用C#实现简单的线性回归

news2024/9/22 23:30:51

前言

最近注意到了NumSharp,想学习一下,最好的学习方式就是去实践,因此从github上找了一个用python实现的简单线性回归代码,然后基于NumSharp用C#进行了改写。

NumSharp简介

NumSharp(NumPy for C#)是一个在C#中实现的多维数组操作库,它的设计受到了Python中的NumPy库的启发。NumSharp提供了类似于NumPy的数组对象,以及对这些数组进行操作的丰富功能。它是一个开源项目,旨在为C#开发者提供在科学计算、数据分析和机器学习等领域进行高效数组处理的工具。

image-20240111192453320

python代码

用到的python代码来源:llSourcell/linear_regression_live: This is the code for the “How to Do Linear Regression the Right Way” live session by Siraj Raval on Youtube (github.com)

image-20240111192805545

下载到本地之后,如下图所示:

image-20240111193007829

python代码如下所示:

#The optimal values of m and b can be actually calculated with way less effort than doing a linear regression. 
#this is just to demonstrate gradient descent

from numpy import *

# y = mx + b
# m is slope, b is y-intercept
def compute_error_for_line_given_points(b, m, points):
    totalError = 0
    for i in range(0, len(points)):
        x = points[i, 0]
        y = points[i, 1]
        totalError += (y - (m * x + b)) ** 2
    return totalError / float(len(points))

def step_gradient(b_current, m_current, points, learningRate):
    b_gradient = 0
    m_gradient = 0
    N = float(len(points))
    for i in range(0, len(points)):
        x = points[i, 0]
        y = points[i, 1]
        b_gradient += -(2/N) * (y - ((m_current * x) + b_current))
        m_gradient += -(2/N) * x * (y - ((m_current * x) + b_current))
    new_b = b_current - (learningRate * b_gradient)
    new_m = m_current - (learningRate * m_gradient)
    return [new_b, new_m]

def gradient_descent_runner(points, starting_b, starting_m, learning_rate, num_iterations):
    b = starting_b
    m = starting_m
    for i in range(num_iterations):
        b, m = step_gradient(b, m, array(points), learning_rate)
    return [b, m]

def run():
    points = genfromtxt("data.csv", delimiter=",")
    learning_rate = 0.0001
    initial_b = 0 # initial y-intercept guess
    initial_m = 0 # initial slope guess
    num_iterations = 1000
    print ("Starting gradient descent at b = {0}, m = {1}, error = {2}".format(initial_b, initial_m, compute_error_for_line_given_points(initial_b, initial_m, points)))
    print ("Running...")
    [b, m] = gradient_descent_runner(points, initial_b, initial_m, learning_rate, num_iterations)
    print ("After {0} iterations b = {1}, m = {2}, error = {3}".format(num_iterations, b, m, compute_error_for_line_given_points(b, m, points)))

if __name__ == '__main__':
    run()

用C#进行改写

首先创建一个C#控制台应用,添加NumSharp包:

image-20240111193711408

现在我们开始一步步用C#进行改写。

python代码:

points = genfromtxt("data.csv", delimiter=",")

在NumSharp中没有genfromtxt方法需要自己写一个。

C#代码:

 //创建double类型的列表
 List<double> Array = new List<double>();

 // 指定CSV文件的路径
 string filePath = "你的data.csv路径";

 // 调用ReadCsv方法读取CSV文件数据
 Array = ReadCsv(filePath);

 var array = np.array(Array).reshape(100,2);

static List<double> ReadCsv(string filePath)
{
    List<double> array = new List<double>();
    try
    {
        // 使用File.ReadAllLines读取CSV文件的所有行
        string[] lines = File.ReadAllLines(filePath);             

        // 遍历每一行数据
        foreach (string line in lines)
        {
            // 使用逗号分隔符拆分每一行的数据
            string[] values = line.Split(',');

            // 打印每一行的数据
            foreach (string value in values)
            {
                array.Add(Convert.ToDouble(value));
            }                  
        }
    }
    catch (Exception ex)
    {
        Console.WriteLine("发生错误: " + ex.Message);
    }
    return array;
}

python代码:

def compute_error_for_line_given_points(b, m, points):
    totalError = 0
    for i in range(0, len(points)):
        x = points[i, 0]
        y = points[i, 1]
        totalError += (y - (m * x + b)) ** 2
    return totalError / float(len(points))

这是在计算均方误差:

image-20240111194422538

C#代码:

 public static double compute_error_for_line_given_points(double b,double m,NDArray array)
 {
     double totalError = 0;
     for(int i = 0;i < array.shape[0];i++)
     {
         double x = array[i, 0];
         double y = array[i, 1];
         totalError += Math.Pow((y - (m*x+b)),2);
     }
     return totalError / array.shape[0];
 }

python代码:

def gradient_descent_runner(points, starting_b, starting_m, learning_rate, num_iterations):
    b = starting_b
    m = starting_m
    for i in range(num_iterations):
        b, m = step_gradient(b, m, array(points), learning_rate)
    return [b, m]
def step_gradient(b_current, m_current, points, learningRate):
    b_gradient = 0
    m_gradient = 0
    N = float(len(points))
    for i in range(0, len(points)):
        x = points[i, 0]
        y = points[i, 1]
        b_gradient += -(2/N) * (y - ((m_current * x) + b_current))
        m_gradient += -(2/N) * x * (y - ((m_current * x) + b_current))
    new_b = b_current - (learningRate * b_gradient)
    new_m = m_current - (learningRate * m_gradient)
    return [new_b, new_m]

这是在用梯度下降来迭代更新y = mx + b中参数b、m的值。

因为在本例中,误差的大小是通过均方差来体现的,所以均方差就是成本函数(cost function)或者叫损失函数(loss function),我们想要找到一组b、m的值,让误差最小。

成本函数如下:

image-20240111200019806

对θ1求偏导,θ1就相当于y = mx + b中的b:

image-20240111200224676

再对θ2求偏导,θ2就相当于y = mx + b中的m:

image-20240111200403338

使用梯度下降:

image-20240111200728327

θ1与θ2的表示:

image-20240111200839991

α是学习率,首先θ1、θ2先随机设一个值,刚开始梯度变化很大,后面慢慢趋于0,当梯度等于0时,θ1与θ2的值就不会改变了,或者达到我们设置的迭代次数了,就不再继续迭代了。关于原理这方面的解释,可以查看这个链接(Linear Regression in Machine learning - GeeksforGeeks),本文中使用的图片也来自这里。

总之上面的python代码在用梯度下降迭代来找最合适的参数,现在用C#进行改写:

 public static double[] gradient_descent_runner(NDArray array, double starting_b, double starting_m, double learningRate,double num_iterations)
 {
     double[] args = new double[2];
     args[0] = starting_b;
     args[1] = starting_m;

     for(int i = 0 ; i < num_iterations; i++) 
     {
         args = step_gradient(args[0], args[1], array, learningRate);
     }

     return args;
 }
 public static double[] step_gradient(double b_current,double m_current,NDArray array,double learningRate)
 {
     double[] args = new double[2];
     double b_gradient = 0;
     double m_gradient = 0;
     double N = array.shape[0];

     for (int i = 0; i < array.shape[0]; i++)
     {
         double x = array[i, 0];
         double y = array[i, 1];
         b_gradient += -(2 / N) * (y - ((m_current * x) + b_current));
         m_gradient += -(2 / N) * x * (y - ((m_current * x) + b_current));
     }

     double new_b = b_current - (learningRate * b_gradient);
     double new_m = m_current - (learningRate * m_gradient);
     args[0] = new_b;
     args[1] = new_m;

     return args;
 }

用C#改写的全部代码:

using NumSharp;

namespace LinearRegressionDemo
{
    internal class Program
    {    
        static void Main(string[] args)
        {   
            //创建double类型的列表
            List<double> Array = new List<double>();

            // 指定CSV文件的路径
            string filePath = "你的data.csv路径";

            // 调用ReadCsv方法读取CSV文件数据
            Array = ReadCsv(filePath);

            var array = np.array(Array).reshape(100,2);

            double learning_rate = 0.0001;
            double initial_b = 0;
            double initial_m = 0;
            double num_iterations = 1000;

            Console.WriteLine($"Starting gradient descent at b = {initial_b}, m = {initial_m}, error = {compute_error_for_line_given_points(initial_b, initial_m, array)}");
            Console.WriteLine("Running...");
            double[] Args =gradient_descent_runner(array, initial_b, initial_m, learning_rate, num_iterations);
            Console.WriteLine($"After {num_iterations} iterations b = {Args[0]}, m = {Args[1]}, error = {compute_error_for_line_given_points(Args[0], Args[1], array)}");
            Console.ReadLine();

        }

        static List<double> ReadCsv(string filePath)
        {
            List<double> array = new List<double>();
            try
            {
                // 使用File.ReadAllLines读取CSV文件的所有行
                string[] lines = File.ReadAllLines(filePath);             

                // 遍历每一行数据
                foreach (string line in lines)
                {
                    // 使用逗号分隔符拆分每一行的数据
                    string[] values = line.Split(',');

                    // 打印每一行的数据
                    foreach (string value in values)
                    {
                        array.Add(Convert.ToDouble(value));
                    }                  
                }
            }
            catch (Exception ex)
            {
                Console.WriteLine("发生错误: " + ex.Message);
            }
            return array;
        }

        public static double compute_error_for_line_given_points(double b,double m,NDArray array)
        {
            double totalError = 0;
            for(int i = 0;i < array.shape[0];i++)
            {
                double x = array[i, 0];
                double y = array[i, 1];
                totalError += Math.Pow((y - (m*x+b)),2);
            }
            return totalError / array.shape[0];
        }

        public static double[] step_gradient(double b_current,double m_current,NDArray array,double learningRate)
        {
            double[] args = new double[2];
            double b_gradient = 0;
            double m_gradient = 0;
            double N = array.shape[0];

            for (int i = 0; i < array.shape[0]; i++)
            {
                double x = array[i, 0];
                double y = array[i, 1];
                b_gradient += -(2 / N) * (y - ((m_current * x) + b_current));
                m_gradient += -(2 / N) * x * (y - ((m_current * x) + b_current));
            }

            double new_b = b_current - (learningRate * b_gradient);
            double new_m = m_current - (learningRate * m_gradient);
            args[0] = new_b;
            args[1] = new_m;

            return args;
        }

        public static double[] gradient_descent_runner(NDArray array, double starting_b, double starting_m, double learningRate,double num_iterations)
        {
            double[] args = new double[2];
            args[0] = starting_b;
            args[1] = starting_m;

            for(int i = 0 ; i < num_iterations; i++) 
            {
                args = step_gradient(args[0], args[1], array, learningRate);
            }

            return args;
        }


    }
}

python代码的运行结果:

image-20240111201856163

C#代码的运行结果:

image-20240111202002755

结果相同,说明改写成功。

总结

本文基于NumSharp用C#改写了一个用python实现的简单线性回归,通过这次实践,可以加深对线性回归原理的理解,也可以练习使用NumSharp。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1381118.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【自译】【精华】MIT麻省理工学院技术双月刊(The Bimonthly MIT Technology Review)2024年1~2月【创新版块概览(一)】

导读&#xff1a; 今年是 《MIT技术评论杂志》 创刊125周年纪念年&#xff08;该杂志自1899年创刊&#xff09;&#xff0c;笔者将2024开年第1期&#xff08;1月~2月号&#xff09;的创新版块&#xff08;Innovation Issue&#xff09;中的重要内容进行梳理&#xff0c;获得近年…

软件测试进阶自动化测试流程

如果想让测试在公司的项目中发挥出它最大的价值&#xff0c;并不是招两个测试技术高手&#xff0c;或引入几个测试技术&#xff0c;而是测试技术对项目流程的渗透&#xff0c;以及测试流程的改进与完善。虽然&#xff0c;当然测试行业前景乐观&#xff0c;许多中小企业也都在引…

【计算机组成原理】高速缓冲存储器 Cache 的三种映射方式(Cache Mapping)

Cache映射 Cache Mapping 缓存是计算机系统中常见的一种高速存储器&#xff0c;用于临时存储常用数据&#xff0c;以便快速访问。在缓存中&#xff0c;有三种常见的映射方式&#xff0c;分别是直接映射、全相联映射和组相联映射。 直接映射 Direct Mapping 在直接映射中&…

Debian12 安装jenkins 公钥配置

jenkins公钥配置 参考&#xff1a;Debian Jenkins 软件包 这是 Jenkins 的 Debian 软件包存储库&#xff0c;用于自动安装和升级。 要使用此存储库&#xff0c;请先将密钥添加到您的系统&#xff08;对于每周发布行&#xff09;&#xff1a; sudo wget -O /usr/share/keyring…

IT从业人员如何养生?

目前&#xff0c;电脑对人体生理和心理方面的负面影响已日益受到人们的重视。为此科学使用电脑&#xff0c;减少电脑和网络的危害是十分必要的。好代码网总结了一些it从业人员的保健知识&#xff0c;分享给大家。 一是要增强自我保健意识 工作间隙注意适当休息&#xff0c;一般…

计算机毕业设计 | SpringBoot+vue的家庭理财 财务管理系统(附源码)

1&#xff0c;绪论 1.1 项目背景 网络的发展已经过去了七十多年&#xff0c;网络技术的发展&#xff0c;将会影响到人类的方方面面&#xff0c;网络的出现让各行各业都得到了极大的发展&#xff0c;为整个社会带来了巨大的生机。 现在许多的产业都与因特网息息相关&#xff…

MATLAB 2023a软件下载安装教程

编程如画&#xff0c;我是panda&#xff01; 这次给大家带来的是MATLAB 2023a的下载安装教程 前言 MATLAB&#xff0c;即Matrix Laboratory的缩写&#xff0c;是一款强大的科学计算软件&#xff0c;以其独特的矩阵计算基础、丰富的数学函数库和直观的数据可视化工具而闻名。作…

“超人练习法”系列08:ZPD 理论

01 先认识一个靓仔 看过 Lev Vygotsky 这个人的书吗&#xff1f;他是一位熟练心理学家&#xff0c;对人们习得技能的方式非常感兴趣&#xff0c;但他 37 岁的时候就因肺炎英年早逝了。 他认为社会环境对学习有关键性的作用&#xff0c;认为社会因素与个人因素的整合促成了学习…

windows11通过虚拟机安装Ubuntu20.04

VMware 分为 VMware Workstation Pro 和 VMware Workstation Player, Pro体验期后收费&#xff0c;Player则免费。player 早期不能创建虚拟机&#xff0c;只能Pro创建好后给Player运行&#xff0c;而现在player早已加入创建虚拟机功能&#xff0c;所以使用体验上两者相差不大&a…

C++20结构化绑定应用实例(二百五十六)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 人生格言&#xff1a; 人生…

Qt/QML编程学习之心得:slider(34)

滑条slider&#xff0c;有时也成为进度条progressbar&#xff0c;在GUI界面中也是经常用到的。 import QtQuick 2.9 import QtQuick.Controls 2.0 import QtQuick.Layouts 1.2ApplicationWindow {id:rootvisible: truewidth: 1920height: 720//title: qsTr("Hello World&q…

深度学习笔记(五)——网络优化(1):学习率自调整、激活函数、损失函数、正则化

文中程序以Tensorflow-2.6.0为例 部分概念包含笔者个人理解&#xff0c;如有遗漏或错误&#xff0c;欢迎评论或私信指正。 截图和程序部分引用自北京大学机器学习公开课 通过学习已经掌握了主要的基础函数之后具备了搭建一个网络并使其正常运行的能力&#xff0c;那下一步我们还…

Flutter-Web从0到部署上线(实践+埋坑)

本文字数&#xff1a;7743字 预计阅读时间&#xff1a;60分钟 01 前言 首先说明一下&#xff0c;这篇文章是给具备Flutter开发经验的客户端同学看的。Flutter 的诞生虽然来自 Google 的 Chrome 团队&#xff0c;但大家都知道 Flutter 最先支持的平台是 Android 和 iOS&#xff…

权值初始化

一、梯度消失与爆炸 在神经网络中&#xff0c;梯度消失和梯度爆炸是训练过程中常见的问题。 梯度消失指的是在反向传播过程中&#xff0c;梯度逐渐变小&#xff0c;导致较远处的层对参数的更新影响较小甚至无法更新。这通常发生在深层网络中&#xff0c;特别是使用某些激活函…

基于SpringBoot+Thymeleaf的医院挂号管理系统(有文档、Java毕业设计)

大家好&#xff0c;我是DeBug&#xff0c;很高兴你能来阅读&#xff01;作为一名热爱编程的程序员&#xff0c;我希望通过这些教学笔记与大家分享我的编程经验和知识。在这里&#xff0c;我将会结合实际项目经验&#xff0c;分享编程技巧、最佳实践以及解决问题的方法。无论你是…

【React】TS项目配置Redux

前提条件 在React中使用Redux&#xff0c;官方要求安装两个插件&#xff0c;Redux Toolkit 和 react-redux Redux Toolkit&#xff08;RTK&#xff09;&#xff1a; 官方推荐编写Redux逻辑的方式&#xff0c;是一套工具的集合集&#xff0c;简化书写方式。 简化 store 的配置方…

第133期 为什么一些场景下Oracle很难被替换掉(20240113)

数据库管理133期 2024-01-13 第133期 为什么一些场景下Oracle很难被替换掉&#xff08;20240113&#xff09;1 数据量2 架构3 应用改造4 Exadata和融合数据库总结 第133期 为什么一些场景下Oracle很难被替换掉&#xff08;20240113&#xff09; 今天在薛首席的群里&#xff0c…

Jmeter 性能-监控服务器

Jmeter监控Linux需要三个文件 JMeterPlugins-Extras.jar (包&#xff1a;JMeterPlugins-Extras-1.4.0.zip) JMeterPlugins-Standard.jar (包&#xff1a;JMeterPlugins-Standard-1.4.0.zip) ServerAgent-2.2.3.zip 1、Jemter 安装插件 在插件管理中心的搜索Servers Perform…

day17 平衡二叉树 二叉树的所有路径 左叶子之和

题目1&#xff1a;110 平衡二叉树 题目链接&#xff1a;110 平衡二叉树 题意 判断二叉树是否为平衡二叉树&#xff08;每个节点的左右两个子树的高度差绝对值不超过1&#xff09; 递归遍历 递归三部曲 1&#xff09;确定递归函数的参数和返回值 2&#xff09;确定终止条…

基于ubuntu2204使用kubeadm部署k8s集群

部署k8s集群 基础环境配置安装container安装runc安装CNI插件部署1.24版本k8s集群&#xff08;flannel&#xff09;安装crictl使用kubeadm部署集群节点加入集群部署flannel网络配置dashboard 本集群基于ubuntu2204系统使用kubeadm工具部署1.24版本k8s&#xff0c;容器运行时使用…