex * 2 + 1, iMid + 1, iRight, iIndex, iValue);
}
m_mData[iTreeNodeIndex] = max(m_mData[iTreeNodeIndex * 2], m_mData[iTreeNodeIndex * 2 + 1]);
}
const int m_iArrSize;
std::unordered_map<int, int> m_mData;
};

template
class CSumLineTree
{
public:
CSumLineTree(int iEleSize) :m_iEleSize(iEleSize), m_vArr(m_iEleSize * 4), m_vChildAdd(m_iEleSize * 4)
{

}
void Add(int iLeftIndex, int iRightIndex, int iValue)
{
	Add(1, 1, m_iEleSize, iLeftIndex + 1, iRightIndex + 1, iValue);
}
ELE Query(int iLeftIndex, int iRightIndex)
{
	return Query(1, 1, m_iEleSize, iLeftIndex + 1, iRightIndex + 1);
}

private:
ELE Query(int iNode, int iDataLeft, int iDataRight, int iOpeLeft, int iOpeRight)
{
if ((iOpeLeft <= iDataLeft) && (iOpeRight >= iDataRight))
{
return m_vArr[iNode];
}
Fresh(iNode, iDataLeft, iDataRight);
const int iMid = iDataLeft + (iDataRight - iDataLeft) / 2;
ELE ret(0);
if (iMid >= iOpeLeft)
{
ret += Query(iNode * 2, iDataLeft, iMid, iOpeLeft, iOpeRight);
}
if (iMid + 1 <= iOpeRight)
{
ret += Query(iNode * 2 + 1, iMid + 1, iDataRight, iOpeLeft, iOpeRight);
}
return ret;
}
/* 暴力解法
void Add(int iNode, int iDataLeft, int iDataRight, int iOpeLeft, int iOpeRight, int iValue)
{
m_vArr[iNode] += T(iValue)*(min(iDataRight, iOpeRight) - max(iDataLeft, iOpeLeft)+1);
if (iDataLeft == iDataRight)
{
return;
}
const int iMid = iDataLeft + (iDataRight - iDataLeft) / 2;
if (iMid >= iOpeLeft)
{
Add(iNode * 2, iDataLeft, iMid, iOpeLeft, iOpeRight, iValue);
}
if (iMid + 1 <= iOpeRight)
{
Add(iNode * 2 + 1, iMid + 1, iDataRight, iOpeLeft, iOpeRight, iValue);
}
}
*/
void Fresh(int iNode, int iDataLeft, int iDataRight)
{
const int iMid = iDataLeft + (iDataRight - iDataLeft) / 2;
if (m_vChildAdd[iNode] != 0)
{
Add(iNode * 2, iDataLeft, iMid, iDataLeft, iMid, m_vChildAdd[iNode]);
Add(iNode * 2 + 1, iMid + 1, iDataRight, iMid + 1, iDataRight, m_vChildAdd[iNode]);
m_vChildAdd[iNode] = 0;
}
}
//懒惰法
void Add(int iNode, int iDataLeft, int iDataRight, int iOpeLeft, int iOpeRight, int iValue)
{
m_vArr[iNode] += ELE(iValue) * (min(iDataRight, iOpeRight) - max(iDataLeft, iOpeLeft) + 1);
if ((iOpeLeft <= iDataLeft) && (iOpeRight >= iDataRight))
{
m_vChildAdd[iNode] += ELE(iValue);
return;
}

	Fresh(iNode, iDataLeft, iDataRight);
	const int iMid = iDataLeft + (iDataRight - iDataLeft) / 2;
	if (iMid >= iOpeLeft)
	{
		Add(iNode * 2, iDataLeft, iMid, iOpeLeft, iOpeRight, iValue);
	}
	if (iMid + 1 <= iOpeRight)
	{
		Add(iNode * 2 + 1, iMid + 1, iDataRight, iOpeLeft, iOpeRight, iValue);
	}
}

const int m_iEleSize;
vector<ELE> m_vArr;
vector<int> m_vChildAdd;

};

template
class CTreeArr
{
public:
CTreeArr(int iSize) :m_vData(iSize + 1)
{

}
void Add(int index, ELE value)
{
	index++;
	while (index < m_vData.size())
	{
		m_vData[index] += value;
		index += index & (-index);
	}
}
ELE Sum(int index)
{
	index++;
	ELE ret = 0;
	while (index)
	{
		ret += m_vData[index];
		index -= index & (-index);
	}
	return ret;
}
ELE Get(int index)
{
	return Sum(index) - Sum(index - 1);
}

private:
vector m_vData;
};

//iCodeNum 必须大于等于可能的字符数
template
class CHashStr {
public:
CHashStr(string s, int iCodeNum, int iCodeBegin = 1, char chBegin = ‘a’) {
m_c = s.length();
m_vP.resize(m_c + 1);
m_vP[0] = 1;
m_vHash.resize(m_c + 1);
for (int i = 0; i < m_c; i++)
{
const int P = iCodeBegin + iCodeNum;
m_vHash[i + 1] = m_vHash[i] * P + s[i] - chBegin + iCodeBegin;
m_vP[i + 1] = m_vP[i] * P;
}
}
//iMinValue将被编码为0,iMaxValue被编码为iMaxValue-iMinValue。
CHashStr(const int* data,int len, int iMinValue = 0, int iMaxValue = 9 ) {
m_c = len;
m_vP.resize(m_c + 1);
m_vP[0] = 1;
m_vHash.resize(m_c + 1);
const int P = iMaxValue - iMinValue + 1;
for (int i = 0; i < m_c; i++)
{
const int iCurCode = data[i] - iMinValue;
assert((iCurCode >= 0) && (iCurCode < P));
m_vHash[i + 1] = m_vHash[i] * P + iCurCode;
m_vP[i + 1] = m_vP[i] * P;
}
}
//包括left right
int GetHash(int left, int right)
{
return (m_vHash[right + 1] - m_vHash[left] * m_vP[right - left + 1]).ToInt();
}
inline int GetHash(int right)
{
return m_vHash[right + 1].ToInt();
}
int GetHashExincludeRight(int left, int right)
{
return (m_vHash[right ] - m_vHash[left] * m_vP[right - left ]).ToInt();
}
inline int GetHashExincludeRight(int right)
{
return m_vHash[right].ToInt();
}
int m_c;
vector<C1097Int> m_vP;
vector<C1097Int> m_vHash;
};

template
class C2HashStr
{
public:
C2HashStr(string s) {
m_pHash1 = std::make_unique<CHashStr<>>(s, 26);
m_pHash2 = std::make_unique < CHashStr>(s, 27, 0);
}
C2HashStr(const int* data, int len, int iMinValue = 0, int iMaxValue = 9)
{
m_pHash1 = std::make_unique<CHashStr<>>(data, len, iMinValue, iMaxValue);
m_pHash2 = std::make_unique < CHashStr>(data, len, iMinValue, iMaxValue);
}
//包括left right
long long GetHash(int left, int right)
{
return (long long)m_pHash1->GetHash(left, right) * (MOD2 + 1) + m_pHash2->GetHash(left, right);
}
long long GetHash(int right)
{
return (long long)m_pHash1->GetHash(right) * (MOD2 + 1) + m_pHash2->GetHash(right);
}
//包括Left,不包括Right
long long GetHashExincludeRight(int left, int right)
{
return (long long)m_pHash1->GetHashExincludeRight(left, right) * (MOD2 + 1) + m_pHash2->GetHashExincludeRight(left, right);
}
long long GetHashExincludeRight(int right)
{
return (long long)m_pHash1->GetHashExincludeRight(right) * (MOD2 + 1) + m_pHash2->GetHashExincludeRight(right);
}
private:
std::unique_ptr<CHashStr<>> m_pHash1;
std::unique_ptr<CHashStr> m_pHash2;
};

template
class CDynaHashStr {
public:
CDynaHashStr(int iCodeNum, int iCodeBegin = 1, char chBegin = ‘a’) :m_iUnit(iCodeNum + iCodeBegin), m_iP(1), m_iBegin(iCodeBegin - chBegin)
{

}
inline void push_back(const char& ch)
{
	const int iNum = ch + m_iBegin;
	m_iHash *= m_iUnit;
	m_iHash += iNum;
	m_iP *= m_iUnit;
}
inline void push_front(const char& ch)
{
	const int iNum = ch + m_iBegin;
	m_iHash += m_iP * iNum;
	m_iP *= m_iUnit;
}
inline int GetHash() const
{
	return m_iHash;
}
const int m_iUnit;
const int m_iBegin;
C1097Int<MOD> m_iHash;
C1097Int<MOD> m_iP;

};

template
class C2DynaHashStr {
public:
C2DynaHashStr(int iCodeNum, int iCodeBegin = 1, char chBegin = ‘a’)
{
m_pHash1 = new CDynaHashStr<>(iCodeNum, iCodeBegin, chBegin);
m_pHash2 = new CDynaHashStr(iCodeNum, iCodeBegin, chBegin);
}
~C2DynaHashStr()
{
delete m_pHash1;
delete m_pHash2;
}
inline void push_back(const char& ch)
{
m_pHash1->push_back(ch);
m_pHash2->push_back(ch);
}
inline void push_front(const char& ch)
{
m_pHash1->push_front(ch);
m_pHash2->push_front(ch);
}
long long Hash()const
{
return (long long)MOD2 * m_pHash1->m_iHash.ToInt() + m_pHash2->m_iHash.ToInt();
}
bool operator==(const C2DynaHashStr& other) const
{
return (m_pHash1->m_iHash.ToInt() == other.m_pHash1->m_iHash.ToInt()) && (m_pHash2->m_iHash.ToInt() == other.m_pHash2->m_iHash.ToInt());
}
CDynaHashStr<>* m_pHash1;
CDynaHashStr* m_pHash2;
};
namespace NSort
{
template
bool SortVecVec(const vector& v1, const vector& v2)
{
return v1[ArrIndex] < v2[ArrIndex];
};

template<class T >
void ShellSort(vector<T>& v)
{
	T tMax = *std::max_element(v.begin(), v.end());
	T exp = 1;
	while (tMax >= exp)
	{
		int vNums[10] = { 0 };
		for (const auto& n : v)
		{
			vNums[n / exp % 10]++;
		}
		int indexs[10] = { 0 };
		for (int i = 1; i < 10; i++)
		{
			indexs[i] = vNums[i - 1] + indexs[i-1];
		}
		vector<T> tmp(v.size());
		for (const auto& n : v)
		{
			const int cur = n / exp % 10;
			tmp[indexs[cur]] = n;
			indexs[cur]++;
		}
		v.swap(tmp);
		exp *= 10;
	}
}

template<class T,class _Pr = less<T> >
void MergeSort(vector<T>& v, const vector<T>& v1, const vector<T>& v2)
{
	int i1 = 0, i2 = 0;
	while ((i1 < v1.size()) && (i2 < v2.size()))
	{
		if (std::less()(v1[i1], v2[i2]))
		{
			v.emplace_back(v1[i1++]);
		}
		else
		{
			v.emplace_back(v2[i2++]);
		}
	}
	while (i1 < v1.size())
	{
		v.emplace_back(v1[i1++]);
	}
	while (i2 < v2.size())
	{
		v.emplace_back(v2[i2++]);
	}
}

}

namespace NCmp
{
template
bool Less(const std::pair<Class1, int>& p, Class1 iData)
{
return p.first < iData;
}

template<class Class1>
bool  Greater(const std::pair<Class1, int>& p, Class1 iData)
{
	return p.first > iData;
}

template<class _Ty1, class _Ty2>
class CLessPair
{
public:
	bool operator()(const std::pair<_Ty1, _Ty2>& p1, const std::pair<_Ty1, _Ty2>& p2)const
	{
		return p1.first < p2.first;
	}
};

template<class _Ty1, class _Ty2>
class CGreatePair
{
public:
	bool operator()(const std::pair<_Ty1, _Ty2>& p1, const std::pair<_Ty1, _Ty2>& p2)const
	{
		return p1.first > p2.first;
	}
};

}

class CIndexVector
{
public:
template
CIndexVector(vector& data)
{
for (int i = 0; i < data.size(); i++)
{
m_indexs.emplace_back(i);
}
std::sort(m_indexs.begin(), m_indexs.end(), [data](const int& i1, const int& i2)
{
return data[i1] < data[i2];
});
}
int GetIndex(int index)
{
return m_indexs[index];
}
private:
vector m_indexs;
};

class CMedian
{
public:
void AddNum(int iNum)
{
m_queTopMin.emplace(iNum);
MakeNumValid();
MakeSmallBig();
}
void Remove(int iNum)
{
if (m_queTopMax.size() && (iNum <= m_queTopMax.top()))
{
m_setTopMaxDel.insert(iNum);
}
else
{
m_setTopMinDel.insert(iNum);
}

	PopIsTopIsDel(m_queTopMin, m_setTopMinDel);
	PopIsTopIsDel(m_queTopMax, m_setTopMaxDel);
	MakeNumValid();
	MakeSmallBig();
}
double Median()
{
	const int iMaxNum = m_queTopMin.size() - m_setTopMinDel.size();
	const int iMinNum = m_queTopMax.size() - m_setTopMaxDel.size();
	if (iMaxNum > iMinNum)
	{
		return m_queTopMin.top();
	}
	return ((double)m_queTopMin.top() + m_queTopMax.top()) / 2.0;
}
template<class ELE>
void PopIsTopIsDel(ELE& que, std::unordered_multiset<int>& setTopMaxDel)
{
	while (que.size() && (setTopMaxDel.count(que.top())))
	{
		setTopMaxDel.erase(setTopMaxDel.find(que.top()));
		que.pop();
	}
}
void MakeNumValid()
{
	const int iMaxNum = m_queTopMin.size() - m_setTopMinDel.size();
	const int iMinNum = m_queTopMax.size() - m_setTopMaxDel.size();
	//确保两个队的数量
	if (iMaxNum > iMinNum + 1)
	{
		int tmp = m_queTopMin.top();
		m_queTopMin.pop();
		m_queTopMax.emplace(tmp);
		PopIsTopIsDel(m_queTopMin, m_setTopMinDel);
	}
	if (iMinNum > iMaxNum)
	{
		int tmp = m_queTopMax.top();
		m_queTopMax.pop();
		m_queTopMin.push(tmp);
		PopIsTopIsDel(m_queTopMax, m_setTopMaxDel);
	}
}
void MakeSmallBig()
{
	if (m_queTopMin.empty() || m_queTopMax.empty())
	{
		return;
	}
	while (m_queTopMin.top() < m_queTopMax.top())
	{
		const int iOldTopMin = m_queTopMin.top();
		const int iOldTopMax = m_queTopMax.top();
		m_queTopMin.pop();
		m_queTopMax.pop();
		m_queTopMin.emplace(iOldTopMax);
		m_queTopMax.emplace(iOldTopMin);
		PopIsTopIsDel(m_queTopMin, m_setTopMinDel);
		PopIsTopIsDel(m_queTopMax, m_setTopMaxDel);
	}
}
std::priority_queue<int> m_queTopMax;
std::priority_queue<int, vector<int>, greater<int>> m_queTopMin;
std::unordered_multiset<int> m_setTopMaxDel, m_setTopMinDel;

};

template
class CDistanceGrid
{
public:
CDistanceGrid(const vector<vector>& grid) :m_grid(grid), m_r(grid.size()), m_c(grid[0].size())
{

}
//单源路径 D 算法 ,时间复杂度:r*c*log(r*c)
inline int Dis(int r1, int c1, int r2, int c2)
{
	vector<vector<int>> vDis(iMaxRow, vector<int>(iMaxCol, INT_MAX));

	auto Add = [&vDis, this](std::priority_queue<pair<int, int>, vector<std::pair<int, int>>, greater<pair<int, int>>>& queCur, int iDis, int r, int c)
	{
		const int iRowColMask = iMaxCol * r + c;
		if (iDis >= vDis[r][c])
		{
			return;
		}
		queCur.emplace(iDis, iRowColMask);
		vDis[r][c] = iDis;
	};
	auto Move = [&](std::priority_queue<pair<int, int>, vector<std::pair<int, int>>, greater<pair<int, int>>>& queCur, int iDis, int r, int c)
	{
		if ((r < 0) || (r >= m_r))
		{
			return;
		}
		if ((c < 0) || (c >= m_c))
		{
			return;
		}
		if (m_grid[r][c] < 1)
		{
			return;
		}
		Add(queCur, iDis, r, c);
	};

	std::priority_queue<pair<int, int>, vector<std::pair<int, int>>, greater<pair<int, int>>> que;
	Add(que, 0, r1, c1);
	while (que.size())
	{
		const int iDis = que.top().first;
		const int iStart = que.top().second;
		que.pop();
		const int r = iStart / iMaxCol;
		const int c = iStart % iMaxCol;
		if ((r == r2) && (c == c2))
		{
			return iDis;
		}
		if (iDis > vDis[r][c])
		{
			continue;
		}

		Move(que, iDis + 1, r + 1, c);
		Move(que, iDis + 1, r - 1, c);
		Move(que, iDis + 1, r, c + 1);
		Move(que, iDis + 1, r, c - 1);
	}

	return -1;
}

private:
virtual bool IsCanMoveStatue(int r, int c)
{
return m_grid[r][c] >= 1;
}
const int m_r;
const int m_c;
const vector<vector>& m_grid;

};

class CBFSGridDist
{
public:
CBFSGridDist(const vector<vector>& bCanVisit, int r, int c) :m_bCanVisit(bCanVisit), m_r(m_bCanVisit.size()), m_c(m_bCanVisit[0].size())
{
m_vDis.assign(m_r, vector(m_c, INT_MAX / 2));
Dist(r, c);
}
bool Vilid(const int r, const int c)
{
if ((r < 0) || (r >= m_r))
{
return false;
}
if ((c < 0) || (c >= m_c))
{
return false;
}
return true;
}
const vector<vector>& Dis()const
{
return m_vDis;
}
const vector<vector>& m_bCanVisit;
private:
//INT_MAX/2 表示无法到达
void Dist(int r, int c)
{
m_vDis.assign(m_r, vector(m_c, INT_MAX / 2));
vector<vector> vHasDo(m_r, vector(m_c));
std::queue<std::pair<int, int>> que;
auto Add = [&](const int& r, const int& c, const int& iDis)
{
if (!Vilid(r, c))
{
return;
}
if (vHasDo[r][c])
{
return;
}
if (!m_bCanVisit[r][c])
{
vHasDo[r][c] = true;
return;
}
if (iDis >= m_vDis[r][c])
{
return;
}

		que.emplace(r, c);
		m_vDis[r][c] = iDis;
		vHasDo[r][c] = true;
	};
	Add(r, c, 0);
	while (que.size())
	{
		const int r = que.front().first;
		const int c = que.front().second;
		que.pop();
		const int iDis = m_vDis[r][c];
		Add(r + 1, c, iDis + 1);
		Add(r - 1, c, iDis + 1);
		Add(r, c + 1, iDis + 1);
		Add(r, c - 1, iDis + 1);
	}

}
vector<vector<int>> m_vDis;
const int m_r;
const int m_c;

};

class C2BNumTrieNode
{
public:
C2BNumTrieNode()
{
m_childs[0] = m_childs[1] = nullptr;
}
bool GetNot0Child(bool bFirstRight)
{
auto ptr = m_childs[bFirstRight];
if (ptr && (ptr->m_iNum > 0))
{
return bFirstRight;
}
return !bFirstRight;
}
int m_iNum = 0;
C2BNumTrieNode* m_childs[2];
};

template
class C2BNumTrie
{
public:
C2BNumTrie()
{
m_pRoot = new C2BNumTrieNode();
}
void Add(int iNum)
{
m_setHas.emplace(iNum);
C2BNumTrieNode* p = m_pRoot;
for (int i = iLeveNum - 1; i >= 0; i–)
{
p->m_iNum++;
bool bRight = iNum & (1 << i);
if (nullptr == p->m_childs[bRight])
{
p->m_childs[bRight] = new C2BNumTrieNode();
}
p = p->m_childs[bRight];
}
p->m_iNum++;
}
void Del(int iNum)
{
auto it = m_setHas.find(iNum);
if (m_setHas.end() == it)
{
return;
}
m_setHas.erase(it);
C2BNumTrieNode* p = m_pRoot;
for (int i = iLeveNum - 1; i >= 0; i–)
{
p->m_iNum–;
bool bRight = iNum & (1 << i);
p = p->m_childs[bRight];
}
p->m_iNum–;
}
int MaxXor(int iNum)
{
C2BNumTrieNode* p = m_pRoot;
int iRet = 0;
for (int i = iLeveNum - 1; i >= 0; i–)
{
bool bRight = !(iNum & (1 << i));
bool bSel = p->GetNot0Child(bRight);
p = p->m_childs[bSel];
if (bSel == bRight)
{
iRet |= (1 << i);
}
}
return iRet;
}
C2BNumTrieNode* m_pRoot;
std::unordered_multiset m_setHas;
};

struct SValueItem
{
SValueItem()
{

}
SValueItem(int iValue)
{
	m_iCoefficient = iValue;
}
SValueItem operator*(const SValueItem& o)const
{
	SValueItem ret(m_iCoefficient * o.m_iCoefficient);
	int i = 0, j = 0;
	while ((i < m_vVars.size()) && (j < o.m_vVars.size()))
	{
		if (m_vVars[i] < o.m_vVars[j])
		{
			ret.m_vVars.emplace_back(m_vVars[i]);
			i++;
		}
		else
		{
			ret.m_vVars.emplace_back(o.m_vVars[j]);
			j++;
		}
	}
	ret.m_vVars.insert(ret.m_vVars.end(), m_vVars.begin() + i, m_vVars.end());
	ret.m_vVars.insert(ret.m_vVars.end(), o.m_vVars.begin() + j, o.m_vVars.end());
	return ret;
}
bool operator<(const SValueItem& o)const
{
	if (m_vVars.size() == o.m_vVars.size())
	{
		return m_vVars < o.m_vVars;
	}
	return m_vVars.size() > o.m_vVars.size();
}
vector<std::string> m_vVars;
int m_iCoefficient = 1;//系数、倍率
std::string ToString()const
{
	std::ostringstream os;
	os << m_iCoefficient;
	for (const auto& s : m_vVars)
	{
		os << "*" << s;
	}
	return os.str();
}

};

struct SValue
{
SValue()
{

}
SValue(int iValue)
{
	SValueItem item;
	item.m_iCoefficient = iValue;
	m_items.emplace(item);
}
SValue(std::string strName)
{
	SValueItem item;
	item.m_vVars.emplace_back(strName);
	m_items.emplace(item);
}
SValue operator-(const SValue& o)const
{
	SValue ret;
	ret.m_items = m_items;
	for (auto it : o.m_items)
	{
		ret -= it;
	}
	return ret;
}
SValue operator+(const SValue& o)const
{
	SValue ret;
	ret.m_items = m_items;
	for (auto it : o.m_items)
	{
		ret += it;
	}
	return ret;
}
SValue operator*(const SValue& o)const
{
	SValue ret;
	for (const auto it : m_items)
	{
		for (const auto ij : o.m_items)
		{
			ret += it * ij;
		}
	}
	return ret;
}
SValue& operator+=(const SValueItem& item)
{
	auto it = m_items.find(item);
	if (m_items.end() == it)
	{
		m_items.emplace(item);
	}
	else
	{
		auto tmp = *it;
		tmp.m_iCoefficient += item.m_iCoefficient;
		m_items.erase(it);
		m_items.emplace(tmp);
	}
	return *this;
}
SValue& operator-=(const SValueItem& item)
{
	auto it = m_items.find(item);
	if (m_items.end() == it)
	{
		auto tmp = item;
		tmp.m_iCoefficient *= -1;
		m_items.emplace(tmp);
	}
	else
	{
		auto tmp = *it;
		tmp.m_iCoefficient -= item.m_iCoefficient;
		m_items.erase(it);
		m_items.emplace(tmp);
	}
	return *this;
}
vector<std::string> ToStrings()const
{
	vector<std::string> vRet;
	for (const auto& item : m_items)
	{
		if (0 == item.m_iCoefficient)
		{
			continue;
		}
		vRet.emplace_back(item.ToString());
	}
	return vRet;
}
std::set<SValueItem> m_items;

};

class CDelIndexs
{
public:
CDelIndexs()
{

}
CDelIndexs(int iSize)
{
	Init(iSize);
}
void Init(int iSize)
{
	m_bDels.assign(iSize, false);
	m_vNext.resize(iSize);
	for (int i = 0; i < iSize; i++)
	{
		m_vNext[i] = i + 1;
	}
}
void Del(int index)
{
	if ((index < 0) || (index >= m_vNext.size()))
	{
		return;
	}
	if (m_bDels[index])
	{
		return;
	}
	m_bDels[index] = true;

}
void SetCur(int index)
{
	if (index < 0)
	{
		m_iCur = m_vNext.size();
	}
	else
	{
		m_iCur = FreshCur(index);
	}
}
int NextIndex()
{
	if (m_iCur >= m_vNext.size())
	{
		return -1;
	}
	auto ret = m_iCur;
	SetCur(m_vNext[m_iCur]);
	return ret;
}

private:
int FreshCur(int index)
{
if (index >= m_vNext.size())
{
return m_vNext.size();
}
if (!m_bDels[index])
{
return index;
}

	return m_vNext[index] = FreshCur(m_vNext[index]);
}
int m_iCur = 0;
vector<bool> m_bDels;
vector<int> m_vNext;

};

class CUnionFind
{
public:
CUnionFind(int iSize) :m_vNodeToRegion(iSize)
{
for (int i = 0; i < iSize; i++)
{
m_vNodeToRegion[i] = i;
}
m_iConnetRegionCount = iSize;
}
int GetConnectRegionIndex(int iNode)
{
int& iConnectNO = m_vNodeToRegion[iNode];
if (iNode == iConnectNO)
{
return iNode;
}
return iConnectNO = GetConnectRegionIndex(iConnectNO);
}
void Union(int iNode1, int iNode2)
{
const int iConnectNO1 = GetConnectRegionIndex(iNode1);
const int iConnectNO2 = GetConnectRegionIndex(iNode2);
if (iConnectNO1 == iConnectNO2)
{
return;
}
m_iConnetRegionCount–;
if (iConnectNO1 > iConnectNO2)
{
UnionConnect(iConnectNO1, iConnectNO2);
}
else
{
UnionConnect(iConnectNO2, iConnectNO1);
}
}

bool IsConnect(int iNode1, int iNode2)
{
	return GetConnectRegionIndex(iNode1) == GetConnectRegionIndex(iNode2);
}
int GetConnetRegionCount()const
{
	return m_iConnetRegionCount;
}
vector<int> GetNodeCountOfRegion()//各联通区域的节点数量
{
	const int iNodeSize = m_vNodeToRegion.size();
	vector<int> vRet(iNodeSize);
	for (int i = 0; i < iNodeSize; i++)
	{
		vRet[GetConnectRegionIndex(i)]++;
	}
	return vRet;
}

private:
void UnionConnect(int iFrom, int iTo)
{
m_vNodeToRegion[iFrom] = iTo;
}
vector m_vNodeToRegion;//各点所在联通区域的索引,本联通区域任意一点的索引,为了增加可理解性,用最小索引
int m_iConnetRegionCount;
};

class CUnionFindMST
{
public:
CUnionFindMST(const int iNodeSize) :m_uf(iNodeSize)
{

}
void AddEdge(const int iNode1, const int iNode2, int iWeight)
{
	if (m_uf.IsConnect(iNode1, iNode2))
	{
		return;
	}
	m_iMST += iWeight;
	m_uf.Union(iNode1, iNode2);
}
void AddEdge(const vector<int>& v)
{
	AddEdge(v[0], v[1], v[2]);
}
int MST()
{
	if (m_uf.GetConnetRegionCount() > 1)
	{
		return -1;
	}
	return m_iMST;
}

private:
int m_iMST = 0;
CUnionFind m_uf;
};

class CNearestMST
{
public:
CNearestMST(const int iNodeSize) :m_bDo(iNodeSize), m_vDis(iNodeSize, INT_MAX), m_vNeiTable(iNodeSize)
{

}
void Init(const vector<vector<int>>& edges)
{
	for (const auto& v : edges)
	{
		Add(v);
	}
}
void Add(const vector<int>& v)
{
	m_vNeiTable[v[0]].emplace_back(v[1], v[2]);
	m_vNeiTable[v[1]].emplace_back(v[0], v[2]);
}
int MST(int start)
{
	int next = start;
	while ((next = AddNode(next)) >= 0);
	return m_iMST;
}
int MST(int iNode1, int iNode2, int iWeight)
{
	m_bDo[iNode1] = true;
	for (const auto& it : m_vNeiTable[iNode1])
	{
		if (m_bDo[it.first])
		{
			continue;
		}
		m_vDis[it.first] = min(m_vDis[it.first], (long long)it.second);
	}
	m_iMST = iWeight;

	int next = iNode2;
	while ((next = AddNode(next)) >= 0);
	return m_iMST;
}

private:
int AddNode(int iCur)
{
m_bDo[iCur] = true;
for (const auto& it : m_vNeiTable[iCur])
{
if (m_bDo[it.first])
{
continue;
}
m_vDis[it.first] = min(m_vDis[it.first], (long long)it.second);
}

	int iMinIndex = -1;
	for (int i = 0; i < m_vDis.size(); i++)
	{
		if (m_bDo[i])
		{
			continue;
		}
		if ((-1 == iMinIndex) || (m_vDis[i] < m_vDis[iMinIndex]))
		{
			iMinIndex = i;
		}
	}
	if (-1 != iMinIndex)
	{
		if (INT_MAX == m_vDis[iMinIndex])
		{
			m_iMST = -1;
			return -1;
		}
		m_iMST += m_vDis[iMinIndex];
	}

	return iMinIndex;
}
vector<bool> m_bDo;
vector<long long> m_vDis;
vector < vector<std::pair<int, int>>> m_vNeiTable;
long long m_iMST = 0;

};

typedef pair<long long, int> PAIRLLI;
class CDis
{
public:
static void Dis(vector& vDis, int start, const vector<vector<pair<int, int>>>& vNeiB)
{
std::priority_queue<PAIRLLI, vector, greater> minHeap;
minHeap.emplace(0, start);
while (minHeap.size())
{
const long long llDist = minHeap.top().first;
const int iCur = minHeap.top().second;
minHeap.pop();
if (-1 != vDis[iCur])
{
continue;
}
vDis[iCur] = llDist;
for (const auto& it : vNeiB[iCur])
{
minHeap.emplace(llDist + it.second, it.first);
}
}

}

};

class CNearestDis
{
public:
CNearestDis(int iSize) :m_iSize(iSize), DIS(m_vDis), PRE(m_vPre)
{

}
void Cal(int start, const vector<vector<pair<int, int>>>& vNeiB)
{
	m_vDis.assign(m_iSize, -1);
	m_vPre.assign(m_iSize, -1);
	vector<bool> vDo(m_iSize);//点是否已处理
	auto AddNode = [&](int iNode)
	{
		//const int iPreNode = m_vPre[iNode];
		long long llPreDis = m_vDis[iNode];

		vDo[iNode] = true;
		for (const auto& it : vNeiB[iNode])
		{
			if (vDo[it.first])
			{
				continue;
			}

			if ((-1 == m_vDis[it.first]) || (it.second + llPreDis < m_vDis[it.first]))
			{
				m_vDis[it.first] = it.second + llPreDis;
				m_vPre[it.first] = iNode;
			}
		}

		long long llMinDis = LLONG_MAX;
		int iMinIndex = -1;
		for (int i = 0; i < m_vDis.size(); i++)
		{
			if (vDo[i])
			{
				continue;
			}
			if (-1 == m_vDis[i])
			{
				continue;
			}
			if (m_vDis[i] < llMinDis)
			{
				iMinIndex = i;
				llMinDis = m_vDis[i];
			}
		}
		return (LLONG_MAX == llMinDis) ? -1 : iMinIndex;
	};

	int next = start;
	m_vDis[start] = 0;
	while (-1 != (next = AddNode(next)));
}
void Cal(const int start, vector<vector<int>>& edges)
{
	vector<vector<pair<int, int>>> vNeiB(m_iSize);
	for (int i = 0; i < edges.size(); i++)
	{
		const auto& v = edges[i];
		vNeiB[v[0]].emplace_back(v[1], v[2]);
		vNeiB[v[1]].emplace_back(v[0], v[2]);
	}
	Cal(start, vNeiB);
}
const vector<long long>& DIS;
const vector<int>& PRE;

private:
const int m_iSize;
vector m_vDis;//各点到起点的最短距离
vector m_vPre;//最短路径的前一点
};

class CNeiBo2
{
public:
CNeiBo2(int n, vector<vector>& edges, bool bDirect,int iBase=0)
{
m_vNeiB.resize(n);
for (const auto& v : edges)
{
m_vNeiB[v[0]- iBase].emplace_back(v[1]- iBase);
if (!bDirect)
{
m_vNeiB[v[1]- iBase].emplace_back(v[0]- iBase);
}
}
}
vector<vector> m_vNeiB;
};

class CNeiBo3
{
public:
CNeiBo3(int n, vector<vector>& edges, bool bDirect, int iBase = 0)
{
m_vNeiB.resize(n);
for (const auto& v : edges)
{
m_vNeiB[v[0] - iBase].emplace_back(v[1] - iBase,v[2]);
if (!bDirect)
{
m_vNeiB[v[1] - iBase].emplace_back(v[0] - iBase,v[2]);
}
}
}
vector<vector<std::pair<int,int>>> m_vNeiB;
};

struct SDecimal
{
SDecimal(int iNum = 0, int iDeno = 1)
{
m_iNum = iNum;
m_iDeno = iDeno;
int iGCD = GCD(abs(m_iNum), abs(m_iDeno));
m_iNum /= iGCD;
m_iDeno /= iGCD;
if (m_iDeno < 0)
{
m_iDeno = -m_iDeno;
m_iNum = -m_iNum;
}
}
SDecimal operator*(const SDecimal& o)const
{
return SDecimal(m_iNum * o.m_iNum, m_iDeno * o.m_iDeno);
}
SDecimal operator/(const SDecimal& o)const
{
return SDecimal(m_iNum * o.m_iDeno, m_iDeno * o.m_iNum);
}
SDecimal operator+(const SDecimal& o)const
{
const int iGCD = GCD(m_iDeno, o.m_iDeno);
const int iDeno = m_iDeno * o.m_iDeno / iGCD;
return SDecimal(m_iNum * (iDeno / m_iDeno) + o.m_iNum * (iDeno / o.m_iDeno), iDeno);
}
SDecimal operator-(const SDecimal& o)const
{
const int iGCD = GCD(m_iDeno, o.m_iDeno);
const int iDeno = m_iDeno * o.m_iDeno / iGCD;
return SDecimal(m_iNum * (iDeno / m_iDeno) - o.m_iNum * (iDeno / o.m_iDeno), iDeno);
}
bool operator==(const SDecimal& o)const
{
return (m_iNum == o.m_iNum) && (m_iDeno == o.m_iDeno);
}
bool operator<(const SDecimal& o)const
{
auto tmp = *this - o;
return tmp.m_iNum < 0;
}
int m_iNum = 0;//分子
int m_iDeno = 1;//分母
};

struct point {
double x, y;
point(double i, double j) :x(i), y(j) {}
};

//算两点距离
double dist(double x1, double y1, double x2, double y2) {
return sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));
}

//计算圆心
point CircleCenter(point& a, point& b, int r) {
//算中点
point mid((a.x + b.x) / 2.0, (a.y + b.y) / 2.0);
//AB距离的一半
double d = dist(a.x, a.y, mid.x, mid.y);
//计算h
double h = sqrt(r * r - d * d);
//计算垂线
point ba(b.x - a.x, b.y - a.y);
point hd(-ba.y, ba.x);
double len = sqrt(hd.x * hd.x + hd.y * hd.y);
hd.x /= len, hd.y /= len;
hd.x *= h, hd.y *= h;
return point(hd.x + mid.x, hd.y + mid.y);
}

class C01LineTree
{
public:
C01LineTree(const vector& nums) :m_iEleSize(nums.size())
{
m_arr.resize(m_iEleSize * 4);
Init(nums, 1, 1, m_iEleSize);
m_vNeedFreshChilds.assign(m_iEleSize * 4, false);
}
void Rotato(int iLeftZeroIndex, int iRightZeroIndex)
{
int iRotatoLeft = iLeftZeroIndex + 1;
int iRotatoRight = iRightZeroIndex + 1;
Rotato(1, 1, m_iEleSize, iRotatoLeft, iRotatoRight);
}
int Query()
{
return m_arr[1];
}
private:
void Rotato(int iSaveIndex, int iDataBegin, int iDataEnd, int iRotatoLeft, int iRotatoRight)
{
if ((iRotatoLeft <= iDataBegin) && (iRotatoRight >= iDataEnd))
{//整个范围需要更新
RotatoSelf(iSaveIndex, iDataBegin, iDataEnd);
return;
}

	int iMid = iDataBegin + (iDataEnd - iDataBegin) / 2;
	if (m_vNeedFreshChilds[iSaveIndex])
	{
		RotatoSelf(iSaveIndex * 2, iDataBegin, iMid);
		RotatoSelf(iSaveIndex * 2 + 1, iMid + 1, iDataEnd);
		m_vNeedFreshChilds[iSaveIndex] = false;
	}
	if (iMid >= iRotatoLeft)
	{
		Rotato(iSaveIndex * 2, iDataBegin, iMid, iRotatoLeft, iRotatoRight);
	}
	if (iMid + 1 <= iRotatoRight)
	{
		Rotato(iSaveIndex * 2 + 1, iMid + 1, iDataEnd, iRotatoLeft, iRotatoRight);
	}
	m_arr[iSaveIndex] = m_arr[iSaveIndex * 2] + m_arr[iSaveIndex * 2 + 1];
}
void RotatoSelf(int iSaveIndex, int iDataBegin, int iDataEnd)
{
	//总数量 - 翻转后0(翻转前1)的数量
	m_arr[iSaveIndex] = (iDataEnd - iDataBegin + 1) - m_arr[iSaveIndex];
	//懒惰法,标记本节点的子孙节点没更新
	m_vNeedFreshChilds[iSaveIndex] = !m_vNeedFreshChilds[iSaveIndex];
}
void Init(const vector<int>& nums, int iSaveIndex, int iDataBegin, int iDataEnd)
{
	if (iDataBegin == iDataEnd)
	{
		m_arr[iSaveIndex] = nums[iDataBegin - 1];
		return;
	}
	int iMid = iDataBegin + (iDataEnd - iDataBegin) / 2;
	Init(nums, iSaveIndex * 2, iDataBegin, iMid);
	Init(nums, iSaveIndex * 2 + 1, iMid + 1, iDataEnd);
	m_arr[iSaveIndex] = m_arr[iSaveIndex * 2] + m_arr[iSaveIndex * 2 + 1];
}
const int m_iEleSize;
vector<int> m_arr;
vector<bool> m_vNeedFreshChilds;

};

template<class ELE, class ResultType, ELE minEle, ELE maxEle>
class CLowUperr
{
public:
CLowUperr(int iResutlCount)
{
m_iResutlCount = iResutlCount;
m_vPre.assign(4, vector(iResutlCount));
}
void Init(const ELE* pLower, const ELE* pHigh, int iNum)
{
if (iNum <= 0)
{
return;
}
InitPre(pLower, pHigh);
iNum–;
while (iNum–)
{
pLower++;
pHigh++;
vector<vector> dp(4, vector(m_iResutlCount));
OnInitDP(dp);
//处理非边界
for (auto tmp = minEle; tmp <= maxEle; tmp++)
{
OnDo(dp, 0, 0, tmp - minEle);
}
//处理下边界
OnDo(dp, 1, 1, *pLower - minEle);
for (auto tmp = *pLower + 1; tmp <= maxEle; tmp++)
{
OnDo(dp, 1, 0, tmp - minEle);
}
//处理上边界
OnDo(dp, 2, 2, *pHigh - minEle);
for (auto tmp = minEle; tmp < *pHigh; tmp++)
{
OnDo(dp, 2, 0, tmp - minEle);
}
//处理上下边界
if (*pLower == *pHigh)
{
OnDo(dp, 3, 3, *pLower - minEle);
}
else
{
OnDo(dp, 3, 1, *pLower - minEle);
for (auto tmp = *pLower + 1; tmp < *pHigh; tmp++)
{
OnDo(dp, 3, 0, tmp - minEle);
}
OnDo(dp, 3, 2, *pHigh - minEle);
}
m_vPre.swap(dp);
}
}
ResultType Total(int iMinIndex, int iMaxIndex)
{
ResultType ret;
for (int status = 0; status < 4; status++)
{
for (int index = iMinIndex; index <= iMaxIndex; index++)
{
ret += m_vPre[status][index];
}
}
return ret;
}
protected:

int m_iResutlCount;
virtual void OnDo(vector<vector<ResultType>>& dp, int preStatus, int curStatus, int cur) = 0;
virtual void OnInitDP(vector<vector<ResultType>>& dp)
{

}
virtual void InitPre(const ELE* const pLower, const ELE* const pHigh)
{
	for (ELE j = *pLower; j <= *pHigh; j++)
	{
		const ELE cur = j - minEle;
		if (*pLower == j)
		{
			const int index = *pLower == *pHigh ? 3 : 1;
			if (cur < m_iResutlCount)
			{
				m_vPre[index][cur] = 1;
			}
		}
		else if (*pHigh == j)
		{
			if (cur < m_iResutlCount)
			{
				m_vPre[2][cur] = 1;
			}
		}
		else
		{
			if (cur < m_iResutlCount)
			{
				m_vPre[0][cur] = 1;
			}
		}
	}
}
vector<vector<ResultType>> m_vPre;

};

//马拉车计算回文回文
class CPalindrome
{
public:
//vOddHalfLen[i]表示 以s[i]为中心,且长度为奇数的最长回文的半长,包括s[i]
//比如:“aba” vOddHalfLen[1]为2 “abba” vEvenHalfLen[1]为2
static void CalHalfLen(vector& vOddHalfLen, vector& vEvenHalfLen, const string& s)
{
vector v;
for (const auto& ch : s)
{
v.emplace_back(ch);
v.emplace_back(‘*’);
}
v.pop_back();

	const int len = v.size();
	vector<int> vHalfLen(len);
	int center = -1, r = -1;
	//center是对称中心,r是其右边界(闭)
	for (int i = 0; i < len; i++)
	{
		int tmp = 1;
		if (i <= r)
		{
			int pre = center - (i - center);
			tmp = min(vHalfLen[pre], r - i + 1);
		}
		for (tmp++; (i + tmp - 1 < len) && (i - tmp + 1 >= 0) && (v[i + tmp - 1] == v[i - tmp + 1]); tmp++);
		vHalfLen[i] = --tmp;
		const int iNewR = i + tmp - 1;
		if (iNewR > r)
		{
			r = iNewR;
			center = i;
		}
	}

	vOddHalfLen.resize(s.length());
	vEvenHalfLen.resize(s.length());
	for (int i = 0; i < len; i++)
	{
		if (i & 1)
		{
			vEvenHalfLen[i / 2] = vHalfLen[i] / 2;

		}
		else
		{
			vOddHalfLen[i / 2] = (vHalfLen[i] + 1) / 2;
		}
	}
}

//vOddLen[i]表示以i开始,奇数长度 最长回文
//vEvenLen[i]表示以i开始,偶数长度 最长回文
static void  CalLen(vector<int>& vOddLen, vector<int>& vEvenLen, const string& s)
{
	vector<char> v;
	for (const auto& ch : s)
	{
		v.emplace_back(ch);
		v.emplace_back('*');
	}
	v.pop_back();

	const int len = v.size();
	vector<int> vHalfLen(len);
	int center = -1, r = -1;
	//center是对称中心,r是其右边界(闭)
	for (int i = 0; i < len; i++)
	{
		int tmp = 1;
		if (i <= r)
		{
			int pre = center - (i - center);
			tmp = min(vHalfLen[pre], r - i + 1);
		}
		for (tmp++; (i + tmp - 1 < len) && (i - tmp + 1 >= 0) && (v[i + tmp - 1] == v[i - tmp + 1]); tmp++);
		vHalfLen[i] = --tmp;
		const int iNewR = i + tmp - 1;
		if (iNewR > r)
		{
			r = iNewR;
			center = i;
		}
	}

	vOddLen.resize(s.length());
	vEvenLen.resize(s.length());
	for (int i = 0; i < len; i++)
	{
		const int iHalfLen = (i & 1) ? (vHalfLen[i] / 2) : ((vHalfLen[i] + 1) / 2);
		const int left = i / 2 - iHalfLen + 1;
		if (i & 1)
		{
			vEvenLen[left] = vHalfLen[i] / 2*2;
		}
		else
		{
			vOddLen[left] = (vHalfLen[i] + 1) / 2*2-1;
		}
	}
}

};
//使用实例
//vector vOddHalfLen, vEvenHalfLen;
//CPalindrome::Do(vOddHalfLen, vEvenHalfLen, s);

class CKMP
{
public:
static vector Next(const string& s)
{
const int len = s.length();
vector vNext(len, -1);
for (int i = 1; i < len; i++)
{
int next = vNext[i - 1];
while ((-1 != next) && (s[next + 1] != s[i]))
{
next = vNext[next];
}
vNext[i] = next + (s[next + 1] == s[i]);
}
return vNext;
}
};

template
class CMergeSortIndex
{
public:
CMergeSortIndex(const vector& nums) :m_nums(nums)
{
m_c = nums.size();
m_vIndexs.resize(nums.size());
iota(m_vIndexs.begin(), m_vIndexs.end(), 0);
}
void SortIndex(int left, int right)
{
if (right - left <= 1)
{
return;
}
const int mid = left + (right - left) / 2;
SortIndex(left, mid);
SortIndex(mid, right);
OnSortLeftRightEnd(left, mid, right);
//nums的[left,mid) 和[mid,right)分别排序
m_vSortIndexs.clear();
int i1 = left, i2 = mid;
while ((i1 < mid) && (i2 < right))
{
if (m_nums[m_vIndexs[i1]] > m_nums[m_vIndexs[i2]])
{
m_vSortIndexs.emplace_back(m_vIndexs[i2++]);
}
else
{
m_vSortIndexs.emplace_back(m_vIndexs[i1]);
OnAdd1(i1++, i2, left, mid, right);
}
}
while (i1 < mid)
{
m_vSortIndexs.emplace_back(m_vIndexs[i1]);
OnAdd1(i1++, i2, left, mid, right);
}
while (i2 < right)
{
m_vSortIndexs.emplace_back(m_vIndexs[i2++]);
}
for (int i = 0; i < m_vSortIndexs.size(); i++)
{
m_vIndexs[i + left] = m_vSortIndexs[i];
}
}
vector Sort()
{
SortIndex(0, m_c);
vector vRet(m_c);
for (int i = 0; i < m_c; i++)
{
vRet[i] = m_nums[m_vIndexs[i]];
}
return vRet;
}
protected:
virtual void OnSortLeftRightEnd(int left, int mid, int right)
{

}
virtual void OnAdd1(int i1, int i2, int left, int mid, int right)
{

}
int m_c;
const vector<T>& m_nums;
vector<int> m_vIndexs;
vector<int> m_vSortIndexs;

};

template<class T = int, class _Pr = std::less >
class CTopK
{
public:
CTopK(int k) :m_iMinNum(k)
{

}
void Do(vector<T>& m_v, T* begin, int num)
{
	for (; num; begin++, num--)
	{
		while (m_v.size() && _Pr()(*begin, m_v.back()) && (m_iMinNum - m_v.size() + 1 <= num))
		{
			m_v.pop_back();
		}
		if (m_v.size() < m_iMinNum)
		{
			m_v.push_back(*begin);
		}
	}
}

protected:
const int m_iMinNum;
};

class CUnionFindDirect
{
public:
CUnionFindDirect(int iSize)
{
m_vRoot.resize(iSize);
iota(m_vRoot.begin(), m_vRoot.end(), 0);
}
void Connect(bool& bConflic, bool& bCyc, int iFrom, int iTo)
{
bConflic = bCyc = false;
if (iFrom != m_vRoot[iFrom])
{
bConflic = true;
}

	Fresh(iTo);
	if (m_vRoot[iTo] == iFrom)
	{
		bCyc = true;
	}
	if (bConflic || bCyc)
	{
		return;
	}

	m_vRoot[iFrom] = m_vRoot[iTo];
}

private:
int Fresh(int iNode)
{
if (m_vRoot[iNode] == iNode)
{
return iNode;
}
return m_vRoot[iNode] = Fresh(m_vRoot[iNode]);
}
vector m_vRoot;
};

#define MACRO_BEGIN_END(n) n.begin(),n.end()

#define MacroTopSort(que,vNeiBo)
while (que.size())
{
const int cur = que.front();
que.pop();
for (const auto& next : vNeiBo[cur])
{
vDeg[next]–;
if (1 == vDeg[next])
{

}
}
}

#define Macro2DBFS(queRowCol,m_r,m_c)
queue<pair<int, int>> queRowCol;
vector<vector> vDis(m_r, vector(m_c, -1));
while (queRowCol.size())
{
const auto [r, c] = queRowCol.front();
queRowCol.pop();
auto Move = [&vDis, &queRowCol, this](int r, int c, int iDis)
{
if ((r < 0) || (r >= m_r))
{
return;
}
if ((c < 0) || (c >= m_c))
{
return;
}
if (-1 != vDis[r][c])
{
return;
}
vDis[r][c] = iDis;
queRowCol.emplace(r, c);
};
const int iDis = vDis[r][c] + 1;
Move(r + 1, c, iDis);
Move(r - 1, c, iDis);
Move(r, c + 1, iDis);
Move(r, c - 1, iDis);
}

/*
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
TreeNode(int x, int iLeft) : val(x), left(new TreeNode(iLeft)), right(nullptr) {}
TreeNode(int x, int iLeft, int iRghit) : val(x), left(new TreeNode(iLeft)), right(new TreeNode(iRghit)) {}
};

namespace NTree
{
TreeNode* Init(const vector& nums, int iNull = 10000)
{
if (0 == nums.size())
{
return nullptr;
}
vector<TreeNode*> ptrs(nums.size() + 1), ptrParent(1);
for (int i = 0; i < nums.size(); i++)
{
if (iNull == nums[i])
{
continue;
}
const int iNO = i + 1;
ptrs[iNO] = new TreeNode(nums[i]);
ptrParent.emplace_back(ptrs[iNO]);
if (1 == iNO)
{
continue;
}
if (iNO & 1)
{//奇数是右支
ptrParent[iNO / 2]->right = ptrs[iNO];
}
else
{
ptrParent[iNO / 2]->left = ptrs[iNO];
}
}
return ptrs[1];
}
}
*/

class Solution {
public:
int countPalindromicSubsequences(string s) {
m_c = s.length();
memset(m_bres, 0, sizeof(m_bres));
m_res.assign(m_c, vector<C1097Int<>>(m_c));
for (int i = 0; i < m_c; i++)
{
m_indexs[s[i] - ‘a’].emplace_back(i);
}
return (Rec(0, m_c - 1)-1).ToInt();
}
C1097Int<> Rec(int left, int r)
{
if (r < left)
{
return 1;
}
if (m_bres[left][r])
{
return m_res[left][r];
}
C1097Int<> biRet=1;
for (int i = 0; i < 4; i++)
{
auto it = std::lower_bound(m_indexs[i].begin(), m_indexs[i].end(), left);
auto ij = std::upper_bound(m_indexs[i].begin(), m_indexs[i].end(), r);
int iNum = ij - it;
if (0 == iNum)
{
continue;
}
biRet += 1;
if (iNum < 2)
{
continue;
}
ij–;
biRet += Rec(*it + 1, *ij - 1);
}
m_bres[left][r] = true;
return m_res[left][r] = biRet;
}

vector<vector<C1097Int<>>> m_res;
bool m_bres[1000][1000];
int m_c;
vector<int> m_indexs[4];

};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1395797.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

PGSQL主键序列

PostgreSQL和 MySQL数据库还是有一定的区别。 下面了解一下 PGSQL的主键序列。 一、主键 1、系统自带主键序列 在 PostgreSQL 中&#xff0c;GENERATED BY DEFAULT 和 GENERATED ALWAYS 是用于定义自动生成的列&#xff08;Generated Column&#xff09;的选项。一般可作用…

可达性分析

可达性分析 这个算法的基本思路就是通过 一系列称为“GC Roots”的根对象作为起始节点集&#xff0c;从这些节点开始&#xff0c;根据引用关系向下搜索&#xff0c;搜索过 程所走过的路径称为“引用链”&#xff08;Reference Chain&#xff09;&#xff0c;如果某个对象到GC …

数学建模--比赛

内容来自数学建模BOOM&#xff1a;【快速入门】北海&#xff1a;数模建模基础MATLAB入门论文写作数学模型与算法(推荐数模美赛国赛小白零基础必看教程)_哔哩哔哩_bilibili 目录 1.学习内容 2.参赛须知 1&#xff09;参赛作品的组成 2)参赛作品的提交 3.软件安装 4.注意…

Electron中苹果支付 Apple Pay inAppPurchase 内购支付

正在开发中&#xff0c;开发好了&#xff0c;写一个完整详细的过程&#xff0c;保证无脑集成即可 一、先创建一个App 一般情况下&#xff0c;在你看这篇文章的时候&#xff0c;说明你已经开发的app差不多了。 但是要上架app到Mac App Store&#xff0c;则要在appstoreconnect…

pyspark 笔记:窗口函数window

窗口函数相关的概念和基本规范可以见&#xff1a;pyspark笔记&#xff1a;over-CSDN博客 1 创建Pyspark dataFrame from pyspark.sql.window import Window import pyspark.sql.functions as F employee_salary [("Ali", "Sales", 8000),("Bob&qu…

UI自动化Selenium 无头模式运行

1、导入浏览器参数设置 from selenium.webdriver.chrome.options import Options 2、创建参数&#xff0c;并使用无厘头模式创建driver对象 opt Options() # 新建参数对象 opt.add_argument("--headless") # 无头 self.driver webdriver.Chrome(optionsopt) …

【数据结构】哈希表详解,举例说明 java中的 HashMap、HashTable及其区别

一、哈希表&#xff08;Hash Table&#xff09;简介&#xff1a; 哈希表是一种数据结构&#xff0c;用于实现字典或映射等抽象数据类型。它通过把关键字映射到表中的一个位置来实现快速的数据检索。哈希表的基本思想是利用哈希函数将关键字映射到数组的索引位置上&#xff0c;…

四款免费、易用的Docker漏洞扫描工具

本文向您介绍四种既可以扫描Docker镜像中的漏洞&#xff0c;又能够被轻松地集成到CI/CD中的四种免费实用工具。 基本原理 所有这些工具的工作原理都比较类似。它们使用的是如下两步流程&#xff1a; 生成软件物料清单(Software Bill of Materials&#xff0c;SBOM)。将SBOM与…

USB PHY for FPGA layout

https://blog.csdn.net/qq_41904778/article/details/123967670 ZYNQ7000内部没有USB PYH&#xff0c;我们通过USB 3320 PHY 芯片来连接FPGA 和外部的USB端口&#xff08;DP & DP-&#xff09;。USB 3320 PHY跟FPGA内部是t通过ULPI接口试下的&#xff0c;然后把数据转化为…

windows下编译报‘mutex‘ in namespace ‘std‘ does not name a type的解决方案

问题复述&#xff1a; windows下使用MinGW编译工程时&#xff0c;报如下错误&#xff1a; error: ‘mutex’ in namespace ‘std’ does not name a type error: ‘mutex’ is not a member of ‘std’ error: ‘mutex’ was not declared in this scope 问题分析&#xff…

C#,字符串匹配(模式搜索)Sunday算法的源代码

Sunday算法是Daniel M.Sunday于1990年提出的一种字符串模式匹配算法。 核心思想&#xff1a;在匹配过程中&#xff0c;模式串并不被要求一定要按从左向右进行比较还是从右向左进行比较&#xff0c;它在发现不匹配时&#xff0c;算法能跳过尽可能多的字符以进行下一步的匹配&…

跨域原理和解决方案

前置知识 什么是跨域 主要是由于浏览器的同源策略引起的&#xff0c;同源策略是浏览器的安全机制&#xff0c;当 协议&#xff0c;域名&#xff0c;端口 三者有一个不同&#xff0c;浏览器就禁止访问资源。 比如&#xff1a;http://www.company.com:80 http://www.company.…

chatgpt的实用技巧四temperature 格式

四、temperature 格式 GPT3.5 temperature 的范围为&#xff1a;0-0.7&#xff1b; GPT4.0 temperature 的范围为&#xff1a;0-1&#xff1b; 当 temperature 为 0 时候&#xff0c;结果可稳定。 当 temperature 为 0.7/1 时候&#xff0c;结果发散具备创力。 数值越大&a…

【动态规划】24子数组系列_最长湍流子数组_C++

题目链接&#xff1a;最长湍流子数组 目录 题目解析&#xff1a; 算法原理 1.状态表示 2.状态转移方程 3.初始化 4.填表顺序 5.返回值 编写代码 题目解析&#xff1a; 题目让我们求返回 arr 的 最大湍流子数组的长度 由题可得&#xff1a; 如果比较符号在子数组中的…

使用 ClassFinal 对SpringBoot jar加密加固并进行机器绑定

写在前面&#xff1a;各位看到此博客的小伙伴&#xff0c;如有不对的地方请及时通过私信我或者评论此博客的方式指出&#xff0c;以免误人子弟。多谢&#xff01;如果我的博客对你有帮助&#xff0c;欢迎进行评论✏️✏️、点赞&#x1f44d;&#x1f44d;、收藏⭐️⭐️&#…

告别繁琐配置!JVS低代码逻辑引擎让你轻松实现高效数据处理

在当今高度数字化的世界中&#xff0c;逻辑引擎作为数据处理和业务逻辑的核心组件&#xff0c;其重要性不言而喻。它不仅关乎企业数据的准确处理&#xff0c;还影响着业务决策的效率和准确性。为了确保逻辑引擎的正常运行和准确性&#xff0c;配置和测试环节显得尤为重要。 本…

【技术】MySQL数据读写分离怎么实现

、概念&#xff1a; MySQL数据读写分离是存储数据的一种服务架构执行select命令必须连接 slave角色服务器执行insert命令必须连接 maste角色服务器提供数据读写分离功能的中间件软件有&#xff1a; mysql-proxy maxscale mycat拓扑架构只支持一主一从或者一主多从架构 二、实…

Docker搭建MySQL主从数据库-亲测有效

1、测试环境概述 1、使用MySQL5.7.35版本 2、使用Centos7操作系统 3、使用Docker20版本 案例中描述了整个测试的详细过程 2、安装Docker 2.1、如果已经安装docker,可以先卸载 yum remove -y docker \ docker-client \ docker-client-latest \ docker-common \ docker-l…

Spring-BeanPostProcessor PostConstruct init InitializingBean 执行顺序

执行顺序探究 新建一个对象用于测试 Component public class Student implements InitializingBean {private String name;private int age;public String getName() {return name;}public void setName(String name) {this.name name;}public int getAge() {return age;}pu…

Red Hat Enterprise Linux 7.9 安装图解

引导和开始安装 选择倒计时结束前&#xff0c;通过键盘上下键选择下图框选项&#xff0c;启动图形化安装过程。 安装语言选择 这里要区分一下&#xff0c;当前选中的语言作为安装过程中安装器所使用的语言&#xff0c;这里我们选择中文简体。不过细心的同学可能发现&#xff0c…