C++进阶--红黑树

news2025/2/26 6:18:13

红黑树

  • 一、红黑树的概念
  • 二、红黑树的性质
  • 三、红黑树结点的定义
  • 四、红黑树的插入
  • 五、红黑树的验证
  • 七、红黑树的查找
  • 七、红黑树与AVL树的比较
  • 七、完整代码
    • RBTree.h

一、红黑树的概念

  红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是RED或BLACK。通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出两倍,因而是接近平衡的。

在这里插入图片描述

二、红黑树的性质

红黑树一共有五个性质:
1.每个结点不是红色就是黑色
2.根结点是黑色的
3.如果一个结点是红色的,则它的两个孩子结点是黑色的
4.对于每个结点,从该结点到其他所有后代叶结点的简单路径上,均包含相同数目的黑色结点
5.每个叶子结点都是黑色的(此处的叶子结点指的是空结点)

为什么满足上面的性质,红黑树就能保证:其最长路径中结点个数不会超过最短路径结点个数的两倍?

  根据红黑树的性质3可以得出,红黑树当中不会出现连续的红色结点,而根据性质4又可以得出,从某一结点到其后代叶子结点的所有路径上包含的黑色结点的数目是相同的。
  我们假设在红黑树中,从根到叶子的所有路径上包含的黑色结点的个数都是N个,那么最短路径就是全部由黑色结点构成的路径,即长度为N。
  而最长可能路径就是由一黑一红结点构成的路径,该路径当中黑色结点与红色结点的数目相同,即长度为2N
  因此,红黑树从根到叶子的最长可能路径不会超过最短可能路径的两倍。

三、红黑树结点的定义

这里直接实现K V模型的红黑树,为了方便后续的旋转操作,将红黑树的结点定义为三叉链结构,除此之外还新加入了一个成员变量,用于表示结点的颜色。

template <class K,class V>
struct RBTreeNode
{
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;
	pair<K, V> _kv;
	Colour _col;

	RBTreeNode(const pair<K,V>& kv)
		:_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_kv(kv)
		,_col(RED)
	{}
};

这里使用枚举来定义结点的颜色,这样可以增加代码的可读性和可维护性

enum Colour
{
	RED,
	BLACK,
};

为什么构造结点时,默认将结点的颜色设置为红色?

  当我们向红黑树插入结点时,若我们插入的是黑色结点,那么插入路径上黑色结点的数目就比其他路径上黑色结点的数目多了一个,即破坏了红黑树的性质4,此时我们就需要对红黑树进行调整。
  若我们插入红黑树的结点时红色的,此时如果其父结点也是红色的,那么表明出现了连续的红色结点,即破坏了红黑树的性质3,此时我们需要对红黑树进行调整,但如果其父结点是黑色的,那我们就无需对红黑树进行调整,插入后仍满足红黑树的要求。
总结

  • 插入黑色结点,一定破坏红黑树的性质4,必须对红黑树进行调整
  • 插入红色结点,可能破坏红黑树的性质3,可能对红黑树进行调整

四、红黑树的插入

红黑树插入结点的逻辑分为三步
1.按二叉搜索树的插入方法,找到待插入位置。
2.将待插入结点插入到树中。
3.若插入结点的父结点是红色的,则需要对红黑树进行调整。
  其中前两步与二叉搜索树插入结点时的逻辑相同,红黑树的关键在于第三步对红黑树的调整。
  实际上插入结点后并不是一定会对红黑树进行调整,若插入结点的父结点是黑色的,那么我们就不用对红黑树进行调整,因为本次结点的插入并不会破坏红黑树的五点性质。
  只有当插入结点的父结点是红色时才需要对红黑树进行调整,因为我们默认插入的结点就是红色的,如果插入结点的父结点也是红色的,那么此时就出现了连续的红色结点,因此需要对红黑树进行调整。因为插入结点的父结点是红色的,说明父结点不是根结点(根结点是黑色的),因此插入结点的祖父结点(父结点的父结点)就一定存在。
  红黑树调整时具体应该如何调整,主要是看插入结点的叔叔(插入结点的父结点的兄弟结点),根据插入结点叔叔的不同,可将红黑树的调整分为三种情况。

情况一:插入结点的叔叔存在,且叔叔的颜色是红色

  此时为了避免出现连续的红色结点,我们可以将父结点变黑,但为了保持每条路径黑色结点的数目不变,因此我们还需要将祖父结点变红,再将叔叔变黑。这样一来既保持了每条路径黑色结点的数目不变,也解决了连续红色结点的问题。
在这里插入图片描述

  但是调整还没有结束,因为此时祖父结点变成了红色,如果祖父结点是根节点,那我们直接再将祖父结点变成黑色即可,此时相当于每条路径黑色结点的数目都增加了一个。
  但如果祖父结点不是根结点的话,我们就需要将祖父结点当作新插入的结点,再判断其父结点是否为红色,若其父结点也是红色,那么又需要根据其叔叔的不同,进行不同的调整操作

情况二:插入结点的叔叔存在,且叔叔的颜色是黑色

  这种情况一定是在情况一继续往上调整的过程中出现的,即这种情况下的cur结点一定不是新插入的结点,而是上一次情况一调整过程中的祖父结点。如果叔叔结点存在,则其一定是黑色的,那么cur结点原来的颜色一定是黑色的,现在看到其是红色的原因是因为cur的子树在调整的过程中将cur结点的颜色由黑色改成红色。

注意
1.从根结点一直走到空位置就算一条路径,而不是从根结点走到左右结点均为空的叶子结点时才算一条路径。
2.情况二和情况三均需要进行旋转处理,旋转处理后无需往上进行调整。
在这里插入图片描述
当成直线关系时,p为g的左孩子,cur为p的左孩子,则进行右单旋转操作,再进行颜色调整。

在这里插入图片描述
当成折线关系时,p为g的左孩子,cur为p的右孩子,则进行左右双旋,再进行颜色调整。

情况三:插入结点的叔叔不存在

在这种情况下的cur结点一定是新插入的结点,而不可能是由情况一变化而来的,因为叔叔不存在说明在p的下面不可能再挂黑色结点了。

在这里插入图片描述

当成直线关系时,p为g的左孩子,cur为p的左孩子时,就需要进行左单旋操作,再进行颜色调整。

在这里插入图片描述
当出现折线关系时,p为g的左孩子,cur为p的右孩子时,就需要进行左右双旋操作,再进行颜色调整。

bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			_root->_col = BLACK;
			return true;
		}

		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}

		cur = new Node(kv);
		if (parent->_kv.first > kv.first)
		{
			parent->_left = cur;
		}
		else
		{
			parent->_right = cur;
		}
		cur->_parent = parent;

		while (parent && parent->_col == RED)
		{
			Node* grandfather = parent->_parent;
			if (grandfather->_left == parent)
			{
				Node* uncle = grandfather->_right;
				//情况1:u存在且为红,变色处理,并继续往上处理
				if (uncle && uncle->_col == RED)
				{
					parent->_col = BLACK;
					uncle->_col = BLACK;
					grandfather->_col = RED;
					
					//继续往上调整
					cur = grandfather;
					parent = cur->_parent;
				}
				else //情况2+3: u不存在/u存在且为黑,旋转+变色(p变黑,g变红)
				{
					//      g
					//   p     u
					// c
					if (cur == parent->_left)
					{
						RotateR(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else
					{
						//       g
						//     p   u
						//       c
						RotateL(parent);
						RotateR(grandfather);
						cur->_col = BLACK;
						//parent->_col = RED;
						grandfather->_col = RED;
					}
					break;
				}
			}
			else // (grandfather->_right == parent)
			{
				//     g
				//   u   p
				//         c
				
				Node* uncle = grandfather->_left;
				//情况1:u存在且为红,变色处理,并继续往上处理
				if (uncle && uncle->_col == RED)
				{
					parent->_col = BLACK;
					uncle->_col = BLACK;
					grandfather->_col = RED;

					//继续往上调整
					cur = grandfather;
					parent = cur->_parent;
				}
				else  //情况2+3:u不存在/u存在且为黑,旋转+变色
				{
					//     g
					//   u   p
					//         c
					if (cur == parent->_right)
					{
						RotateL(grandfather);
						grandfather->_col = RED;
						parent->_col = BLACK;
					}
					else
					{
						//     g
						//   u   p
						//     c
						RotateR(parent);
						RotateL(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}
					break;
				}
				
			}
		}

		_root->_col = BLACK;
		return true;
	}


void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;

		Node* ppnode = parent->_parent;

		subR->_left = parent;
		parent->_parent = subR;

		if (ppnode == nullptr)
		{
			_root = subR;
			_root->_parent = nullptr;
		}
		else
		{
			if (ppnode->_left == parent)
			{
				ppnode->_left = subR;
			}
			else
			{
				ppnode->_right = subR;
			}
			subR->_parent = ppnode;
		}
	}


	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;

		Node* ppnode = parent->_parent;

		subL->_right = parent;
		parent->_parent = subL;

		if (parent == _root)
		{
			_root = subL;
			_root->_parent = nullptr;
		}
		else
		{
			if (ppnode->_left == parent)
			{
				ppnode->_left = subL;
			}
			else
			{
				ppnode->_right = subL;
			}
			subL->_parent = ppnode;
		}
	}

注意:在红黑树调整后,需要将根结点的颜色变为黑色,因为红黑树的根结点可能在情况一的调整过程中被变成了红色。

五、红黑树的验证

  红黑是也是一种特殊的二叉搜索树,因此我们可以先获取二叉树的中序遍历,来判断该二叉树是否满足二叉搜索树的性质。

void InOrder()
	{
		_InOrder(_root);
	}


void _InOrder(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}

		_InOrder(root->_left);
		cout << root->_kv.first << " ";
		_InOrder(root->_right);
	}

但中序有序只能证明是二叉搜索树,要证明二叉树是红黑树还需验证该二叉树是否满足红黑树的性质。

bool IsBalance()
	{
		if (_root && _root->_col == RED)
		{
			cout << "根结点颜色是红色" << endl;
			return false;
		}

		int benchmark = 0;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_col == BLACK)
				++benchmark;
			cur = cur->_left;
		}

		//连续红色结点
		return _Check(_root,0,benchmark);
	}

	int Height()
	{
		return _Height(_root);
	}

int _Height(Node* root)
	{
		if (root == NULL)
			return 0;

		int leftH = _Height(root->_left);
		int rightH = _Height(root->_right);

		return leftH > rightH ? leftH + 1 : rightH + 1;
	}

	bool _Check(Node* root,int blackNum,int benchmark)
	{
		if (root == nullptr)
		{
			if (benchmark != blackNum)
			{
				cout << "某条路径黑色结点的数量不相等" << endl;
				return false;
			}
			//cout << blackNum << endl;
			return true;
		}

		if (root->_col == BLACK)
		{
			++blackNum;
		}

		if (root->_col == RED
			&& root->_parent
			&& root->_parent->_col==RED)
		{
			cout << "存在连续的红色结点" << endl;
			return false;
		}

		return _Check(root->_left,blackNum,benchmark)
			&& _Check(root->_right,blackNum,benchmark);
	}

七、红黑树的查找

红黑树的查找函数与二叉搜索树的查找方式一模一样
1.若树为空树,则查找失败,返回nullptr
2.若key值小于当前结点的值,则应该在该结点的左子树当中进行查找
3.若key值大于当前结点的值,则应该在该结点的右子树当中进行查找
4.若key值等于当前结点的值,则查找成功,返回对应结点

Node* Find(const K& key)
	{
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < key)
			{
				cur = cur->_right;
			}
			else if (cur->_kv.first > key)
			{
				cur = cur->_left;
			}
			else
			{
				return cur;
			}
		}
		return nullptr;
	}

七、红黑树与AVL树的比较

  红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O( l o g 2 N log_2 N log2N),红黑树不追求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数,所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红黑树更多。

七、完整代码

RBTree.h

#pragma once

enum Colour
{
	RED,
	BLACK,
};


template <class K,class V>
struct RBTreeNode
{
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;
	pair<K, V> _kv;
	Colour _col;

	RBTreeNode(const pair<K,V>& kv)
		:_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_kv(kv)
		,_col(RED)
	{}

};


template<class K,class V>
class RBTree
{
	typedef RBTreeNode<K, V> Node;
public:

	~RBTree()
	{
		_Destroy(_root);
		_root = nullptr;
	}

	Node* Find(const K& key)
	{
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < key)
			{
				cur = cur->_right;
			}
			else if (cur->_kv.first > key)
			{
				cur = cur->_left;
			}
			else
			{
				return cur;
			}
		}
		return nullptr;
	}

	bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			_root->_col = BLACK;
			return true;
		}

		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}

		cur = new Node(kv);
		if (parent->_kv.first > kv.first)
		{
			parent->_left = cur;
		}
		else
		{
			parent->_right = cur;
		}
		cur->_parent = parent;

		while (parent && parent->_col == RED)
		{
			Node* grandfather = parent->_parent;
			if (grandfather->_left == parent)
			{
				Node* uncle = grandfather->_right;
				//情况1:u存在且为红,变色处理,并继续往上处理
				if (uncle && uncle->_col == RED)
				{
					parent->_col = BLACK;
					uncle->_col = BLACK;
					grandfather->_col = RED;
					
					//继续往上调整
					cur = grandfather;
					parent = cur->_parent;
				}
				else //情况2+3: u不存在/u存在且为黑,旋转+变色(p变黑,g变红)
				{
					//      g
					//   p     u
					// c
					if (cur == parent->_left)
					{
						RotateR(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else
					{
						//       g
						//     p   u
						//       c
						RotateL(parent);
						RotateR(grandfather);
						cur->_col = BLACK;
						//parent->_col = RED;
						grandfather->_col = RED;
					}
					break;
				}
			}
			else // (grandfather->_right == parent)
			{
				//     g
				//   u   p
				//         c
				
				Node* uncle = grandfather->_left;
				//情况1:u存在且为红,变色处理,并继续往上处理
				if (uncle && uncle->_col == RED)
				{
					parent->_col = BLACK;
					uncle->_col = BLACK;
					grandfather->_col = RED;

					//继续往上调整
					cur = grandfather;
					parent = cur->_parent;
				}
				else  //情况2+3:u不存在/u存在且为黑,旋转+变色
				{
					//     g
					//   u   p
					//         c
					if (cur == parent->_right)
					{
						RotateL(grandfather);
						grandfather->_col = RED;
						parent->_col = BLACK;
					}
					else
					{
						//     g
						//   u   p
						//     c
						RotateR(parent);
						RotateL(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}
					break;
				}
				
			}
		}

		_root->_col = BLACK;
		return true;
	}

	void InOrder()
	{
		_InOrder(_root);
	}


	bool IsBalance()
	{
		if (_root && _root->_col == RED)
		{
			cout << "根结点颜色是红色" << endl;
			return false;
		}

		int benchmark = 0;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_col == BLACK)
				++benchmark;
			cur = cur->_left;
		}

		//连续红色结点
		return _Check(_root,0,benchmark);
	}

	int Height()
	{
		return _Height(_root);
	}

private:

	void _Destroy(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}

		_Destroy(root->_left);
		_Destroy(root->_right);
		delete root;
	}

	int _Height(Node* root)
	{
		if (root == NULL)
			return 0;

		int leftH = _Height(root->_left);
		int rightH = _Height(root->_right);

		return leftH > rightH ? leftH + 1 : rightH + 1;
	}

	bool _Check(Node* root,int blackNum,int benchmark)
	{
		if (root == nullptr)
		{
			if (benchmark != blackNum)
			{
				cout << "某条路径黑色结点的数量不相等" << endl;
				return false;
			}
			//cout << blackNum << endl;
			return true;
		}

		if (root->_col == BLACK)
		{
			++blackNum;
		}

		if (root->_col == RED
			&& root->_parent
			&& root->_parent->_col==RED)
		{
			cout << "存在连续的红色结点" << endl;
			return false;
		}

		return _Check(root->_left,blackNum,benchmark)
			&& _Check(root->_right,blackNum,benchmark);
	}

	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;

		Node* ppnode = parent->_parent;

		subR->_left = parent;
		parent->_parent = subR;

		if (ppnode == nullptr)
		{
			_root = subR;
			_root->_parent = nullptr;
		}
		else
		{
			if (ppnode->_left == parent)
			{
				ppnode->_left = subR;
			}
			else
			{
				ppnode->_right = subR;
			}
			subR->_parent = ppnode;
		}
	}


	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;

		Node* ppnode = parent->_parent;

		subL->_right = parent;
		parent->_parent = subL;

		if (parent == _root)
		{
			_root = subL;
			_root->_parent = nullptr;
		}
		else
		{
			if (ppnode->_left == parent)
			{
				ppnode->_left = subL;
			}
			else
			{
				ppnode->_right = subL;
			}
			subL->_parent = ppnode;
		}
	}

	void _InOrder(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}

		_InOrder(root->_left);
		cout << root->_kv.first << " ";
		_InOrder(root->_right);
	}

	Node* _root=nullptr;
};



void Test_RBTree1()
{
	//int a[] = { 16,3,7,11,9,26,18,14,15 };
	int a[] = { 4,2,6,1,3,5,15,7,16,14 };
	RBTree<int, int> t1;
	for (auto e : a)
	{
		t1.Insert(make_pair(e, e));
		//cout << e << "插入:" << t1.IsBalance() << endl;
	}
	t1.InOrder();
	cout << t1.IsBalance() << endl;
}


void Test_RBTree2()
{
	srand(time(0));
	const size_t N = 100000;
	RBTree<int, int> t;
	for (size_t i = 0; i < N; ++i)
	{
		size_t x = rand()+i;
		t.Insert(make_pair(x, x));
		//cout << t.IsBalance() << endl;
	}
	//t.InOrder();

	cout << t.IsBalance() << endl;
	cout << t.Height() << endl;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1383021.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

QT -狗狗管理工具

QT -狗狗管理工具 一、演示效果二、UML三、关键代码四、程序链接 一、演示效果 二、UML 三、关键代码 #include <QFrame> #include <QHBoxLayout> #include <QVBoxLayout> #include <QLabel> #include <QSizePolicy> #include <QDialog> …

【深度学习每日小知识】Computer Vision 计算机视觉

计算机视觉是人工智能的一个领域&#xff0c;涉及算法和系统的开发&#xff0c;使计算机能够解释、理解和分析来自周围世界的视觉数据。这包括从静态图像到视频流甚至 3D 环境的一切。 使用对象检测和特征提取等方法&#xff0c;计算机视觉本质上需要从视觉输入中提取有用信息…

大模型微调及生态简单介绍

大模型 大模型生态OpenAI大模型生态&#xff1a; 全球开源大模型性能评估榜单中文语言模型——ChatGLM基于ChatGLM的多模态⼤模型 大模型微调LLM⼤语⾔模型 ⼀般训练过程为什么需要微调高效微调技术⽅法概述⾼效微调⽅法一&#xff1a;LoRA微调方法高效微调⽅法⼆&#xff1a;P…

linux 网络设置

查看linux基础的网络配置 命令 网关route -nip 地址ifconfig / ip aDNS 服务器cat /etc/resolv.conf主机名hostname路由route -n网络连接状态ss / netstat 一&#xff0c;ifconfig 查看网络接口信息 &#xff08;一&#xff09;ifconfig …

C++|68.虚析构函数

文章目录 虚析构函数诞生的背景问题若创造一个子类的对象&#xff0c;并使用一个父类的指针指向/管理它&#xff0c;结果会如何解决方案——虚析构函数 虚析构函数诞生的背景 Derived继承了Base&#xff0c;Derived本身自带析构函数&#xff0c;而由于继承了Base&#xff0c;De…

openssl3.2 - quic服务的运行

文章目录 openssl3.2 - quic服务的运行概述笔记运行openssl编译好的quic服务程序todo - 如果自己编译quic服务工程END openssl3.2 - quic服务的运行 概述 在看 官方 guide目录下的工程. 都是客户端程序, 其中有quic客户端, 需要运行quic服务才行. openssl编译好的目录中有编译…

【Python】数据可视化--基于TMDB_5000_Movie数据集

一、数据准备 tmdb_5000_movie数据集下载 二、数据预处理 观察数据集合情况 import pandas as pd import ast import warnings warnings.filterwarnings(ignore) # 加载数据集 df pd.read_csv(tmdb_5000_movies.csv) # 查看数据集信息 print(df.info()) 由于原数据集包含的…

DM数据库安装注意事项

数据库安装注意事项 一、安装前 一些参数需要在数据库创建实例前找用户确认。 参数名参数掩码参数值备注数据页大小PAGE_SIZE32数据文件使用的页大小(缺省使用8K&#xff0c;建议默认&#xff1a;32)&#xff0c;可以为 4K、8K、16K 或 32K 之一&#xff0c;选择的页大小越大…

UCB Data100:数据科学的原理和技巧:第十六章到第十八章

十六、交叉验证和正则化 Cross Validation and Regularization 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 学习成果 认识到需要验证和测试集来预览模型在未知数据上的表现 应用交叉验证来选择模型超参数 了解 L1 和 L2 正则化的概念基础 在特征工程讲座结束时…

QT上位机开发(进度条操作)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 进度条是一个比较常见的控件。如果某个操作需要很长的时间才能完成&#xff0c;那么这个时候最好有一个进度条提示&#xff0c;这样比较容易平复一…

鸿蒙(HarmonyOS)应用开发指南

1. 概述 1.1 简介 鸿蒙&#xff08;即 HarmonyOS &#xff0c;开发代号 Ark&#xff0c;正式名称为华为终端鸿蒙智能设备操作系统软件&#xff09;是华为公司自 2012 年以来开发的一款可支持鸿蒙原生应用和兼容 AOSP 应用的分布式操作系统。该系统利用“分布式”技术将手机、电…

centos 7 上如何安装chrome 和chrome-driver

centos 7 上如何安装chrome 和chrome-driver 查找自己的服务器是什么系统 cat /etc/os-release这里以centos linux 7为例 下载google-chrome安装包 wget https://dl.google.com/linux/direct/google-chrome-stable_current_x86_64.rpm安装chrome sudo yum localinstall go…

C++ 输入用户名和密码 防止注入攻击

1、问题解释&#xff1a;注入攻击 &#xff0c;无密码直接登录数据库 可视化展示 1.1、当你的数据库为&#xff1a;其中包含三个字段id user 以及md5密码 1.2、在使用C堆数据库信息进行访问的时候&#xff0c;使用多条语句进行查询 string sql "select id from t_user…

阿里云最新优惠券领取方法及优惠活动汇总

随着互联网的飞速发展&#xff0c;云服务已经成为企业和个人使用的重要基础设施。阿里云作为全球领先的云服务提供商&#xff0c;一直致力于为用户提供优质的云服务。为了回馈用户&#xff0c;阿里云会定期推出各种优惠券和优惠活动&#xff0c;本文将为大家介绍阿里云最新优惠…

Unity中的异步编程【7】——在一个异步方法里播放了animation动画,取消任务时,如何停止动画播放

用一个异步方法来播放一个动画&#xff0c;正常情况是&#xff1a;动画播放结束时&#xff0c;异步方法宣告结束。那如果我提前取消这个异步任务&#xff0c;那在这个异步方法里面&#xff0c;我要怎么停止播放呢&#xff1f;&#xff01; 一、播放animation动画的异步实现 1…

医疗器械网络安全风险评定CVSS打分

为了完成医疗器械软件的网络安全风险评定相关文档&#xff0c;需要进行CVSS评分&#xff0c;这个评分对于第一次做的人来说感觉还是有些迷惑的&#xff0c;查了一些资料&#xff0c;留作参考。 CVSS 指的是 Common Vulnerability Scoring System&#xff0c;即通用漏洞评分系统…

七、HorizontalPodAutoscaler(HPA)

目录 一、HPA概述&#xff1a; 二、HPA工作机制&#xff1a; 三、HPA流程: 四、HPA API对象: 五、示例&#xff1a; 1、基于CPU的HPA 2、常见问题&#xff1a; 3、基于内存的HPA 一、HPA概述&#xff1a; Horizontal Pod Autoscaler&#xff0c;中文就是水平自动伸缩可…

JUC02同步和锁

同步&锁 相关笔记&#xff1a;www.zgtsky.top 临界区 临界资源&#xff1a;一次仅允许一个进程使用的资源成为临界资源 临界区&#xff1a;访问临界资源的代码块 竞态条件&#xff1a;多个线程在临界区内执行&#xff0c;由于代码的执行序列不同而导致结果无法预测&am…

mysql清空并重置自动递增初始值

需求&#xff1a;当上新项目时&#xff0c;测试环境数据库导出来的表id字段一般都有很大的初始递增值了&#xff0c;需要重置一下 先上代码&#xff1a; -- 查看当前自动递增值 SHOW CREATE TABLE table_name; -- 重建自动递增索引&#xff08;可选&#xff09; ALTER TABLE t…

初学者的基本 Python 面试问题和答案

文章目录 专栏导读1、什么是Python&#xff1f;列出 Python 在技术领域的一些流行应用。2、在目前场景下使用Python语言作为工具有什么好处&#xff1f;3、Python是编译型语言还是解释型语言&#xff1f;4、Python 中的“#”符号有什么作用&#xff1f;5、可变数据类型和不可变…