08- OpenCV:形态学操作(膨胀与腐蚀 、提取水平与垂直线)

news2024/12/1 0:26:46

目录

前言

一、膨胀(Dilation)与 腐蚀(Erosion)

二、形态学操作

1、开操作(Opening)

2、闭操作(Closing)

3、形态学梯度(Morphological Gradient)

4、顶帽 ( top hat)

5、黑帽 ( black hat)

6、相关的API

7、代码演示

三、形态学操作应用-提取水平与垂直线

1、原理方法

2、实现步骤


前言

1、了解图像形态学

图像形态学操作是一种基于图像形状的图像处理方法,常用于图像分割、边缘检测、图像增强等领域。

2、图像形态学主要包括腐蚀(Erosion)、膨胀(Dilation)、开运算(Opening)、闭运算(Closing)等操作。

除了以上基本操作,还有其他形态学操作,如击中击不中变换(Hit-or-Miss Transform)、顶帽运算(Top Hat Transform)和黑帽运算(Black Hat Transform)等。

这些图像形态学操作可以通过OpenCV库中的函数进行实现,例如cv::erodecv::dilatecv::morphologyEx等函数。

3、膨胀与腐蚀是图像处理中最常用得形态学手段。

一、膨胀(Dilation)与 腐蚀(Erosion)

1、膨胀含义:

将图像中的前景物体进行扩张,通过在图像上滑动一个结构元素,当结构元素与前景物体有重叠时,将该像素置为1(白色)。膨胀操作可以填充物体内部的空洞,同时使物体边界变得更加清晰。

跟卷积操作类似,假设有图像A和结构元素B,结构元素B在A上面移动,其中B定义其中心为锚点,计算B覆盖下A的最大像素值用来替换锚点的像素,其中B作为结构体可以是任意形状。

 2、腐蚀含义:

将图像中的前景物体进行收缩,通过在图像上滑动一个结构元素,当结构元素完全覆盖住前景物体时,将该像素置为0(黑色)。腐蚀操作可以去除小的噪点,同时使物体边界变得模糊。

腐蚀跟膨胀操作的过程类似,唯一不同的是以最小值替换锚点重叠下图像的像素值。

3、相关的API:

(1)getStructuringElement(int shape, Size ksize, Point anchor)  

- 形状 (MORPH_RECT \MORPH_CROSS \MORPH_ELLIPSE)  

- 大小

 - 锚点 默认是Point(-1, -1)意思就是中心像素

(2)dilate(src, dst, kernel)

(3)erode(src, dst, kernel)

4、相关代码演示

#include<opencv2\opencv.hpp>
#include<iostream>

using namespace cv;

Mat src, dst;
char OUTPUT_WIN[] = "output image";
int element_size = 3;
int max_size = 21;
void CallBack_Demo(int, void*);
int main(int argc, char** argv) {

	src = imread("test.jpg");
	if (!src.data) {
		printf("could not load image...\n");
		return -1;
	}
	namedWindow("input image", CV_WINDOW_AUTOSIZE);
	imshow("input image", src);

	namedWindow(OUTPUT_WIN, CV_WINDOW_AUTOSIZE);
	createTrackbar("Element Size :", OUTPUT_WIN, &element_size, max_size, CallBack_Demo);
	CallBack_Demo(0, 0);

	waitKey(0);
	return 0;
}

void CallBack_Demo(int, void*) {
	int s = element_size * 2 + 1;
	Mat structureElement = getStructuringElement(MORPH_RECT, Size(s, s), Point(-1, -1));

	// 膨胀
	// dilate(src, dst, structureElement, Point(-1, -1), 1);

	// 腐蚀
	erode(src, dst, structureElement);

	imshow(OUTPUT_WIN, dst);
	return;
}

效果展示:

二、形态学操作

1、开操作(Opening)

先进行腐蚀操作,再进行膨胀操作。开运算可以消除小的噪点,并保持物体的整体形状不变。

(1)先腐蚀后膨胀

(2)可以去掉小的对象,假设对象是前景色,背景是黑色

2、闭操作(Closing)

先进行膨胀操作,再进行腐蚀操作。闭运算可以填充物体内部的空洞,并保持物体的整体形状不变。

(1)先膨胀后腐蚀(bin2)

(2)可以填充小的洞(fill hole),假设对象是前景色,背景是黑色

3、形态学梯度(Morphological Gradient)

(1)膨胀减去腐蚀

(2)又称为基本梯度(其它还包括-内部梯度、方向梯度)

4、顶帽 ( top hat)

顶帽 是原图像与开操作之间的差值图像

5、黑帽 ( black hat)

黑帽是闭操作图像与源图像的差值图像

6、相关的API

morphologyEx(src, dest, CV_MOP_BLACKHAT, kernel);

// 函数原型:

void morphologyEx (

InputArray src, // 输入图像,可以是单通道灰度图像或多通道彩色图像。

OutputArray dst, // 输出图像,与输入图像具有相同的尺寸和类型。

int op, // 形态学操作类型,可以是以下常量之一:

InputArray kernel, // 结构元素,用于定义形态学操作的形状和大小。可以使用cv::getStructuringElement函数创建不同形状的结构元素。

Point anchor = Point(-1,-1), // 锚点位置,默认为(-1,-1),表示结构元素的中心。

int iterations = 1, // 形态学操作的迭代次数,默认为1。

int borderType = BORDER_CONSTANT, // 边界类型,默认为BORDER_CONSTANT,表示使用常数值进行边界扩展。

const Scalar& borderValue = morphologyDefaultBorderValue() // 边界值,默认为morphologyDefaultBorderValue(),表示使用默认的边界值。

);
 

其中:

  • op:形态学操作类型,可以是以下常量之一:

    • cv::MORPH_ERODE:腐蚀操作

    • cv::MORPH_DILATE:膨胀操作

    • cv::MORPH_OPEN:开运算

    • cv::MORPH_CLOSE:闭运算

    • cv::MORPH_GRADIENT:形态学梯度

    • cv::MORPH_TOPHAT:顶帽运算

    • cv::MORPH_BLACKHAT:黑帽运算

7、代码演示

三、形态学操作应用-提取水平与垂直线

1、原理方法

图像形态学操作时候,可以通过自定义的结构元素实现结构元素 对输入图像一些对象敏感、另外一些对象不敏感,这样就会让敏 感的对象改变而不敏感的对象保留输出。

通过使用两个最基本的 形态学操作 – 膨胀与腐蚀,使用不同的结构元素实现对输入图像 的操作、得到想要的结果。

(1)膨胀,输出的像素值是结构元素覆盖下输入图像的最大像素值

二值图像与灰度图像上的膨胀操作:

(2)腐蚀,输出的像素值是结构元素覆盖下输入图像的最小像素值

二值图像与灰度图像上的腐蚀操作

(3)结构元素

        1)上述膨胀与腐蚀过程可以使用任意的结构元素

        2)常见的形状:矩形、园、直线、磁盘形状、砖石形状等各种自定义形状。

2、实现步骤

(1)输入图像彩色图像 imread

(2)转换为灰度图像 – cvtColor

(3)转换为二值图像 – adaptiveThreshold

(4)定义结构元素

(5)开操作 (腐蚀+膨胀)提取 水平与垂直线

(1)输入图像彩色图像 imread

(2)转换为灰度图像 – cvtColor

(3)转换为二值图像 – adaptiveThreshold

adaptiveThreshold(

Mat src, // 输入的灰度图像

Mat dest, // 二值图像

double maxValue, // 二值图像最大值

int adaptiveMethod // 自适应方法,只能其中之一 –                 

                                // ADAPTIVE_THRESH_MEAN_C ,APTIVE_THRESH_GAUSSIAN_C

int thresholdType,// 阈值类型

int blockSize, // 块大小

double C // 常量C 可以是正数,0,负数

)

(4)定义结构元素

一个像素宽的水平线 -  水平长度 width/30

一个像素宽的垂直线 – 垂直长度 height/30

(5)开操作 (腐蚀+膨胀)提取 水平与垂直线

后处理

1)bitwise_not(Mat bin, Mat dst)像素取反操作,255 – SrcPixel

2)模糊(blur)

3、代码演示

#include <opencv2/opencv.hpp>
#include <iostream>

using namespace cv;
int main(int argc, char** argv) {
	Mat src, dst;
	src = imread("D:/vcprojects/images/chars.png");
	if (!src.data) {
		printf("could not load image...\n");
		return -1;
	}

	char INPUT_WIN[] = "input image";
	char OUTPUT_WIN[] = "result image";
	namedWindow(INPUT_WIN, CV_WINDOW_AUTOSIZE);
	imshow(INPUT_WIN, src);

	Mat gray_src;
	cvtColor(src, gray_src, CV_BGR2GRAY);
	imshow("gray image", gray_src);
	
	Mat binImg;
	adaptiveThreshold(~gray_src, binImg, 255, ADAPTIVE_THRESH_MEAN_C, THRESH_BINARY, 15, -2);
	imshow("binary image", binImg);

	// 水平结构元素
	Mat hline = getStructuringElement(MORPH_RECT, Size(src.cols / 16, 1), Point(-1, -1));
	// 垂直结构元素
	Mat vline = getStructuringElement(MORPH_RECT, Size(1, src.rows / 16), Point(-1, -1));
	// 矩形结构
	Mat kernel = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1));

	Mat temp;
	erode(binImg, temp, kernel);
	dilate(temp, dst, kernel);
	// morphologyEx(binImg, dst, CV_MOP_OPEN, vline);

    // 背景变色
	bitwise_not(dst, dst);

    // 结果更加圆滑些
	//blur(dst, dst, Size(3, 3), Point(-1, -1));
	imshow("Final Result", dst);

	waitKey(0);
	return 0;
}

效果展示:

(1)水平结构元素:

先腐蚀后膨胀,相当于一开始把垂直的元素擦掉,所以就保留了水平的线。

Mat hline = getStructuringElement(MORPH_RECT, Size(src.cols / 16, 1), Point(-1, -1));

erode(binImg, temp, hline)

dilate(temp, dst, hline);

等同于:

morphologyEx(binImg, dst, CV_MOP_OPEN, hline);

(2)垂直结构元素

先腐蚀后膨胀,相当于一开始把水平的元素擦掉,所以就保留了垂直的线。

Mat vline = getStructuringElement(MORPH_RECT, Size(1, src.rows / 16), Point(-1, -1));

morphologyEx(binImg, dst, CV_MOP_OPEN, vline);

(3)矩形结构

矩形大小的干扰项都去掉。

Mat kernel = getStructuringElement(MORPH_RECT, Size(4, 4), Point(-1, -1));

morphologyEx(binImg, dst, CV_MOP_OPEN, kernel);

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1391856.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【数学建模】美赛备战笔记 01 美赛指南与竞赛全流程

美赛指南 整篇论文需要在25页内。 六道赛题特点&#xff1a; A、B题涉及到微分方程和物理概念较多&#xff0c;需要一定的专业知识&#xff1b; C题常常涉及到时间序列、机器学习&#xff1b; D题一般是运筹学/网络科学&#xff0c;图论、优化问题&#xff0c;涉及到的概念多…

计算机视觉的应用

计算机视觉&#xff08;Computer Vision&#xff09;是一门研究如何让计算机能够理解和分析数字图像或视频的学科。简单来说&#xff0c;计算机视觉的目标是让计算机能够像人类一样对视觉信息进行处理和理解。为实现这个目标&#xff0c;计算机视觉结合了图像处理、机器学习、模…

【C++11】部分新特性

目录 1. 统一的列表初始化1.1 &#xff5b;&#xff5d;初始化1.2 std::initializer_list 2. 声明2.1 auto2.2 decltype 3. nullptr4. 右值引用和移动语义4.1 左值引用和右值引用4.2 左右值引用比较4.3 右值引用使用场景和意义4.4 完美转发 5. 新的类功能6. lambda表达式6.1 语…

vue安装、打包、发布

一.安装&#xff1a; 打开cmd命令行依次输入下面命令&#xff1a; 1. npm install -g vue/cli 2. vue create vue-demo(项目名) 3. 运行项目 npm run serve 二.打包&#xff1a; 在vscode打开终端输入以下命令&#xff1a; npm run build 打包成功后会生成一个dist文件夹&…

Python图像处理【18】边缘检测详解

边缘检测详解 0. 前言1. 图像导数2. LoG/zero-crossing2.1 Marr-Hildteth 算法 3. Canny 与 holistically-nested 算法3.1 Canny 边缘检测3.2 holistically-nested 边缘检测 小结系列链接 0. 前言 边缘是图像中两个区域之间具有相对不同灰级特性的边界&#xff0c;或者说是亮度…

好用的内外网快速传输大文件方法

在信息化时代&#xff0c;数据已经成为各行各业的关键资产&#xff0c;数据的传输和交换方式直接影响着数据价值的体现。在众多场景下&#xff0c;我们需要在不同的网络环境中进行文件传输&#xff0c;如同一个局域网内或者互联网上。这时涉及到内外网的概念。 内外网指的是在不…

PromptCast-时间序列预测的好文推荐

前言 这是关于大语言模型和时间序列预测结合的好文推荐&#xff0c;发现这篇文章&#xff0c;不仅idea不错和代码开源维护的不错&#xff0c;论文也比较详细&#xff08;可能是顶刊而不是顶会&#xff0c;篇幅大&#xff0c;容易写清楚&#xff09;&#xff0c;并且关于它的Br…

架构篇02-架构设计的历史背景

文章目录 机器语言&#xff08;1940 年之前&#xff09;汇编语言&#xff08;20 世纪 40 年代&#xff09;高级语言&#xff08;20 世纪 50 年代&#xff09;第一次软件危机与结构化程序设计&#xff08;20 世纪 60 年代~20 世纪 70 年代&#xff09;第二次软件危机与面向对象&…

什么是防火墙?

目录 什么是防火墙&#xff0c;为什么需要防火墙&#xff1f;防火墙与交换机、路由器对比防火墙和路由器实现安全控制的区别防火墙的发展史1989年至1994年1995年至2004年2005年至今 什么是防火墙&#xff0c;为什么需要防火墙&#xff1f; “防火墙”一词起源于建筑领域&#x…

十一、Qt Poppler打包

《一、QT的前世今生》 《二、QT下载、安装及问题解决(windows系统)》《三、Qt Creator使用》 ​​​ 《四、Qt 的第一个demo-CSDN博客》 《五、带登录窗体的demo》 《六、新建窗体时&#xff0c;几种窗体的区别》 《七、Qt 信号和槽》 《八、Qt C 毕业设计》 《九、Qt …

Baumer工业相机堡盟工业相机如何通过NEOAPI SDK使用相机日志跟踪功能(C++)

Baumer工业相机堡盟工业相机如何通过NEOAPI SDK使用相机日志跟踪功能&#xff08;C&#xff09; Baumer工业相机Baumer工业相机NEOAPI SDK和短曝光功能的技术背景Baumer工业相机通过NEOAPI SDK使用相机日志跟踪功能1.引用合适的类文件2.通过NEOAPI SDK使用相机日志跟踪功能3.通…

java绩效考核系统

一、系统介绍 本系统为绩效考核系统&#xff0c;系统分为三大模块&#xff1a;考核设置&#xff0c;绩效考核&#xff0c;系统管理。 可满足小企业对员工进行考核。本系统最大特色是有强大和灵活的权限控制功能&#xff0c;所有菜单&#xff0c;按钮功能均可由管理通过配置来控…

【开源】基于JAVA语言的网上药店系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 药品类型模块2.3 药品档案模块2.4 药品订单模块2.5 药品收藏模块2.6 药品资讯模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 角色表3.2.2 药品表3.2.3 药品订单表3.2.4 药品收藏表3.2.5 药品留言表…

AIOps探索 | 基于大模型构建高效的运维知识及智能问答平台(2)

前面分享了平台对运维效率提升的重要性和挑战以及基于大模型的平台建设解决方案&#xff0c;新来的朋友点这里&#xff0c;一键回看精彩原文。 基于大模型构建高效的运维知识及智能问答平台&#xff08;1&#xff09;https://mp.csdn.net/mp_blog/creation/editor/135223109 …

十、Qt 操作PDF文件

《一、QT的前世今生》 《二、QT下载、安装及问题解决(windows系统)》《三、Qt Creator使用》 ​​​ 《四、Qt 的第一个demo-CSDN博客》 《五、带登录窗体的demo》 《六、新建窗体时&#xff0c;几种窗体的区别》 《七、Qt 信号和槽》 《八、Qt C 毕业设计》 《九、Qt …

常见框架漏洞

1.什么是框架 Web框架(Web framework)或者叫做Web应用框架(Web application framework)&#xff0c;是用于进行Web开发的一套软件架构。大多数的Web框架提供了一套开发和部署网站的方式。为Web的行为提供了一套支持的方法。使用Web框架&#xff0c;很多的业务逻辑外的功能不需…

使用arcgis pro是类似的控件样式 WPF

1.资源加载 <controls:ProWindow.Resources><ResourceDictionary><ResourceDictionary.MergedDictionaries><extensions:DesignOnlyResourceDictionary Source"pack://application:,,,/ArcGIS.Desktop.Framework;component\Themes\Default.xaml&quo…

考研机试题收获——高精度进制转换

代码的第一遍真的很重要&#xff0c;在第一次打的时候尽量把问题思考全面&#xff0c;不要漏打少打&#xff0c;尽量不要留bug给之后de。 一、基础方面 一、处理输出的结束问题 scanf和cin默认都不会读取空格 ①scanf()&#xff1a;如果从文件中读取数据&#xff0c;当scanf()…

一机三芯! 中国服务器“销冠”NF5280G7率先支持

近日&#xff0c;国际数据公司&#xff08;IDC&#xff09;数据显示&#xff0c;2023年前三季度&#xff0c;浪潮信息双路2U服务器夺得中国市场服务器全型号的销售冠军。作为浪潮信息双路2U服务器的旗舰产品NF5280G7&#xff0c;在业界率先以创新的系统架构支持三大处理器平台&…

人工智能 | ChatGPT 和文心一言哪个更好用?

github&#xff1a;https://github.com/MichaelBeechan CSDN&#xff1a;https://blog.csdn.net/u011344545 ChatGPT 和文心一言哪个更好用&#xff1f; ChatGPT 和文心一言哪个更好用&#xff1f;方向一&#xff1a;ChatGPT主要优势局限性和挑战如何克服chatGPT的局限性和挑战…