大创项目推荐 深度学习猫狗分类 - python opencv cnn

news2024/11/17 5:38:48

文章目录

  • 0 前言
  • 1 课题背景
  • 2 使用CNN进行猫狗分类
  • 3 数据集处理
  • 4 神经网络的编写
  • 5 Tensorflow计算图的构建
  • 6 模型的训练和测试
  • 7 预测效果
  • 8 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习猫狗分类 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1 课题背景

要说到深度学习图像分类的经典案例之一,那就是猫狗大战了。猫和狗在外观上的差别还是挺明显的,无论是体型、四肢、脸庞和毛发等等,
都是能通过肉眼很容易区分的。那么如何让机器来识别猫和狗呢?这就需要使用卷积神经网络来实现了。
本项目的主要目标是开发一个可以识别猫狗图像的系统。分析输入图像,然后预测输出。实现的模型可以根据需要扩展到网站或任何移动设备。我们的主要目标是让模型学习猫和狗的各种独特特征。一旦模型的训练完成,它将能够区分猫和狗的图像。

2 使用CNN进行猫狗分类

卷积神经网络 (CNN)
是一种算法,将图像作为输入,然后为图像的所有方面分配权重和偏差,从而区分彼此。神经网络可以通过使用成批的图像进行训练,每个图像都有一个标签来识别图像的真实性质(这里是猫或狗)。一个批次可以包含十分之几到数百个图像。

对于每张图像,将网络预测与相应的现有标签进行比较,并评估整个批次的网络预测与真实值之间的距离。然后,修改网络参数以最小化距离,从而增加网络的预测能力。类似地,每个批次的训练过程都是类似的。
在这里插入图片描述

3 数据集处理

猫狗照片的数据集直接从kaggle官网下载即可,下载后解压,这是我下载的数据:
在这里插入图片描述在这里插入图片描述
相关代码



    import os,shutil
    
    original_data_dir = "G:/Data/Kaggle/dogcat/train"
    base_dir = "G:/Data/Kaggle/dogcat/smallData"
    if os.path.isdir(base_dir) == False:
        os.mkdir(base_dir)
    
    # 创建三个文件夹用来存放不同的数据:train,validation,test
    train_dir = os.path.join(base_dir,'train')
    if os.path.isdir(train_dir) == False:
        os.mkdir(train_dir)
    validation_dir = os.path.join(base_dir,'validation')
    if os.path.isdir(validation_dir) == False:
        os.mkdir(validation_dir)
    test_dir = os.path.join(base_dir,'test')
    if os.path.isdir(test_dir) == False:
        os.mkdir(test_dir)
    
    # 在文件中:train,validation,test分别创建cats,dogs文件夹用来存放对应的数据
    train_cats_dir = os.path.join(train_dir,'cats')
    if os.path.isdir(train_cats_dir) == False:
        os.mkdir(train_cats_dir)
    train_dogs_dir = os.path.join(train_dir,'dogs')
    if os.path.isdir(train_dogs_dir) == False:
        os.mkdir(train_dogs_dir)
    
    validation_cats_dir = os.path.join(validation_dir,'cats')
    if os.path.isdir(validation_cats_dir) == False:
        os.mkdir(validation_cats_dir)
    validation_dogs_dir = os.path.join(validation_dir,'dogs')
    if os.path.isdir(validation_dogs_dir) == False:
        os.mkdir(validation_dogs_dir)
    
    test_cats_dir = os.path.join(test_dir,'cats')
    if os.path.isdir(test_cats_dir) == False:
        os.mkdir(test_cats_dir)
    test_dogs_dir = os.path.join(test_dir,'dogs')
    if os.path.isdir(test_dogs_dir) == False:
        os.mkdir(test_dogs_dir)


    #将原始数据拷贝到对应的文件夹中 cat
    fnames = ['cat.{}.jpg'.format(i) for i in range(1000)]
    for fname in fnames:
        src = os.path.join(original_data_dir,fname)
        dst = os.path.join(train_cats_dir,fname)
        shutil.copyfile(src,dst)
    
    fnames = ['cat.{}.jpg'.format(i) for i in range(1000,1500)]
    for fname in fnames:
        src = os.path.join(original_data_dir,fname)
        dst = os.path.join(validation_cats_dir,fname)
        shutil.copyfile(src,dst)
    
    fnames = ['cat.{}.jpg'.format(i) for i in range(1500,2000)]
    for fname in fnames:
        src = os.path.join(original_data_dir,fname)
        dst = os.path.join(test_cats_dir,fname)
        shutil.copyfile(src,dst)


#将原始数据拷贝到对应的文件夹中 dog
fnames = ['dog.{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:
    src = os.path.join(original_data_dir,fname)
    dst = os.path.join(train_dogs_dir,fname)
    shutil.copyfile(src,dst)

fnames = ['dog.{}.jpg'.format(i) for i in range(1000,1500)]
for fname in fnames:
    src = os.path.join(original_data_dir,fname)
    dst = os.path.join(validation_dogs_dir,fname)
    shutil.copyfile(src,dst)

fnames = ['dog.{}.jpg'.format(i) for i in range(1500,2000)]
for fname in fnames:
    src = os.path.join(original_data_dir,fname)
    dst = os.path.join(test_dogs_dir,fname)
    shutil.copyfile(src,dst)
print('train cat images:', len(os.listdir(train_cats_dir)))
print('train dog images:', len(os.listdir(train_dogs_dir)))
print('validation cat images:', len(os.listdir(validation_cats_dir)))
print('validation dog images:', len(os.listdir(validation_dogs_dir)))
print('test cat images:', len(os.listdir(test_cats_dir)))
print('test dog images:', len(os.listdir(test_dogs_dir)))
train cat images: 1000
train dog images: 1000
validation cat images: 500
validation dog images: 500
test cat images: 500
test dog images: 500


4 神经网络的编写

cnn卷积神经网络的编写如下,编写卷积层、池化层和全连接层的代码

conv1_1 = tf.layers.conv2d(x, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_1')
conv1_2 = tf.layers.conv2d(conv1_1, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_2')
pool1 = tf.layers.max_pooling2d(conv1_2, (2, 2), (2, 2), name='pool1')
conv2_1 = tf.layers.conv2d(pool1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_1')
conv2_2 = tf.layers.conv2d(conv2_1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_2')
pool2 = tf.layers.max_pooling2d(conv2_2, (2, 2), (2, 2), name='pool2')
conv3_1 = tf.layers.conv2d(pool2, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_1')
conv3_2 = tf.layers.conv2d(conv3_1, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_2')
pool3 = tf.layers.max_pooling2d(conv3_2, (2, 2), (2, 2), name='pool3')
conv4_1 = tf.layers.conv2d(pool3, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_1')
conv4_2 = tf.layers.conv2d(conv4_1, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_2')
pool4 = tf.layers.max_pooling2d(conv4_2, (2, 2), (2, 2), name='pool4')

flatten = tf.layers.flatten(pool4)
fc1 = tf.layers.dense(flatten, 512, tf.nn.relu)
fc1_dropout = tf.nn.dropout(fc1, keep_prob=keep_prob)
fc2 = tf.layers.dense(fc1, 256, tf.nn.relu)
fc2_dropout = tf.nn.dropout(fc2, keep_prob=keep_prob)
fc3 = tf.layers.dense(fc2, 2, None)

5 Tensorflow计算图的构建

然后,再搭建tensorflow的计算图,定义占位符,计算损失函数、预测值和准确率等等

self.x = tf.placeholder(tf.float32, [None, IMAGE_SIZE, IMAGE_SIZE, 3], 'input_data')
self.y = tf.placeholder(tf.int64, [None], 'output_data')
self.keep_prob = tf.placeholder(tf.float32)
# 图片输入网络中
fc = self.conv_net(self.x, self.keep_prob)
self.loss = tf.losses.sparse_softmax_cross_entropy(labels=self.y, logits=fc)
self.y_ = tf.nn.softmax(fc) # 计算每一类的概率
self.predict = tf.argmax(fc, 1)
self.acc = tf.reduce_mean(tf.cast(tf.equal(self.predict, self.y), tf.float32))
self.train_op = tf.train.AdamOptimizer(LEARNING_RATE).minimize(self.loss)
self.saver = tf.train.Saver(max_to_keep=1)

最后的saver是要将训练好的模型保存到本地。

6 模型的训练和测试

然后编写训练部分的代码,训练步骤为1万步

acc_list = []
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())

    for i in range(TRAIN_STEP):
        train_data, train_label, _ = self.batch_train_data.next_batch(TRAIN_SIZE)

        eval_ops = [self.loss, self.acc, self.train_op]
        eval_ops_results = sess.run(eval_ops, feed_dict={
            self.x:train_data,
            self.y:train_label,
            self.keep_prob:0.7
        })
        loss_val, train_acc = eval_ops_results[0:2]

        acc_list.append(train_acc)
        if (i+1) % 100 == 0:
            acc_mean = np.mean(acc_list)
            print('step:{0},loss:{1:.5},acc:{2:.5},acc_mean:{3:.5}'.format(
                i+1,loss_val,train_acc,acc_mean
            ))
        if (i+1) % 1000 == 0:
            test_acc_list = []
            for j in range(TEST_STEP):
                test_data, test_label, _ = self.batch_test_data.next_batch(TRAIN_SIZE)
                acc_val = sess.run([self.acc],feed_dict={
                    self.x:test_data,
                    self.y:test_label,
                    self.keep_prob:1.0
            })
            test_acc_list.append(acc_val)
            print('[Test ] step:{0}, mean_acc:{1:.5}'.format(
                i+1, np.mean(test_acc_list)
            ))
    # 保存训练后的模型
    os.makedirs(SAVE_PATH, exist_ok=True)
    self.saver.save(sess, SAVE_PATH + 'my_model.ckpt')

训练结果如下:
在这里插入图片描述
训练1万步后模型测试的平均准确率有0.82。

7 预测效果

选取三张图片测试
在这里插入图片描述
在这里插入图片描述
可见,模型准确率还是较高的。

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1377495.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

小魔推行业玩法:生活美容怎么做短视频矩阵?

如今每个实体老板都想让自己生意做的更好,那就需要有更多获取流量的方式,获得大量的同城曝光;在市场内卷的状况下,通过短视频来做门店引流无疑是绝佳的方式,让更多同城的用户知晓自己的门店,这个时候通过小…

flask web服务器:运行在云服务器上的最简单的web服务器

上期文章我们分享了flask的基础知识以及如何安装flask,当你安装完成flask后,我们就可以打造自己的web服务器了。 首先我们打印最简单的hello world,并在浏览器中显示 from flask import Flask app Flask(__name__)app.route(/) def index():return he…

【网络安全】【密码学】【北京航空航天大学】实验二、数论基础(中)【C语言和Java实现】

实验二、数论基础(中) 一、实验内容 1、扩展欧几里得算法(Extended Euclid’s Algorithm) (1)、算法原理 已知整数 a , b ,扩展的欧几里得算法可以在求得 a , b 的最大公约数的同时,找到一对…

顺序图作业

顺序图作业 一. 简答题(共7题,100分) (简答题) 交互是什么?请举 2-3 个交互的实际例子。 正确答案: 一次交互就是指在特定语境中, 为了实现某一个目标, 而在一组对象之间进行交换的一组 消息所…

字体包大小缩小的软件

Fontmin - 字体子集化方案https://ecomfe.github.io/fontmin/#app

JAVA制造业MES生产管理系统源码 MES源码

JAVA制造业MES生产管理系统源码 MES源码 开发环境:jdkeclipsetomcatmavenmysql 开发工具:MyEclipse 系统说明: MES制造执行系统,其定位于制造执行系统的Java开源版本,系统包括系统管理,车间基础数据建模&am…

Oracle DBCA工具图形化方式检测不到ASM磁盘组(解决各种报错)

本例环境: 操作系统OEL 6.5数据库版本:11.2.0.4 问题:DBCA建库的时候,检测不到ASM磁盘组 因素一: 可能是在授权的时候执行了 chown –R 775 /u01/app等修改权限。 分析:数据库无法连接ASM,这应该是权限…

代码随想录算法训练营第2天 | 977.有序数组的平方 ,209.长度最小的子数组 ,59.螺旋矩阵II

数组理论基础 文章链接:https://programmercarl.com/%E6%95%B0%E7%BB%84%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%80.html 977.有序数组的平方 题目链接:https://leetcode.cn/problems/squares-of-a-sorted-array/description/ 思路1.暴力排序 将每个数平…

国科 GK7201V200 SOC芯片

1.概述 GK7201V200 芯片是国科推出的新一代高集成度、高画质、低码率、低功耗的 AI IP Camera SoC 芯 片。 芯片集成 ARM Cortex A7 处理器,支持专业的 ISP 图像处理单元,H.265/H.264 视频编码,满足客户 差异化业务需求。同时集成了 Ethe…

国产六核CPU商显板,三屏异显,米尔基于全志D9360开发板

芯驰D9-Pro 自主可控、安全可信的高性能商显方案 采用国产CPU:集成了6个ARM Cortex-A551.6GHz 高性能CPU和1个ARM Cortex-R5800MHz; 高性能的高安全HSM安全的处理器,支持TRNG、AES、RSA、SHA、SM2/3/4/9; 它包含100GFLOPS 3D G…

打印的前后顺序

面试题经常会有 <script>console.log(1)setTimeout(function(){console.log(2)})console.log(3)let pnew Promise((resolve,reject) >{console.log(4)resloved(hhhhhh)})p.then(res >{console.log(res)console.log(5)},res >{console.log(7)})console.log(6)&l…

如何进行大数据系统测试

大数据系统常见的架构形式有如下几种&#xff1a; Hadoop架构&#xff1a; Hadoop Distributed File System (HDFS)&#xff1a;这是一种分布式文件系统&#xff0c;设计用于存储海量数据并允许跨多台机器进行高效访问。 MapReduce&#xff1a;作为Hadoop的核心计算框架&#…

JBOD详解

JBOD是存储领域中一类重要的存储设备。 英文全称Just a bunch of disks, 中文也称之为硬盘存储扩展柜。 它是传统存储系统赖以生存的根基之一&#xff0c;如果没有JBOD&#xff0c;那一下子就会省去很多部件&#xff1a;后端HBA、SAS扩展器/FC成环器、线缆、JBOD控制模块等等…

高周期的伦敦金交易机会转到低周期做 不可以吗?

一般的市场观点认为&#xff0c;交易信号出现在越高的时间周期上就越准确&#xff0c;成功的概率就越高。而低时间周期的信号&#xff0c;要推动高时间周期行情的发展&#xff0c;那几乎是不可能。因此多数人认为从高周期转到低周期&#xff0c;然后去捕捉高周期行情机会&#…

强化学习应用(二):基于Q-learning的无人机物流路径规划研究(提供Python代码)

一、Q-learning简介 Q-learning是一种强化学习算法&#xff0c;用于解决基于马尔可夫决策过程&#xff08;MDP&#xff09;的问题。它通过学习一个价值函数来指导智能体在环境中做出决策&#xff0c;以最大化累积奖励。 Q-learning算法的核心思想是通过不断更新一个称为Q值的…

GIS数据

version: 0.2 文章目录 1. GIS 数据类型2. 矢量2.1 Shapefile2.1.1 Wiki介绍2.1.2 重点总结2.1.3 样例 2.2 GeoJSON2.2.1 Wiki介绍2.2.2 重点总结2.2.3 样例 3. 栅格3.1 GeoTIFF3.1.1 Wiki介绍3.1.2 重点总结3.1.3 样例 4. 矢量栅格4.1 GeoPackage4.1.1 Wiki介绍4.1.2 重点总结…

3dmax灯光缓存参数怎么设置?解析来了!

细分&#xff1a;用来决定灯光缓存的样本数量&#xff0c;样本数量以此数值的平方来计算。数值越高&#xff0c;效果越好&#xff0c;速度越慢。一般出图建议1000到1800之间已经足够了。 采样大小&#xff1a;用来控制灯光缓存的样本尺寸大小&#xff0c;较小的数值意味着较小…

FastAdmin西陆教育系统(xiluEdu)开源代码

应用介绍 一款基于FastAdminThinkPHPUniapp开发的西陆教育系统&#xff08;微信小程序、移动端H5、安卓APP、IOS-APP&#xff09;&#xff0c;以下是教育系统所包含的一些功能&#xff1a; 视频课程&#xff1a;教育系统提供在线视频课程&#xff0c;学生可以通过网络观看教师…

dp专题11 一和零

本题链接&#xff1a;. - 力扣&#xff08;LeetCode&#xff09; 题目&#xff1a; 思路&#xff1a; 由题意&#xff0c;这里有两个特征&#xff0c;要求满足选取的字符串总和中&#xff0c;0的个数和1的个数分别不超过m个0 和 n个 1&#xff0c;问选取的字符串最多有多少个…

Linux网络基础及bonding实际操作

1.查看linux基础的网络配置 网关&#xff1a;route -n ip地址&#xff1a;ifconfig 或 ip a DNS服务器&#xff1a;cat /etc/resolv.conf 主机名&#xff1a;hostname 路由&#xff1a;route -n 网络连接状态&#xff1a;ss 或 netstat 2.临时修改网卡名称 3.永久修…