【Python机器学习】深度学习——调参

news2024/11/18 11:49:05

        先用MLPClassifier应用到two_moons数据集上:

from sklearn.neural_network import MLPClassifier
from sklearn.datasets import make_moons
from sklearn.model_selection import train_test_split
import mglearn
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
X,y=make_moons(n_samples=100,noise=0.25,random_state=3)
X_train,X_test,y_train,y_test=train_test_split(X,y,stratify=y,random_state=42)

mlp=MLPClassifier(solver='lbfgs'
                  ,random_state=0
                  )
mlp.fit(X_train,y_train)
mglearn.plots.plot_2d_separator(mlp,X_train,fill=True,alpha=.3)
mglearn.discrete_scatter(X_train[:,0],X_train[:,1],y_train)
plt.xlabel('特征0')
plt.ylabel('特征1')
plt.show()

        可以看到,神经网络学到的决策边界完全是非线性的,但相对平滑, 默认情况下,MLP使用100个隐结点,可以减少数量,降低模型复杂度,对于小型数据集来说,仍然可以得到很好的结果。

from sklearn.neural_network import MLPClassifier
from sklearn.datasets import make_moons
from sklearn.model_selection import train_test_split
import mglearn
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
X,y=make_moons(n_samples=100,noise=0.25,random_state=3)
X_train,X_test,y_train,y_test=train_test_split(X,y,stratify=y,random_state=42)

mlp=MLPClassifier(solver='lbfgs'
                  ,random_state=0
                  ,hidden_layer_sizes=[10]
                  ,max_iter=10000
                  )
mlp.fit(X_train,y_train)
mglearn.plots.plot_2d_separator(mlp,X_train,fill=True,alpha=.3)
mglearn.discrete_scatter(X_train[:,0],X_train[:,1],y_train)
plt.xlabel('特征0')
plt.ylabel('特征1')
plt.show()

可以看到,决策边界更加参差不齐。默认的非线性是relu,如果想要得到更平滑的决策边界,可以添加更多隐单元,或者使用tanh非线性。

from sklearn.neural_network import MLPClassifier
from sklearn.datasets import make_moons
from sklearn.model_selection import train_test_split
import mglearn
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
X,y=make_moons(n_samples=100,noise=0.25,random_state=3)
X_train,X_test,y_train,y_test=train_test_split(X,y,stratify=y,random_state=42)

mlp=MLPClassifier(solver='lbfgs'
                  ,activation='tanh'
                  ,random_state=0
                  ,hidden_layer_sizes=[10,10]
                  ,max_iter=10000
                  )
mlp.fit(X_train,y_train)
mglearn.plots.plot_2d_separator(mlp,X_train,fill=True,alpha=.3)
mglearn.discrete_scatter(X_train[:,0],X_train[:,1],y_train)
plt.xlabel('特征0')
plt.ylabel('特征1')
plt.show()

除此以外,还可以利用L2惩罚使权重趋向于0,从而控制神经网络的复杂度,alpha的默认值很小,下面对不同参数下,神经网络结果的可视化:

from sklearn.neural_network import MLPClassifier
from sklearn.datasets import make_moons
from sklearn.model_selection import train_test_split
import mglearn
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
X,y=make_moons(n_samples=100,noise=0.25,random_state=3)
X_train,X_test,y_train,y_test=train_test_split(X,y,stratify=y,random_state=42)

fig,axes=plt.subplots(2,4,figsize=(20,8))
for axx,n_hidden_nodes in zip(axes,[10,100]):
    for ax,alpha in zip(axx,[0.0001,0.01,0.1,1]):
        mlp = MLPClassifier(solver='lbfgs'
                            #, activation='tanh'
                            , random_state=0
                            , hidden_layer_sizes=[n_hidden_nodes, n_hidden_nodes]
                            ,alpha=alpha
                            ,max_iter=10000
                            )
        mlp.fit(X_train,y_train)
        mglearn.plots.plot_2d_separator(mlp,X_train,fill=True,alpha=.3,ax=ax)
        mglearn.discrete_scatter(X_train[:, 0], X_train[:, 1], y_train,ax=ax)
        ax.set_title('隐单元个数=[{},{}]\nalpha={:.4f}'.format(n_hidden_nodes,n_hidden_nodes,alpha))
plt.show()

神经网络的一个重要性质是:在开始学习之前,权重是随机设置的,这种随机化会影响学到的模型,也就是即使使用完全相同的参数,用的随机种子不同,也可能得到非常不一样的模型:

from sklearn.neural_network import MLPClassifier
from sklearn.datasets import make_moons
from sklearn.model_selection import train_test_split
import mglearn
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
X,y=make_moons(n_samples=100,noise=0.25,random_state=3)
X_train,X_test,y_train,y_test=train_test_split(X,y,stratify=y,random_state=42)

fig,axes=plt.subplots(2,4,figsize=(20,8))
for i,ax in enumerate(axes.ravel()):
    mlp = MLPClassifier(solver='lbfgs'
                        #,activation='tanh'
                        ,random_state=i
                        ,hidden_layer_sizes=[100,100]
                        ,max_iter=10000
                        )
    mlp.fit(X_train,y_train)
    mglearn.plots.plot_2d_separator(mlp,X_train,fill=True,alpha=.3,ax=ax)
    mglearn.discrete_scatter(X_train[:, 0], X_train[:, 1], y_train,ax=ax)
    ax.set_title('随机初始化参数={:.4f}'.format(i))
plt.show()

用另一个例子,使用默认参数查看模型的特征数据和精度:


from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Ridge,LinearRegression,Lasso,LogisticRegression
import matplotlib.pyplot as plt
from sklearn.neural_network import MLPClassifier

plt.rcParams['font.sans-serif']=['SimHei']
cancer=load_breast_cancer()

print('癌症数据集每个特征的最大值:{}'.format(cancer.data.max(axis=0)))
X_train,X_test,y_train,y_test=train_test_split(
    cancer.data,cancer.target,random_state=0
)
mlp=MLPClassifier(random_state=0)
mlp.fit(X_train,y_train)

print('训练集精度:{:.4f}'.format(mlp.score(X_train,y_train)))
print('测试集精度:{:.4f}'.format(mlp.score(X_test,y_test)))

MLP模型的精度很好,但是没有其他模型好,原因可能在于数据的缩放。神经网络也要求所有数据特征的变化范围相近,最理想的情况是均值为0,方差为1,人工处理:


#计算每个特征的平均值
mean_on_train=X_train.mean(axis=0)
#计算每个特征的标准差
std_on_train=X_train.std(axis=0)

#减去平均值,然后乘标准差的倒数
#计算完成后mean=0,std=1
X_train_scaled=(X_train-mean_on_train)/std_on_train
X_test_scaled=(X_test-mean_on_train)/std_on_train

mlp_std=MLPClassifier(random_state=0)
mlp_std.fit(X_train_scaled,y_train)

print('训练集精度:{:.4f}'.format(mlp_std.score(X_train_scaled,y_train)))
print('测试集精度:{:.4f}'.format(mlp_std.score(X_test_scaled,y_test)))

 

        可以看到缩放之后的结果要好很多,另外,增大迭代次数可以提高训练集性能,但不提高泛化性能。

        对特征重要性的可视化:


from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Ridge,LinearRegression,Lasso,LogisticRegression
import matplotlib.pyplot as plt
from sklearn.neural_network import MLPClassifier

plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus'] = False
cancer=load_breast_cancer()

print('癌症数据集每个特征的最大值:{}'.format(cancer.data.max(axis=0)))
X_train,X_test,y_train,y_test=train_test_split(
    cancer.data,cancer.target,random_state=0
)
mlp=MLPClassifier(random_state=0)
mlp.fit(X_train,y_train)

plt.figure(figsize=(20,5))
plt.imshow(mlp.coefs_[0],interpolation='none',cmap='viridis')
plt.yticks(range(30),cancer.feature_names)
plt.xlabel('隐单元权重')
plt.ylabel('输入特征')
plt.colorbar()
plt.show()

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1378733.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

UOS Python+Qt5实现声卡回路测试

1.回路治具设计: 2.Ui界面: 3.源代码: # -*- coding: utf-8 -*-# Form implementation generated from reading ui file SoundTestWinFrm.ui # # Created by: PyQt5 UI code generator 5.15.2 # # WARNING: Any manual changes made to this…

【VRTK】【Unity】【游戏开发】更多技巧

课程配套学习项目源码资源下载 https://download.csdn.net/download/weixin_41697242/88485426?spm=1001.2014.3001.5503 【概述】 本篇将较为零散但常用的VRTK开发技巧集合在一起,主要内容: 创建物理手震动反馈高亮互动对象【创建物理手】 非物理手状态下,你的手会直接…

BikeDNA(四)初始化参考数据

BikeDNA(四)初始化参考数据 这本笔记本: 加载定义研究区域的多边形,然后为研究区域创建网格叠加。加载参考数据。处理参考数据以创建分析所需的网络结构和属性。 先决条件和条件 输入/输出 config.yml 必须提前设置。 此笔记本…

力扣|2023华为秋招冲刺

文章目录 第一关&#xff1a;2023 年 7 月面试题挑战第二关&#xff1a;2023 年 6 月面试题挑战第三关&#xff1a;2023 年 5 月面试题挑战 第一关&#xff1a;2023 年 7 月面试题挑战 class Solution { public:void reverseWord(vector<char>& s,int l,int r){for(i…

教程-右键用vscode(新窗口)打开文件或目录

通过本文可以提高效率&#xff0c;用起来更爽更高效。 本文实现了&#xff08;windows系统&#xff09;&#xff1a; 右键-用vscode(当前窗口)打开文件或目录右键-用vscode-新窗口打开文件或目录 注意&#xff1a; 下面的安装路径要更改为您实际的路径 具体配置步骤&#x…

066:vue中实现二维数组的全选、全不选、反选、部分全选功能(图文示例)

第061个 查看专栏目录: VUE ------ element UI 专栏目标 在vue和element UI联合技术栈的操控下,本专栏提供行之有效的源代码示例和信息点介绍,做到灵活运用。 (1)提供vue2的一些基本操作:安装、引用,模板使用,computed,watch,生命周期(beforeCreate,created,beforeM…

面向零信任架构的访问安全态势评估

伴随着“云大物移”等新兴 IT 技术的快速发展&#xff0c;企业数字化转型使得 IT 业务的网络环境更加复杂多样&#xff0c;企业数字资源的安全防护正面临着前所未有的压力与威胁。零信任安全架构放弃了传统基于“边界”的安全模型&#xff0c;以访问上下文的安全态势感知为基础…

如何优雅的只在当前页面中覆盖ui库中组件的样式(vue的问题)

首先我们vue文件的样式都是写在<style lang"less" scoped></style>标签中的&#xff0c;加scoped是为了使得样式只在当前页面有效。那么问题来了&#xff0c;看图&#xff1a; 我们正常写的所有样式&#xff0c;都会被加上[data-v-23d425f8]这个属性&…

C#进阶-IIS服务器发布ASP.NET项目

对于云服务器&#xff0c;程序员一般不会陌生&#xff0c;如果项目需要发布到现网&#xff0c;那么服务器是必不可缺的一项硬性条件&#xff0c;那么如何在云服务器上部署一个项目&#xff0c;需要做哪些配置准备&#xff0c;下面就由本文档为大家讲解&#xff0c;本篇以 IIS服…

小学生练字神器,在线字帖生成器网站源码

源码介绍 帮助小学生规范汉字书写&#xff0c;提高汉字书写水平&#xff0c;在线小学生练字神器&#xff01;它不仅功能强大&#xff0c;而且完全免费&#xff0c;是每个小学生必备的练字工具。 海量字库&#xff1a;收录9574个常用汉字&#xff0c;满足小学生的学习需求。多…

R语言【paleobioDB】——pbdb_intervals():通过参数选择,返回多个地层年代段的基本信息

Package paleobioDB version 0.7.0 paleobioDB 包在2020年已经停止更新&#xff0c;该包依赖PBDB v1 API。 可以选择在Index of /src/contrib/Archive/paleobioDB (r-project.org)下载安装包后&#xff0c;执行本地安装。 Usage pbdb_interval (id, ...) Arguments 参数【..…

【Emgu.CV教程】5.1、几何变换之平移

图像的几何变换对于图像处理来说&#xff0c;也是最基础的那一档次&#xff0c;包括平移、旋转、缩放、透视变换等等&#xff0c;也就是对图像整理形状的改变&#xff0c;用到的函数都比较简单&#xff0c;理解起来也很容易。但是为了凑字数&#xff0c;还是一个函数一个函数的…

微信公众号生成带参数的二维码加上logo

上次&#xff0c;记录的《用php生成微信公众号带参数的二维码demo》 这次&#xff0c;加上logo显得正规一点&#xff0c;起码看起来不像诈骗二维码 接上&#xff0c;上次的公众号二维码&#xff08;远程二维码地址&#xff09; // $wx_code ‘https://mp.weixin.qq.com/cgi-b…

【JVM的相关参数和调优】

文章目录 JVM 调优的参数类型一、标配参数二、X参数三、XX参数 JVM 调优的常用参数 JVM 调优的参数类型 一、标配参数 这类此参数在jdk的各个版本之间很少会变化&#xff0c;基本不改变 java -version&#xff0c;查看当前电脑上的jdk的版本信息 java -help&#xff0c;查看…

Typora上传图片失败PicGo

起初我是在Typora中点击一键上传图片&#xff0c;结果如下&#xff0c;报错。可是我找了半天也没错啊。 最后发现原来是一个图片的命名问题&#xff0c;名字太过于复杂&#xff0c;PicGo识别不出&#xff0c;一个图片报错导致其它也上传不了。 我把它复制到其它文件夹之后&…

Jetson_yolov8_解决模型导出.engine遇到的问题、使用gpu版本的torch和torchvision、INT8 FP16量化加快推理

1、前情提要 英伟达Jetson搭建Yolov8环境过程中遇到的各种报错解决&#xff08;涉及numpy、scipy、torchvision等&#xff09;以及直观体验使用Yolov8目标检测的过程&#xff08;CLI命令行操作、无需代码&#xff09;-CSDN博客和YOLOv8_测试yolov8n.pt&#xff0c;yolov8m.pt训…

Qt实现复杂列表

Qt实现复杂列表 界面效果layeritemdelegate.hlayeritemdelegate.cpplayertablemodel.hlayertablemodel.cpplayertableview.hlayertableview.cppmainwindow.hmainwindow.cpp 界面效果 layeritemdelegate.h #ifndef LAYERITEMDELEGATE_H #define LAYERITEMDELEGATE_H#include &l…

【python】搭配Miniconda使用VSCode

现在的spyder总是运行出错&#xff0c;启动不了&#xff0c;尝试使用VSCode。 一、在VSCode中使用Miniconda管理的Python环境&#xff0c;可以按照以下步骤进行&#xff1a; a. 确保Miniconda环境已经安装并且正确配置。 b. 打开VSCode&#xff0c;安装Python扩展。 打开VS…

InternLM第3次课作业

部署 参考github教程&#xff1a;https://github.com/InternLM/tutorial/tree/main/langchain 问题1&#xff1a; windows端口映射过程命令 ssh -i C:\\Users\\breat/.ssh/id_rsa.pub -CNg -L 7860:127.0.0.1:7860 rootssh.intern-ai.org.cn -p 3 4145 中&#xff0c;提示找不…

MetaGPT前期准备与快速上手

大家好&#xff0c;MetaGPT 是基于大型语言模型&#xff08;LLMs&#xff09;的多智能体协作框架&#xff0c;GitHub star数量已经达到31.3k。 接下来我们聊一下快速上手 这里写目录标题 一、环境搭建1.python 环境2. MetaGpt 下载 二、MetaGPT配置1.调用 ChatGPT API 服务2.简…