深度学习笔记(四)——TF2构建基础网络常用函数+简单ML分类网络实现

news2024/11/6 2:59:31

文中程序以Tensorflow-2.6.0为例
部分概念包含笔者个人理解,如有遗漏或错误,欢迎评论或私信指正。
截图和程序部分引用自北京大学机器学习公开课

TF2基础常用函数

1、张量处理类

强制数据类型转换:

a1 = tf.constant([1,2,3], dtype=tf.float64)
print(a1)
a2 = tf.cast(a1, tf.int64)  # 强制数据类型转换
print(a2)

查找数据中的最小值和最大值:

print(tf.reduce_min(a2), tf.reduce_max(a2))

上一行例子中是对整个张量查找,也按照一定的方向查找,只按照行或只按照列,这由axis变量决定。通常axis=0代表按列查找,axis=1代表按行查找
在这里插入图片描述

a1 = tf.constant([[1,2,3],[2,3,4]])
print(a1)
print(tf.reduce_max(a1, axis=0))    # 按照列查找最大的行
print(tf.reduce_sum(a1,axis=1))     # 按照行计算各列的和

常见的张量检索类函数在tf.reduce_xxx可以查看

张量中数据的索引,可以按照行,或者按照列索引一个张量数据中的最大值和最小值

test = np.array([[1, 2, 3],[2, 3, 4],[5, 6, 7], [7, 8, 2]])
print(test)
print(tf.argmax(test, axis=0))  # 按列查找,找到每一列的最大值序列号
print(tf.argmax(test, axis=1))  # 按行查找,找到每一行的最大值序列号

2、数学运算类

四则运算类:(注意:只有维度相同的数据才可以做四则运算,运算均是对应位置元素进行计算,同时tf中,除非指定,默认生成的张量数据时类型为int32或float32

a1 = tf.constant([[1,2,3],[1,2,3]])
a2 = tf.constant([[2,3,4],[2,3,4]])
print(tf.add(a1, a2))   # 加
print(tf.subtract(a1, a2))  # 减
print(tf.multiply(a1, a2))  # 乘
print(tf.divide(a1, a1))    # 除

平方与开根号:(这里的计算同样是对应位置元素进行计算)

a1 = tf.fill([1,3], 3.)  # 这里的指定值为3. 小数点是为了生成float32类型数据
print(a1)
print(tf.pow(a1, 3))    # 开三次方根,第二个参数就是开根的次数
print(tf.square(a1))    # 平方
print(tf.square(a1))    # 开方

张量的叉乘(向量积):

a = tf.ones([3, 2])     # 3行2列
b = tf.fill([2, 3], 3.) # 2行3列
print(tf.matmul(a, b))  # 矩阵叉乘得6行6列,叉乘的两个矩阵,前者的列数必须和后者的行数相等

3、训练处理类

标记训练参数,网络训练的过程实质上最重要的就是更新网络中的参数,所以需要告知网络中哪一个参数是可以被跟新的,这样tensorflow框架会自动的在网络反向传播的过程中记录每一层的梯度信息,便于处理。

# tf.Variable(初始值) 函数用于标记可变参数
tf.Variable(tf.random.normal([2,2],mean=0,stddev=1))

标签/特征数据处理,训练之前,预先准备的特征数据和标签数据往往是区分开的,所以需要将他们一 一对应上。将输入数据的特征和标签对应匹配,构建出新的用于训练的变量:

# data = tf.data.Dataset.from_tensor_slices((特征数据, 标签数据)) 可以直接输入numpy或者tensor格式的数据
features = tf.constant([12, 15, 20, 11])    # 特征数据
labels = tf.constant([0, 1, 1, 0])          # 标签
dataset = tf.data.Dataset.from_tensor_slices((features, labels))    # 对应结合
for element in dataset:
    print(element)  # 输出

在上面的程序中from_tensor_slices()函数要求两个数据的第一个维度的大小必须相同即可,所以第一行的特征数据也可以改为:

features = tf.constant([[12,13], [15,16], [20,21], [10,11]])  # 第一个维度任然是4

记录梯度,以及自动微分,在训练的过程中自动跟新参数是一个循环加反向传播的过程,反向传播时,我们需要知道每个网络层中损失函数的梯度,在tf中可以使用上下文记录器自动在迭代过程中记录每个层的梯度信息。这主要由两个函数组成tf.GradientTape() 函数起到上下文记录的作用,用于记录层信息,gradient()函数用于求导即求梯度

with tf.GradientTape() as tape:	# 记录下两行的层信息
    w = tf.Variable(tf.constant(3.0))	# 标记可变参数
    loss = tf.pow(w, 2)	# 设置损失函数类型
grad = tape.gradient(loss, w)	# 损失函数对w求导
print(grad)

在上面的代码中tf.pow(w, 2)表示损失函数为 l o s s = w 2 loss = w^2 loss=w2 梯度求导后得到 ∂ w 2 ∂ w = 2 w \frac{\partial w^2}{\partial w} = 2w ww2=2w 由于初始的参数w为3.0,求导后结果为6.0,程序结果grad为6。注意此处使用的with as结构中必须申明被导的变量,这样才能正常生效记录数据。


枚举数据,为了遍历数据并逐个处理,使用python中内置的enumerate(列表名)进行数据的枚举,通常配合for使用。

# 枚举列表
data = ['one', 'two', 'three']
for i, element in enumerate(data):	# 返回的第一个是序列号,第二个是内容
    print(i, element)

独热编码,在分类的问题中我们还需要了解独热码的概念,通常使用独热码作为标签数据,在被标记的类别中1表示是,0表示非,可以通俗理解为:有几类被分类数据独热码就有几个,每一类数据对应一个的独热码,类似译码器选址原理。

举例,有3个类
那么第一类的独热码是: 1 0 0
第2类的独热码是:	 0 1 0
第3类的独热码是:	 0 0 1

在tf中转化独热码:

classes = 4     # 标签数
labels = tf.constant([1, 0, 6 ,3])  # 输入标签数据
output = tf.one_hot(labels, depth=classes)  # 独热码转换,第一个变量为输入的标签数据,第二个为类别数
print(output)

上面使用了tf.one_hot()函数用来转化独热码,值得注意的是输入的数据会自动的从小到大排序后再转化对应的独热码。所以上面的程序输出了

tf.Tensor(
[[0. 1. 0. 0.]		# 对应1
 [1. 0. 0. 0.]		# 对应0
 [0. 0. 0. 0.]		# 对应6
 [0. 0. 0. 1.]], 	# 对应3
 shape=(4, 4), dtype=float32)

softmax()函数,在网络输出的结果中,如果直接按照最终输出的值判断类型结果往往比较抽象。比如网络最终会输出一个矩阵[2.52, -3.1, 5.62],那么如何确定这个矩阵是对应哪一个类别。这里我们需要通过归一化和概率来判断,假设这个输出的三列矩阵分别对应三个类别的得分数值,那我们可以将三个值相加求和再分别除以各自来得到每个数的百分比占比。当然在机器学习中softmax()也是类似这样做的,不过为了避免负数和特殊0值以及数据的连续性,引入指数函数辅助计算:
S o f t m a x ( y i ) = e y i ∑ j = 0 n e y i   \mathit{Softmax(y_{i} )=\frac{e^{y_{i} } }{ {\textstyle \sum_{j=0}^{n}e^{y_{i} {\LARGE {\ } } } } } } Softmax(yi)=j=0neyi eyi 同时softmax()函数的输出符合概率分布定义: ∀ x , P ( X = x ) ∈ [ 0 , 1 ] 且 ∑ x P ( X = x ) = 1 \mathit{{\LARGE } \forall x, P(X=x)\in [0, 1] 且\sum_{x}^{} P(X=x)=1 } x,P(X=x)[0,1]xP(X=x)=1 所以在上面的[2.52, -3.1, 5.62]例子中不难计算得到对应结果为[0.256, 0.695, 0.048]
在这里插入图片描述
第二列最大,所以我们可以认为这个输出举证表示第二类的可能性最大。综上softmax()的属性决定它大多数时候应用在网络的输出位置

y = tf.constant([1.01, 2.02, -1.11])
y_out = tf.nn.softmax(y)
print("data {}, after softmax is {}".format(y, y_out))

跟新权重参数,在上面的程序中完成了数据的读入,损失梯度计算那么计算过的结果就需要计时更新到权重上。值得注意,跟新参数之前一定要申明参数是可训练自更新的。通常计算得到梯度后直接跟新参数就可以完成一次反向传播。

w = tf.Variable(4)		# 申明可变参数,并赋初值为4
w.assign_sub(1)		# 对可变参数执行一次自减跟新,传入参数为被减数
print(w)

根据鸢尾花数据进行简单的分类任务

软件环境:

cuda = 11.2
python=3.7
numpy==1.19.5
matplotlib== 3.5.3
notebook==6.4.12
scikit-learn==1.2.0
tensorflow==2.6.0

分类时主要有以下几步:
1、加载数据:

# 导入所需模块
import tensorflow as tf
from sklearn import datasets
from matplotlib import pyplot as plt
import numpy as np
# 导入数据,分别为输入特征和标签
x_data = datasets.load_iris().data
y_data = datasets.load_iris().target

2、打乱数据顺序(由于这里的数据是直接加载已有数据,所以先打乱,对于其他数据不一定要这步),分割数据为训练部分和测试部分:

# 随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率)
# seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样
np.random.seed(116)  # 使用相同的seed,保证输入特征和标签一一对应
np.random.shuffle(x_data)
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)
# 将打乱后的数据集分割为训练集和测试集,训练集为前120行,测试集为后30行
x_train = x_data[:-30]
y_train = y_data[:-30]
x_test = x_data[-30:]
y_test = y_data[-30:]

3、转换数据类型格式,匹配特征数据和标签数据,设置训练可变参数

# 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错
x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)

# from_tensor_slices函数使输入特征和标签值一一对应。(把数据集分批次,每个批次batch组数据)
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

# 生成神经网络的参数,4个输入特征故,输入层为4个输入节点;因为3分类,故输出层为3个神经元
# 用tf.Variable()标记参数可训练
# 使用seed使每次生成的随机数相同(方便教学,使大家结果都一致,在现实使用时不写seed)
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1))
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1))

4、初始化超参数

lr = 0.1  # 学习率为0.1
train_loss_results = []  # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据
test_acc = []  # 将每轮的acc记录在此列表中,为后续画acc曲线提供数据
epoch = 500  # 循环500轮
loss_all = 0  # 每轮分4个step,loss_all记录四个step生成的4个loss的和

5、开始训练

# 训练部分
for epoch in range(epoch):  #数据集级别的循环,每个epoch循环一次数据集
    for step, (x_train, y_train) in enumerate(train_db):  #batch级别的循环 ,每个step循环一个batch
        with tf.GradientTape() as tape:  # with结构记录梯度信息
            y = tf.matmul(x_train, w1) + b1  # 神经网络乘加运算
            y = tf.nn.softmax(y)  # 使输出y符合概率分布(此操作后与独热码同量级,可相减求loss)
            y_ = tf.one_hot(y_train, depth=3)  # 将标签值转换为独热码格式,方便计算loss和accuracy
            loss = tf.reduce_mean(tf.square(y_ - y))  # 采用均方误差损失函数mse = mean(sum(y-out)^2)
            loss_all += loss.numpy()  # 将每个step计算出的loss累加,为后续求loss平均值提供数据,这样计算的loss更准确
        # 计算loss对各个参数的梯度
        grads = tape.gradient(loss, [w1, b1])

        # 实现梯度更新 w1 = w1 - lr * w1_grad    b = b - lr * b_grad
        w1.assign_sub(lr * grads[0])  # 参数w1自更新
        b1.assign_sub(lr * grads[1])  # 参数b自更新

6、训练的同时在每个epoch中进行一次测试(实际训练时,若果测试输出需要耗时较高,可以每10次进行一次测试)

# 测试部分
    # total_correct为预测对的样本个数, total_number为测试的总样本数,将这两个变量都初始化为0
    total_correct, total_number = 0, 0
    for x_test, y_test in test_db:
        # 使用更新后的参数进行预测
        y = tf.matmul(x_test, w1) + b1
        y = tf.nn.softmax(y)
        pred = tf.argmax(y, axis=1)  # 返回y中最大值的索引,即预测的分类
        # 将pred转换为y_test的数据类型
        pred = tf.cast(pred, dtype=y_test.dtype)
        # 若分类正确,则correct=1,否则为0,将bool型的结果转换为int型
        correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32)
        # 将每个batch的correct数加起来
        correct = tf.reduce_sum(correct)
        # 将所有batch中的correct数加起来
        total_correct += int(correct)
        # total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数
        total_number += x_test.shape[0]
    # 总的准确率等于total_correct/total_number
    acc = total_correct / total_number
    test_acc.append(acc)

7、输出结果,可视化训练过程

# 绘制 loss 曲线
plt.title('Loss Function Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Loss')  # y轴变量名称
plt.plot(train_loss_results, label="$Loss$")  # 逐点画出trian_loss_results值并连线,连线图标是Loss
plt.legend()  # 画出曲线图标
plt.show()  # 画出图像

# 绘制 Accuracy 曲线
plt.title('Acc Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Acc')  # y轴变量名称
plt.plot(test_acc, label="$Accuracy$")  # 逐点画出test_acc值并连线,连线图标是Accuracy
plt.legend()
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1378440.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

鸿蒙开发环境搭建-高频环境问题解决

1.Node版本问题 由于SDK的部分工具依赖Node.js运行时,推荐使用配套API版本的Node.js,保证工程的兼容性。 匹配关系见下表: API LevelNode.js支持范围API Level≤914.x(≥14.19.1)、16.xAPI Level>914.x&#xff0…

软件测试之项目立项与需求评审

📢专注于分享软件测试干货内容,欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!📢软件测试面试题分享: 1000道软件测试面试题及答案📢软件测试实战项目分享: 纯接口项目-完…

ASP .net core微服务实战(杨中科)

背景: 主要是思考下,我们为什么要用微服务? 微服务我现在理解是:提供了我们一种模块化的手段,一个服务负责一种类型的业务,是一种面对复杂问题进行拆分的方式,但是也会引入一些中间件&#xf…

基于爬虫和Kettle的豆瓣电影的采集与预处理

一:爬虫 1、爬取的目标 将豆瓣电影网上的电影的基本信息,比如:电影名称、导演、电影类型、国家、上映年份、评分、评论人数爬取出来,并将爬取的结果放入csv文件中,方便存储。 2、网站结构 图1豆瓣网网站结构详…

Vue3:vue-cli项目创建及vue.config.js配置

一、node.js检测或安装: node -v node.js官方 二、vue-cli安装: npm install -g vue/cli # OR yarn global add vue/cli/*如果安装的时候报错,可以尝试一下方法 删除C:\Users**\AppData\Roaming下的npm和npm-cache文件夹 删除项目下的node…

Vue入门六(前端路由的概念与原理|Vue-router简单使用|登录跳转案例|scoped样式)

文章目录 前要:前端路由的概念与原理1)什么是路由2)SPA与前端路由3)什么是前端路由4)前端路由的工作方式 一、Vue-router简单使用1)什么是vue-router2) vue-router 安装和配置的步骤① 安装 vue-router 包②…

为什么企业容易陷入“自嗨式营销”,媒介盒子分析

互联网时代,各类信息都传播的非常快,同时信息技术的成熟也让许多企业可以监测广告效果,比如曝光、互动、转化等都可以通过数据体现,然而很多企业在营销过程中却发现,大部分的钱、精力、人力等都被浪费了。出现这种情况…

Android开发基础(三)

Android开发基础(三) 本篇将介绍Android权限管理。 Android权限管理 Android权限管理主要是为了保护用户的隐私和设备的安全性; 在Android系统中,应用在请求权限时必须进行明确的申请,根据权限的保护级别&#xff0…

C语言——(printf和scanf介绍)

一.printf 1.基本用法 printf()的作用是将参数文本输出的屏幕。如下; 2.占位符 printf()可以在输出文本中指定占位符 ,“占位符”,也就是这个位置可以用其他值代入。 如: …

Spring Cloud + Vue前后端分离-第12章 通用权限设计

源代码在GitHub - 629y/course: Spring Cloud Vue前后端分离-在线课程 Spring Cloud Vue前后端分离-第12章 通用权限设计 这一章我们不依赖第三方框架,我会从权限相关表的设计,到权限的配置,到权限的拦截,带大家一步一步的做出…

C语言基础语法跟练 day3

31、不使用累计乘法的基础上&#xff0c;通过移位运算&#xff08;<<&#xff09;实现2的n次方的计算。 #include <stdio.h> int main() {int i 0;scanf("%d",&i);printf("%d",1<<i);return 0; } 32、问题&#xff1a;一年约有 3.…

使用postman做接口测试(一)

如何执行HTTP接口测试。包括如下三步&#xff1a; 构造一条符合要求的HTTP请求消息&#xff1b;发给我&#xff0c;我给你回响应&#xff1b;你读取HTTP响应&#xff0c;检查响应内容是否正确。 今天我们就讲&#xff0c;如何使用postman发送符合要求的HTTP请求。 how-如何安…

完整的模型验证套路

读取图片 from PIL import Imageimg_path "../Yennefer_of_Vengerberg.jpg" image Image.open(img_path) print(image)转换成灰度图&#xff08;可选&#xff09; image image.convert(L) image.show()转换成RGB格式 image image.convert(RGB)因为png格式是四…

逆向分析爬取网页动态

本例子以爬取人民邮电出版社网页新书的信息为例 由于页面是动态的&#xff0c;信息会不停地更新&#xff0c;所以不同时间的爬取结果会不同。

Redis重点总结补充

Redis重点总结 1.redis分布式锁 2.redission实现分布式锁 注意&#xff1a;加锁、设置过期时间等操作都是基于lua脚本完成. redisson分布式锁&#xff0c;实现可重入&#xff08;前提是同一个线程下 3.redis主从集群 实现主从复制 ( Master-slave Replication)的工作原理 : …

Linux中关于echo命令详解

echo的作用 echo用于输出字符或字符串或者回显。 echo的参数说明 -n不换行输出内容-e解析转义字符-E不使用解析转义字符 使用 "-e" 参数拓展参数 \b删除前一个字符\c最后不加上换行号\f换页\n换行并将光标移动到行首\r光标移动到行首切不换行,如果\r后面还有字符,…

51-10 多模态论文串讲—ALBEF 论文精读

今天我们就来过一下多模态的串讲&#xff0c;其实之前&#xff0c;我们也讲了很多工作了&#xff0c;比如说CLIP&#xff0c;还有ViLT&#xff0c;以及CLIP的那么多后续工作。多模态学习在最近几年真的是异常的火爆&#xff0c;那除了普通的这种多模态学习&#xff0c;比如说视…

分块矩阵的定义、计算

目录 一、定义 二、分块矩阵的加减乘法 三、考点 一、定义 分块&#xff0c;顾名思义&#xff0c;将整个矩阵分成几部分&#xff0c;如下图所示 二、分块矩阵的加减乘法 三、考点 分块矩阵的考点不多&#xff0c;一般来说&#xff0c;有一种&#xff1a; 求分块矩阵的转置…

基于 IDEA 创建 Maven 的 Java SE 工程和 Java Web 工程

一、概念简介 Maven 工程相对之前的项目&#xff0c;多出一组 gavp 属性&#xff0c;gav 需要我们在创建项目的时候指定&#xff0c;p 有默认值&#xff0c;我们先行了解下这组属性的含义。 Maven 中的 GAVP 是指 GroupId、ArtifactId、Version、Packaging 等四个属性的缩写&am…

MFC为对话框资源添加类

VC6新建一个对话框类型的工程; 建立之后资源中默认有2个对话框,一个是主对话框,About这个是默认建立的关于版权信息的; 然后主对话框有对应的.h和.cpp文件;可以在其中进行编程; 默认建立的有一个 关于 对话框; 在资源中新插入一个对话框,IDD_DIALOG1是对话框ID; 新加…