竞赛保研 大数据房价预测分析与可视

news2024/12/27 0:05:20

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 大数据房价预测分析与可视

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

Ames数据集包含来自Ames评估办公室的2930条记录。
该数据集具有23个定类变量,23个定序变量,14个离散变量和20个连续变量(以及2个额外的观察标识符) - 总共82个特征。
可以在包含的codebook.txt文件中找到每个变量的说明。
该信息用于计算2006年至2010年在爱荷华州艾姆斯出售的个别住宅物业的评估价值。实际销售价格中增加了一些噪音,因此价格与官方记录不符。

分别分为训练和测试集,分别为2000和930个观测值。 在测试集中保留实际销售价格。 此外,测试数据进一步分为公共和私有测试集。

本次练习需要围绕以下目的进行:

  • 理解问题 : 观察每个变量特征的意义以及对于问题的重要程度
  • 研究主要特征 : 也就是最终的目的变量----房价
  • 研究其他变量 : 研究其他多变量对“房价”的影响的他们之间的关系
  • 基础的数据清理 : 对一些缺失数据、异常点和分类数据进行处理
  • 拟合模型: 建立一个预测房屋价值的模型,并且准确预测房价

在这里插入图片描述

2 导入相关的数据

1.导入相关的python包




​    
​    import numpy as np
​    

import pandas as pd
from pandas.api.types import CategoricalDtype

%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn import linear_model as lm
from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold

# Plot settings

plt.rcParams['figure.figsize'] = (12, 9)
plt.rcParams['font.size'] = 12

2. 导入训练数据集和测试数据集




​    
​    training_data = pd.read_csv("ames_train.csv")
​    test_data = pd.read_csv("ames_test.csv")
​    pd.set_option('display.max_columns', None)#显示所有行
​    pd.set_option('display.max_rows', None)#设置value的显示长度为100,默认为50
​    pd.set_option('max_colwidth',100)
​    training_data.head(7)

在这里插入图片描述

3 观察各项主要特征与房屋售价的关系

该数据集具有46个类别型变量,34个数值型变量,整理到excel表格中,用于筛选与房价息息相关的变量。从中筛选出以下几个与房价相关的变量:

类别型变量:

  • Utilities : 可用设施(电、天然气、水)

  • Heating (Nominal): 暖气类型

  • Central Air (Nominal): 是否有中央空调

  • Garage Type (Nominal): 车库位置

  • Neighborhood (Nominal): Ames市区内的物理位置(地图地段)

  • Overall Qual (Ordinal): 评估房屋的整体材料和光洁度

数值型变量:

  • Lot Area(Continuous):地皮面积(平方英尺)

  • Gr Liv Area (Continuous): 地面以上居住面积平方英尺

  • Total Bsmt SF (Continuous): 地下面积的总面积

  • TotRmsAbvGrd (Discrete): 地面上全部房间数目

分析最重要的变量"SalePrice"

    training_data['SalePrice'].describe()

在这里插入图片描述

从上面的描述性统计可以看出房价的平均值、标准差、最小值、25%分位数、50%分位数、75%分位数、最大值等,并且SalePrice没有无效或者其他非数值的数据。

    
    #绘制"SalePrice"的直方图
    sns.distplot(training_data['SalePrice'])
    #计算峰度和偏度
    print("Skewness: %f" % training_data['SalePrice'].skew())
    print("Kurtosis: %f" % training_data['SalePrice'].kurt())

在这里插入图片描述

从直方图中可以看出"SalePrice"成正态分布,峰度为4.838055,偏度为1.721408,比正态分布的高峰更加陡峭,偏度为右偏,长尾拖在右边。

2.类别型变量

(1)Utilities与SalePrice

Utilities (Ordinal): Type of utilities available

AllPub All public Utilities (E,G,W,& S)

NoSewr Electricity, Gas, and Water (Septic Tank)

NoSeWa Electricity and Gas Only

ELO Electricity only




​    
​    #类别型变量#1.Utilities 
​    var = 'Utilities'
​    data = pd.concat([training_data['SalePrice'], training_data[var]], axis=1)
​    fig = sns.boxplot(x=var, y="SalePrice", data=data)
​    fig.axis(ymin=0, ymax=800000)

在这里插入图片描述

从图中可以看出,配备全套设施(水、电、天然气)的房子价格普遍偏高

(2)Heating与SalePrice

Heating (Nominal): Type of heating

Floor Floor Furnace

GasA Gas forced warm air furnace

GasW Gas hot water or steam heat

Grav Gravity furnace

OthW Hot water or steam heat other than gas

Wall Wall furnace




​    
​    #2.Heating
​    var = 'Heating'
​    data = pd.concat([training_data['SalePrice'], training_data[var]], axis=1)
​    fig = sns.boxplot(x=var, y="SalePrice", data=data)
​    fig.axis(ymin=0, ymax=800000)

在这里插入图片描述

从图中可以看出拥有GasA、GasW的房子价格较高,并且有GasA的房子价格变动较大,房屋价格较高的房子一般都有GasA制暖装置。

(3)Central_Air与SalePrice

#3.Central_Air
​    var = 'Central_Air'
​    data = pd.concat([training_data['SalePrice'], training_data[var]], axis=1)
​    fig = sns.boxplot(x=var, y="SalePrice", data=data)
​    fig.axis(ymin=0, ymax=800000)



在这里插入图片描述

由中央空调的房子能给用户更好的体验,因此一般价格较高,房屋价格较高的房子一般都有中央空调。

(4)Gabage_type与SalePrice

Garage Type (Nominal): Garage location

2Types More than one type of garage

Attchd Attached to home

Basment Basement Garage

BuiltIn Built-In (Garage part of house - typically has room above garage)

CarPort Car Port

Detchd Detached from home

NA No Garage

    
    #4.Gabage_type
    var = 'Garage_Type'
    data = pd.concat([training_data['SalePrice'], training_data[var]], axis=1)
    fig = sns.boxplot(x=var, y="SalePrice", data=data)
    fig.axis(ymin=0, ymax=800000)

在这里插入图片描述

车库越便捷,一般房屋价格越高,临近房屋以及房屋内置的车库这两种价格较高。

(5)Neighborhood与SalePrice

Neighborhood为房屋位于Ames市内的具体的地段,越临近繁华市区、旅游风景区、科技园区、学园区的房屋,房屋价格越贵




​    
​    #5.Neighborhood
​    fig, axs = plt.subplots(nrows=2)
​    

    sns.boxplot(
        x='Neighborhood',
        y='SalePrice',
        data=training_data.sort_values('Neighborhood'),
        ax=axs[0]
    )
    
    sns.countplot(
        x='Neighborhood',
        data=training_data.sort_values('Neighborhood'),
        ax=axs[1]
    )
    
    # Draw median price
    axs[0].axhline(
        y=training_data['SalePrice'].median(), 
        color='red',
        linestyle='dotted'
    )
    
    # Label the bars with counts
    for patch in axs[1].patches:
        x = patch.get_bbox().get_points()[:, 0]
        y = patch.get_bbox().get_points()[1, 1]
        axs[1].annotate(f'{int(y)}', (x.mean(), y), ha='center', va='bottom')
        
    # Format x-axes
    axs[1].set_xticklabels(axs[1].xaxis.get_majorticklabels(), rotation=90)
    axs[0].xaxis.set_visible(False)
    
    # Narrow the gap between the plots
    plt.subplots_adjust(hspace=0.01)



在这里插入图片描述

从上图结果可以看出,我们训练数据集中Neighborhood这一列数据不均匀,NAmes有299条数据,而Blueste只有4条数据,Gilbert只有6条数据,GmHill只有2条数据,这样造成数据没那么准确。

(6)Overall Qual 与SalePrice

总体评价越高,应该房屋的价格越高

    
    #Overall Qual 
    var = 'Overall_Qual'
    data = pd.concat([training_data['SalePrice'], training_data[var]], axis=1)
    fig = sns.boxplot(x=var, y="SalePrice", data=data)
    fig.axis(ymin=0, ymax=800000)

在这里插入图片描述

3.数值型变量

(1) Lot Area与SalePrice

    #数值型变量
    #1.Lot Area
    sns.jointplot(
        x='Lot_Area', 
        y='SalePrice', 
        data=training_data,
        stat_func=None,
        kind="reg",
        ratio=4,
        space=0,
        scatter_kws={
            's': 3,
            'alpha': 0.25
        },
        line_kws={
            'color': 'black'
        }
    )

在这里插入图片描述

看起来没有什么明显的趋势,散点图主要集中在前半部分,不够分散

(2)Gr_Liv_Area与SalePrice

Gr_Liv_Area代表建筑在土地上的房屋的面积

猜测两者应该成正相关,即房屋面积越大,房屋的价格越高

    sns.jointplot(
        x='Gr_Liv_Area', 
        y='SalePrice', 
        data=training_data,
        stat_func=None,
        kind="reg",
        ratio=4,
        space=0,
        scatter_kws={
            's': 3,
            'alpha': 0.25
        },
        line_kws={
            'color': 'black'
        }
    )

在这里插入图片描述

结果:两者的确呈现正相关的线性关系,发现Gr_ Liv _ Area中有处于5000以上的异常值

编写函数,将5000以上的Gr_ Liv _ Area异常值移除




​    
​    def remove_outliers(data, variable, lower=-np.inf, upper=np.inf):"""
​        Input:
​          data (data frame): the table to be filtered
​          variable (string): the column with numerical outliers
​          lower (numeric): observations with values lower than this will be removed
​          upper (numeric): observations with values higher than this will be removed
​        

        Output:
          a winsorized data frame with outliers removed
        """
        data=data[(data[variable]>lower)&(data[variable]



再次绘图

在这里插入图片描述

两者的确呈现正相关的线性关系

(3)Total_Bsmt_SF与SalePrice

#3.Total Bsmt SF
​    sns.jointplot(
​        x='Total_Bsmt_SF', 
​        y='SalePrice', 
​        data=training_data,
​        stat_func=None,
​        kind="reg",
​        ratio=4,
​        space=0,
​        scatter_kws={'s': 3,'alpha': 0.25},
​        line_kws={'color': 'black'})



在这里插入图片描述

(4)TotRms_AbvGrd与SalePrice

   
    #4.TotRmsAbvGrd
    sns.jointplot(
        x='TotRms_AbvGrd', 
        y='SalePrice', 
        data=training_data,
        stat_func=None,
        kind="reg",
        ratio=4,
        space=0,
        scatter_kws={
            's': 3,
            'alpha': 0.25
        },
        line_kws={
            'color': 'black'
        }
    )

在这里插入图片描述

4. 绘制相关性矩阵

    
    #绘制相关性矩阵
    corrmat = training_data.corr()
    f, ax = plt.subplots(figsize=(40, 20))
    sns.heatmap(corrmat, vmax=0.8,square=True,cmap="PiYG",center=0.0)

在这里插入图片描述

其中数值型变量中,Overall_Qual(房屋的整体评价) 、Year_Built(房屋建造年份)、Year_Remod/Add(房屋整修年份)、Mas
Vnr Area(房屋表层砌体模型)、Total_ Bsmt _ SF(地下总面积)、1stFlr_SF(一楼总面积) Gr_ L
iv_Area(地上居住面积)、Garage_Cars (车库数量)、Garage_Area(车库面积)都与呈正相关

最后从Year_Built(房屋建造年份)、Year_Remod/Add(房屋整修年份)中选取Year_Built,从1stFlr_SF(一楼总面积)
Gr_ L iv_Area(地上居住面积)中选取Gr_ L iv_Area,从Garage_Cars
(车库数量)、Garage_Area(车库面积)中选取Garage_Cars (车库数量)。

6. 拟合模型

sklearn中的回归有多种方法,广义线性回归集中在linear_model库下,例如普通线性回归、Lasso、岭回归等;另外还有其他非线性回归方法,例如核svm、集成方法、贝叶斯回归、K近邻回归、决策树回归、随机森林回归方法等,通过测试各个算法的

(1)加载相应包




​    
​    #拟合数据from sklearn import preprocessing
​    from sklearn import linear_model, svm, gaussian_process
​    from sklearn.ensemble import RandomForestRegressor
​    from sklearn.cross_validation import train_test_split
​    import numpy as np

(2)查看各列缺失值

    
      #查看各列缺失值
        print(training_data.Overall_Qual.isnull().any())
        print(training_data.Gr_Liv_Area.isnull().any())
        print(training_data.Garage_Cars.isnull().any())
        print(training_data.Total_Bsmt_SF.isnull().any())
        print(training_data.Year_Built.isnull().any())
        print(training_data.Mas_Vnr_Area.isnull().any())

发现Total_Bsmt_SF和Mas_Vnr_Area两列有缺失值




​    
​       #用均值填补缺失值
​        training_data.Total_Bsmt_SF=training_data.Total_Bsmt_SF.fillna(training_data.Total_Bsmt_SF.mean())
​        training_data.Mas_Vnr_Area=training_data.Mas_Vnr_Area.fillna(training_data.Mas_Vnr_Area.mean())print(training_data.Total_Bsmt_SF.isnull().any())print(training_data.Mas_Vnr_Area.isnull().any())

(3)拟合模型

# 获取数据from sklearn import metrics
​        cols = ['Overall_Qual','Gr_Liv_Area', 'Garage_Cars','Total_Bsmt_SF', 'Year_Built','Mas_Vnr_Area']
​        x = training_data[cols].values
​        y = training_data['SalePrice'].values
​        X_train,X_test, y_train, y_test = train_test_split(x, y, test_size=0.33, random_state=42)
​        

        clf = RandomForestRegressor(n_estimators=400)
        clf.fit(X_train, y_train)
        y_pred = clf.predict(X_test)
        计算MSE:
        print(metrics.mean_squared_error(y_test,y_pred))



(4)绘制预测结果的散点图




​    
​    import numpy as np
​    x = np.random.rand(660)
​    plt.scatter(x,y_test, alpha=0.5)
​    plt.scatter(x,y_pred, alpha=0.5,color="G")

在这里插入图片描述

(5)加载测试集数据

    
    test_data=pd.read_csv("ames_test.csv")
    test_data.head(5)

在这里插入图片描述

查看缺失值

    
    #查看各列缺失值
    print(test_data.Overall_Qual.isnull().any())
    print(test_data.Gr_Liv_Area.isnull().any())
    print(test_data.Garage_Cars.isnull().any())
    print(test_data.Total_Bsmt_SF.isnull().any())
    print(test_data.Year_Built.isnull().any())
    print(test_data.Mas_Vnr_Area.isnull().any())

    
    #用均值填补缺失值
    test_data.Garage_Cars=training_data.Garage_Cars.fillna(training_data.Garage_Cars.mean())
    print(test_data.Garage_Cars.isnull().any())

(6)预测测试集的房价

#预测
​        cols = ['Overall_Qual','Gr_Liv_Area', 'Garage_Cars','Total_Bsmt_SF', 'Year_Built','Mas_Vnr_Area']
​        x_test_value= test_data[cols].values
​        test_pre=clf.predict(x_test_value)#写入文件
​        prediction = pd.DataFrame(test_pre, columns=['SalePrice'])
​        result = pd.concat([test_data['Id'], prediction], axis=1)
​        result.to_csv('./Predictions.csv', index=False)
​    

      test_data.Garage_Cars=training_data.Garage_Cars.fillna(training_data.Garage_Cars.mean())
        print(test_data.Garage_Cars.isnull().any())



(6)预测测试集的房价




​    
​    #预测
​    cols = ['Overall_Qual','Gr_Liv_Area', 'Garage_Cars','Total_Bsmt_SF', 'Year_Built','Mas_Vnr_Area']
​    x_test_value= test_data[cols].values
​    test_pre=clf.predict(x_test_value)#写入文件
​    prediction = pd.DataFrame(test_pre, columns=['SalePrice'])
​    result = pd.concat([test_data['Id'], prediction], axis=1)
​    result.to_csv('./Predictions.csv', index=False)

4 最后

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

[https://gitee.com/dancheng-senior/postgraduate](

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1394117.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何保证HUAWEI交换机成功使用ssh登录?

1)telnet 部分配置4行 telnet server enable telnet server-source all-interface local-user admin service-type telnet ssh stelnet server enable 2)ssh local-user admin service-type telnet ssh ssh server-source all-interface ssh server c…

Windows pip install -r requirements.txt 太慢

目录 解决方案一: 解决方案二: 下载单个包时切换源: 解决方案一: 1、在虚拟环境中切换下载的源: pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple 2、当出现有pip.txt文件写入时&…

解决springboot启动报Failed to start bean ‘subProtocolWebSocketHandler‘;

解决springboot启动报 Failed to start bean subProtocolWebSocketHandler; nested exception is java.lang.IllegalArgumentException: No handlers 问题发现问题解决 问题发现 使用springboot整合websocket,启动时报错,示例代码: EnableW…

XSS漏洞:xss.haozi.me靶场通关

xss系列往期文章: 初识XSS漏洞-CSDN博客 利用XSS漏洞打cookie-CSDN博客 XSS漏洞:xss-labs靶场通关-CSDN博客 XSS漏洞:prompt.mi靶场通关-CSDN博客 目录 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C…

QT第六天

要求&#xff1a;使用QT绘图&#xff0c;完成仪表盘绘制&#xff0c;如下图。 素材 运行效果&#xff1a; 代码&#xff1a; widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QPainter> #include <QPen>QT_BEGIN_NAMESPACE name…

克魔助手工具详解、数据包抓取分析、使用教程

目录 摘要 引言 克魔助手界面 克魔助手查看数据捕获列表 数据包解析窗口 数据包数据窗口 克魔助手过滤器表达式的规则 抓包过滤器实例 总结 参考资料 摘要 本文介绍了克魔助手工具的界面和功能&#xff0c;包括数据包的捕获和分析&#xff0c;以及抓包过滤器的使用方…

Docker之安装Nginx

&#x1f389;&#x1f389;欢迎来到我的CSDN主页&#xff01;&#x1f389;&#x1f389; &#x1f3c5;我是君易--鑨&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; &#x1f31f;推荐给大家我的博客专栏《Docker之Dockerfile构建镜像》。&#x1f3af;&…

软件测试|深入了解Python中的super()函数用法

简介 Python中的super()函数是一种强大的工具&#xff0c;用于在子类中调用父类的方法。它在面向对象编程中非常有用&#xff0c;可以让你轻松地扩展和重用现有的类。本文将详细介绍super()函数的用法&#xff0c;并提供一些示例来帮助你更好地理解它的功能。 什么是super()函…

C#中的文件操作

为什么要对文件进行操作&#xff1f; 在计算机当中&#xff0c;数据是二进制的形式存在的&#xff0c;文件则是用于存储这些数据的单位&#xff0c;因此在需要操作计算机中的数据时&#xff0c;需要对文件进行操作。 在程序开发过程中&#xff0c;操作变量和常量的时候&#…

Kotlin学习最快速的方式

引言: 前段时间在一个技术交流群看到一句话:"在我面试的过程中,遇到一位面试者,做ios开发的,Swift 语言出来4-5年了,30多岁的人,连这个都不会";今天再次回想了这句话,说的不正我这样的人吗?一个之前做Anroid应用开发的,现在连Kotlin都不会;做技术的,还是要紧跟时代…

基于YOLOv8深度学习的智能肺炎诊断系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战

《博主简介》 小伙伴们好&#xff0c;我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源&#xff0c;可关注公-仲-hao:【阿旭算法与机器学习】&#xff0c;共同学习交流~ &#x1f44d;感谢小伙伴们点赞、关注&#xff01; 《------往期经典推…

数组中第K个最大元素(算法村第十关白银挑战)

215. 数组中的第K个最大元素 - 力扣&#xff08;LeetCode&#xff09; 给定整数数组 nums 和整数 k&#xff0c;请返回数组中第 **k** 个最大的元素。 请注意&#xff0c;你需要找的是数组排序后的第 k 个最大的元素&#xff0c;而不是第 k 个不同的元素。 你必须设计并实现…

Leetcode刷题-(1~5)-Java+Python+JavaScript

算法题是程序员的基本功&#xff0c;也是各个大厂必考察的重点&#xff0c;让我们一起坚持写算法题吧 遇事不决&#xff0c;可问春风&#xff0c;春风不语&#xff0c;即是本心。 我们在我们能力范围内&#xff0c;做好我们该做的事&#xff0c;然后相信一切都事最好的安排就…

【AI接口】语音版、文心一言大模型和AI绘图、图片检测API

文章目录 一、语音版大模型AI1、接口2、请求参数3、请求参数示例4、接口返回示例 二、AI图片鉴黄合规检测API1、接口2、请求参数3、请求参数示例4、接口返回示例5、报错说明6、代码开源 三、人工智能AI绘画API1、接口2、请求参数3、请求参数示例4、接口返回示例5、AI绘画成果展…

rabbitmq-java基础详解

一、rabbitmq是什么&#xff1f; 1、MQ定义 MQ&#xff08;Message Queue&#xff09;消息队列 主要解决&#xff1a;异步处理、应用解耦、流量削峰等问题&#xff0c;是分布式系统的重要组件&#xff0c;从而实现高性能&#xff0c;高可用&#xff0c;可伸缩和最终一致性的架…

LabVIEW精确测量产品中按键力和行程

项目背景 传统的按键测试方法涉及手工操作&#xff0c;导致不一致和效率低下。在汽车行业中&#xff0c;带有实体按键的控制面板非常常见&#xff0c;确保一致的按键质量至关重要。制造商经常在这些组件的大规模、准确测试中遇到困难。显然&#xff0c;需要一个更自动化、精确…

Unity3D和three.js的比较

一、Unity3D和three.js简介 Unity3D是一款跨平台的游戏引擎,可以用于开发2D和3D游戏。它提供了一个可视化的开发环境,包含了强大的编辑器和工具,使开发者可以方便地创建游戏场景、添加物体、设置物理效果、编写脚本等。Unity3D支持多种平台,包括PC、移动设备、主机等,可以…

uniapp uni.chooseLocation调用走失败那里,错误码:112

问题&#xff1a;我配置了百度上所有能配置的&#xff0c;一直调用不成功&#xff0c;如下图配置的 1:第一个 配置 代码&#xff1a; "permission": {"scope.userLocation": {"desc": "你的位置信息将用于小程序位置接口的效果展示"}…

华为设备NAT的配置

实现内网外网地址转换 静态转换 AR1&#xff1a; sys int g0/0/0 ip add 192.168.10.254 24 int g0/0/1 ip add 22.33.44.55 24 //静态转换 nat static global 22.33.44.56 inside 192.168.10.1 动态转换 最多有两台主机同时访问外网 AR1&#xff1a; sys int g0/0/0 ip add…

【前沿技术杂谈:人工智能与种族主义 】谷歌在其视觉人工智能产生种族主义结果后道歉

【前沿技术杂谈&#xff1a;人工智能与种族主义 】谷歌在其视觉人工智能产生种族主义结果后道歉 背景调查现实世界的后果渐进式改变 一项自动标记图像的谷歌服务会根据给定图像的肤色产生截然不同的结果。该公司解决了这个问题&#xff0c;但问题可能更广泛。 为抗击新冠病毒&…