3D人体姿态估计

news2024/11/19 3:32:27

3D人体姿态估计是指通过算法对输入的图像或视频进行分析,推断出人体的三维姿态信息。该技术可以应用于许多领域,如虚拟现实、运动分析、人机交互等。

1. 算法原理:

3D人体姿态估计利用深度学习模型作为算法的核心,通过网络学习人体姿态的表示和映射关系。该算法有两个阶段,第一阶段是从输入的图像或视频中提取人体的二维姿态信息;第二阶段是通过三维姿态恢复算法将二维姿态信息映射到三维空间中。

2. 视觉特征提取:

3D人体姿态估计需要从图像或视频中提取人体的视觉特征,以便更好地推测人体的三维姿态。这些特征包括人体轮廓、关节位置、骨骼长度等,可以通过卷积神经网络(CNN)来提取。

3. 姿态恢复算法:

在获得二维姿态信息后,3D人体姿态估计需要使用姿态恢复算法将二维姿态信息映射到三维空间中。基于模型的姿态恢复算法需要先建立具有约束条件的三维人体模型,然后通过最小化重投影误差来确定模型的参数,从而得到人体的三维姿态信息。

4. 训练数据集:

3D人体姿态估计需要大量带有标注的人体姿态数据进行训练。这些数据可以通过使用传感器捕捉真实场景下的人体姿态信息,或使用计算机生成的渲染图像生成。常用的数据集包括Human3.6M、MPII Human Pose等。

5. 应用领域:

3D人体姿态估计在虚拟现实、运动分析、人机交互等领域具有广泛的应用。例如,在虚拟现实中,3D人体姿态估计能够实现更加真实的人机交互和场景渲染;在运动分析中,它可以用于跟踪运动员的姿态、分析运动技巧等。

总结起来,3D人体姿态估计是一种利用深度学习模型实现自动三维人体姿态估计的技术。它通过提取视觉特征和使用姿态恢复算法,能够在大规模数据集上实现准确的人体姿态估计,并在多个领域中得到广泛应用。

算法介绍


为了解决这个问题,研究者们开始探索使用深度学习技术进行3D人体姿态估计。深度学习技术能够学习到更高层次的特征表示,从而提高姿态估计的准确性。下面将对3D人体姿态估计的方法和技术进行简述。

1.单视角方法


1.单视角方法是最常见的3D人体姿态估计方法之一。它通过从单个摄像机视角捕捉的图像中推断出人体的三维姿态。这种方法通常分为两个步骤:2D姿态估计和3D重建。
 

在2D姿态估计阶段,深度学习模型被用于从输入图像中检测和定位人体关键点。这些关键点可以是人体的关节位置或特定身体部位的标记点。通过预测这些关键点的位置,可以得到人体在图像中的二维姿态信息。

然后,在3D重建阶段,使用将二维姿态信息与其他信息(如深度图像、摄像机参数等)结合起来,通过一些几何变换方法,将二维姿态信息转换为三维姿态信息。这些几何变换方法可以是透视投影、三角测量等。最终,通过这些步骤,我们可以得到人体的三维姿态。

 

2.多视角方法


多视角方法利用从多个不同视角或摄像机捕捉的图像进行3D人体姿态估计。这种方法可以通过利用多个视角的互补信息来提高姿态估计的准确性。
在多视角方法中,首先通过单视角方法对每个摄像机视角的图像进行2D姿态估计。然后,通过使用多个视角的2D姿态信息,结合摄像机参数和几何约束,将2D姿态信息转换为3D姿态信息。

多视角方法的主要优势在于能够提供更多的观察角度和更多的几何信息,从而提高了姿态估计的准确性和稳定性。但同时,它也增加了系统的复杂性,需要进行多个视角的图像对齐和标定等步骤。

3.基于深度学习的方法


近年来,基于深度学习的方法在3D人体姿态估计领域取得了显著的进展。这些方法利用深度学习模型对大规模数据集进行训练,从而学习到人体姿态的特征表示和模式。
基于深度学习的方法通常采用端到端的训练策略,即将输入图像作为模型的输入,直接输出人体的三维姿态。这种方法可以避免传统方法中的多个阶段处理,并且能够通过大规模数据集的训练来提高姿态估计的准确性。

基于深度学习的方法通常采用卷积神经网络(CNN)或循环神经网络(RNN)等深度学习模型进行姿态估计。这些模型通常使用3D姿态标注数据进行训练,以学习从图像到姿态的映射关系。

4.结合传感器的方法


除了使用图像或视频作为输入,还可以结合其他传感器,如深度摄像机(如Microsoft Kinect)或惯性测量单元(IMU),来提高3D人体姿态估计的准确性和鲁棒性。


模型效果

深度摄像机可以提供人体的深度信息,从而帮助更准确地估计三维姿态。IMU可以提供人体的运动信息,从而帮助解决动态姿态估计的问题。

代码介绍 
import torch
from torch.utils.data import DataLoader
from torchvision.transforms import Normalize

from openpose import OpenPoseModel, OpenPoseDataset

# 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 模型路径和参数
model_path = "path_to_pretrained_model.pth"
input_size = (256, 256)
output_size = (64, 64)
num_joints = 17

# 加载模型
model = OpenPoseModel(num_joints=num_joints, num_stages=4, num_blocks=[1, 1, 1, 1]).to(device)
model.load_state_dict(torch.load(model_path))
model.eval()

# 数据集路径
dataset_path = "path_to_dataset"

# 数据预处理
normalize = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

# 加载数据集
dataset = OpenPoseDataset(dataset_path, input_size, output_size, normalize=normalize)
dataloader = DataLoader(dataset, batch_size=8, shuffle=True, num_workers=4)

# 测试模型
total_loss = 0
total_samples = 0

with torch.no_grad():
    for i, (images, targets) in enumerate(dataloader):
        images = images.to(device)
        targets = targets.to(device)

        # 前向传播
        outputs = model(images)
        
        # 计算损失
        loss = torch.mean((outputs - targets) ** 2)
        total_loss += loss.item() * images.size(0)
        total_samples += images.size(0)

    average_loss = total_loss / total_samples
    print("Average Loss: {:.4f}".format(average_loss))



QQ767172261

结合传感器的方法通常需要进行传感器的标定和数据融合等步骤,以将不同传感器的信息相结合。这些方法可以提供更多的信息来源,从而提高姿态估计的准确性和鲁棒性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1378503.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

redis缓存雪崩、穿透和击穿

缓存雪崩 对于系统 A,假设每天高峰期每秒 5000 个请求,本来缓存在高峰期可以扛住每秒 4000 个请求,但是缓存机器意外发生了全盘宕机或者大量缓存集中在某一个时间段失效。缓存挂了,此时 1 秒 5000 个请求全部落数据库,…

Java常用类---日期时间类

日期时间类 Date类 简介 在Java中,Date类用来封装当前的日期和时间。Date类提供两个构造函数来初始化对象,如下所示。 通过Date() 使用当前日期和时间来初始化对象。 通过Date(long millisec) 来初始化对象,其中的参数是从1970年1月1日起…

【数字电子技术课程设计】多功能数字电子钟的设计

目录 摘要 1 设计任务要求 2 设计方案及论证 2.1 任务分析 2.1.1 晶体振荡器电路 2.1.2 分频器电路 2.1.3 时间计数器电路 2.1.4 译码驱动电路 2.1.5 校时电路 2.1.6 整点报时/闹钟电路 2.2 方案比较 2.3 系统结构设计 2.4 具体电路设计 3 电路仿真测试及结…

必须掌握的100+个Linux命令大全【持续更新中】

别有一番风趣的alias … note:: 寒蝉凄切,对长亭晚,骤雨初歇。 柳永《雨霖铃》 Linux alias命令用于设置指令的别名,可以将比较长的命令进行简化。 默认情况下会输出当前的设置: $ alias lls -lah lals -lAh llls -lh lsls --…

【ELK 学习】ElasticSearch

ELK:ElasticSearch存储,Logstash收集,Kibana展示 版本较多,使用时需要版本匹配,还需要和mysql版本匹配(elastic官网给了版本对应关系) 本次使用的版本es6.8.12 filebeat 轻量级的数据收集工具 …

时间序列数据库选型: influxdb; netdiscover列出docker实例们的ip

influxdb influxdb: 有收费版本、有开源版本 influxdb 安装、启动(docker) docker run -itd --name influxdb-dev -p 8086:8086 influxdb #influxdb的web客户端(端口8003)被去掉了 #8006是web-service端口#docker exec -it influxdb-dev bashinfluxdb 自带web界面 从后面的…

揭秘HTTP协议:深入了解互联网通信的核心!

文章目录 HTTPHTTP的消息结构HTTP 常用请求方法HTTP 状态码 HTTP HTTP 是超文本传输协议,HTTP是缩写,全称是 HyperText Transfer Protocol 超文本指的是 HTML、css、JavaScript和图片等,HTTP的出现就是为方便接收和发布超HTML页面&#xff0c…

基于Echarts的大数据可视化模板:厅店营业效能分析

目录 引言厅店营业效能分析的重要性大数据时代下的零售业基于Echarts的厅店营业效能分析案例分析目标和数据准备图表类型的选择和参数设置图表样式和交互功能的优化Echarts与大数据可视化Echarts库以及其在大数据可视化领域的应用优势开发过程和所选设计方案模板如何满足管理的…

私域2.0大变革:构建用户亲密关系,让你的品牌脱颖而出!

一、私域2.0发展趋势 1. 常态化:2024年,做私域已经成为“标配” 根据腾讯营销洞察(TMI)的研究,微信生态和自营APP等私域触点在中国市场的渗透率已经达到了惊人的96%。这意味着,超过四分之三的消费者在过去…

AES加解密模式

要想学习AES,首先要清楚三个基本的概念:密钥、填充、模式。 1、密钥 密钥是AES算法实现加密和解密的根本。对称加密算法之所以对称,是因为这类算法对明文的加密和解密需要使用同一个密钥。 AES支持三种长度的密钥: 128位&#xff…

【Java】正则表达式( Pattern 和 Matcher 类)

快速入门 Java 提供了 java.util.regex 包,它包含了 Pattern 和 Matcher 类,用于处理正则表达式的匹配操作。 java.util.regex 包主要包括以下三个类: Pattern 类: pattern 对象是一个正则表达式的编译表示。Pattern 类没有公共…

Vue面试之组件通信的方式总结(下篇)

Vue面试之组件通信的方式总结 $refprovide&injectprovideinject EventBus事件总线vuex 最近在整理一些前端面试中经常被问到的问题,分为vue相关、react相关、js相关、react相关等等专题,可持续关注后续内容,会不断进行整理~ 在Vue框架中&…

PXE 高效批量网络装机

前提: 虚拟机恢复到初始化 调整网卡为vm1 关闭防火墙 安全linux systemctl stop firewalld vim /etc/selinux/config 配置IP地址 vim /etc/sysconfig/network-scripts/ifcfg-ens33 重启网卡 systemctl restart network 挂载磁盘 安装yum源 安装服务 yum install vs…

DETR tensorRT 的 C++ 部署

DETR tensorRT 的 C 部署 本篇说说DETR tensorRT 的 C 部署。 【完整代码、模型、测试图片】 1 导出 onnx 模型(建议先看) 方法1:导出DETR onnx并修改模型输出Gather层,解决tesorrt 推理输出结果全为0问题,参考【D…

代码随想录算法训练营第17天 | 110.平衡二叉树 + 257. 二叉树的所有路径 + 404.左叶子之和

今日内容 110.平衡二叉树 257. 二叉树的所有路径 404.左叶子之和 110.平衡二叉树 - Easy 题目链接:. - 力扣(LeetCode) 给定一个二叉树,判断它是否是高度平衡的二叉树。 本题中,一棵高度平衡二叉树定义为&#xff1…

【设计模式-03】Strategy策略模式及应用场景

一、简要描述 Java 官方文档 Overview (Java SE 18 & JDK 18)module indexhttps://docs.oracle.com/en/java/javase/18/docs/api/index.html Java中使用到的策略模式 Comparator、comparable Comparator (Java SE 18 & JDK 18)declaration: module: java.base, pa…

【生产者消费者模型的 Java 实现】

文章目录 前言传统派维新派 前言 题目:一个初始值为零的变量,多个线程对其交替操作,分别加1减1 实现步骤: 线程操作资源类判断,干活,通知防止虚假唤醒机制,即:多线程的判断需要用…

自旋框的使用

1. 自旋框 实例化 //实例化单精度自旋框QSpinBox* spinBox new QSpinBox(this);//实例化双精度自旋框QDoubleSpinBox* doubleSpinBox new QDoubleSpinBox(this);1.1 单精度自旋框 QSpinBox 1.1.1 单精度自旋框的基本函数 QSpinBox_QDoubleSpinBox Dialog.cpp #include "…

更快更稳的4K响应鼠标,小手玩家也能用,雷柏VT9PRO mini

雷柏今年推出了不少新品,特别是一系列支持4K回报率的鼠标,凭借敏捷的响应速度,获得了非常好的评价。不过之前雷柏出的4K鼠标都多适合中大手,对小手用户不友好,而且配色较少,都是黑白色的基础款,…

基于爬虫和Kettle的书籍信息采集与预处理

一:爬虫 1、爬取的目标 将读书网上的书籍的基本信息,比如:封面、书名、作者、出版社、价格、出版时间、内容简介、作者简介、书籍目录、ISBN和标签爬取出来,并将爬取的结果放入数据库中,方便存储。 2、网站结构 图1读…