互联网加竞赛 基于大数据的股票量化分析与股价预测系统

news2024/11/17 23:30:48

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 设计原理
    • QTCharts
    • arma模型预测
    • K-means聚类算法
    • 算法实现关键问题说明
  • 4 部分核心代码
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于大数据的股票量化分析与股价预测系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

基于大数据的股票可视化分析平台设计,对股票数据进行预处理,清洗以及可视化分析,同时设计了软件界面。

2 实现效果

价格可视化
在这里插入图片描述
魔梯访问与指标计算

在这里插入图片描述
聚类分析
在这里插入图片描述

3 设计原理

QTCharts

简介

QtCharts是Qt自带的组件库,其中包含折线、曲线、饼图、棒图、散点图、雷达图等各种常用的图表。而在地面站开发过程中,使用折线图可以对无人机的一些状态数据进行监测,更是可以使用散点图来模拟飞机所在位置,实现平面地图的感觉。

使用Qt
Charts绘制,大概可以分为四个部分:数据(QXYSeries)、图表(QChart)、坐标轴(QAbstractAXis)和视图(QChartView)。这里就不一一给大家介绍了,下面给大家说一下QtCharts的配置安装。

QtCharts模块的C++类

在这里插入图片描述

arma模型预测

简介

ARMA模型,又称为ARMA
(p,q)模型。其核心思想就是当前正如名字所显示的,整个模型的核心就是要确定p和q这两个参数。其中,p决定了我们要用几个滞后时期的价格数据,而q决定了我们要用几个滞后时期的预测误差。

在这里插入图片描述

简单来说,ARMA模型做了两件事。一是基于趋势理论,用历史数据来回归出一个当前的价格预测,这个预测反映了自回归的思想。但是这个预测必然是有差异的,所以ARMA模型根据历史的预测误差也回归出一个当前的误差预测,这个预测反映了加权平均的思想。用价格预测加上误差预测修正,才最终得到一个理论上更加精确的最终价格预测。

比起简单的自回归模型或者以时间为基础的简单趋势预测模型,ARMA模型最大的优势,在于综合了趋势理论和均值回归理论,理论上的精确度会比较高。

    

    '''
        自回归滑动平均模型
    '''
    from statsmodels.tsa.arima_model import ARMA
    from itertools import product


​     

```
def myARMA(data):
    p = range(0, 9)
    q = range(0, 9)
    parameters = list(product(p, q))  # 生成(p,q)从(0,0)到(9,9)的枚举
    best_aic = float('inf')
    result = None
    for param in parameters:
        try:
            model = ARMA(endog=data, order=(param[0], param[1])).fit()
        except ValueError:
            print("参数错误:", param)
            continue
        aic = model.aic
        if aic < best_aic:  # 选取最优的aic
            best_aic = model.aic
            result = (model, param)
    return result
```


K-means聚类算法

基本原理

k-Means算法是一种使用最普遍的聚类算法,它是一种无监督学习算法,目的是将相似的对象归到同一个簇中。簇内的对象越相似,聚类的效果就越好。该算法不适合处理离散型属性,但对于连续型属性具有较好的聚类效果。

聚类效果判定标准

使各个样本点与所在簇的质心的误差平方和达到最小,这是评价k-means算法最后聚类效果的评价标准。

在这里插入图片描述

算法实现步骤

1)选定k值

2)创建k个点作为k个簇的起始质心。

3)分别计算剩下的元素到k个簇的质心的距离,将这些元素分别划归到距离最小的簇。

4)根据聚类结果,重新计算k个簇各自的新的质心,即取簇中全部元素各自维度下的算术平均值。

5)将全部元素按照新的质心重新聚类。

6)重复第5步,直到聚类结果不再变化。

7)最后,输出聚类结果。

算法缺点

虽然K-Means算法原理简单,但是有自身的缺陷:

1)聚类的簇数k值需在聚类前给出,但在很多时候中k值的选定是十分难以估计的,很多情况我们聚类前并不清楚给出的数据集应当分成多少类才最恰当。

2)k-means需要人为地确定初始质心,不一样的初始质心可能会得出差别很大的聚类结果,无法保证k-means算法收敛于全局最优解。

3)对离群点敏感。

4)结果不稳定(受输入顺序影响)。

5)时间复杂度高O(nkt),其中n是对象总数,k是簇数,t是迭代次数。

算法实现关键问题说明

K值的选定说明

根据聚类原则:组内差距要小,组间差距要大。我们先算出不同k值下各个SSE(Sum of
squared
errors)值,然后绘制出折线图来比较,从中选定最优解。从图中,我们可以看出k值到达5以后,SSE变化趋于平缓,所以我们选定5作为k值。

在这里插入图片描述

初始的K个质心选定说明

初始的k个质心选定是采用的随机法。从各列数值最大值和最小值中间按正太分布随机选取k个质心。

关于离群点

离群点就是远离整体的,非常异常、非常特殊的数据点。因为k-
means算法对离群点十分敏感,所以在聚类之前应该将这些“极大”、“极小”之类的离群数据都去掉,否则会对于聚类的结果有影响。离群点的判定标准是根据前面数据可视化分析过程的散点图和箱线图进行判定。

4 部分核心代码

#include "kmeans.h"
#include "ui_kmeans.h"

kmeans::kmeans(QWidget *parent) :
    QDialog(parent),
    ui(new Ui::kmeans)
{
    this->setWindowFlags(Qt::Dialog | Qt::WindowMinMaxButtonsHint | Qt::WindowCloseButtonHint);
    ui->setupUi(this);
}

kmeans::~kmeans()
{
    delete ui;
}

void kmeans::closeEvent(QCloseEvent *)
{
    end_flag=true;
}

void kmeans::on_pushButton_clicked()
{
    end_flag=false;
    //读取数据
    QFile sharpe("sharpe.txt");
    sharpe.open(QIODevice::ReadOnly|QIODevice::Text);
    std::vector<std::array<double,2>> data;
    while(!sharpe.atEnd())
    {
        QStringList linels=QString(sharpe.readLine()).split(',');
        qreal mean=linels[3].toDouble();
        qreal sd=linels[4].toDouble();
        if(mean>-0.06&&mean<0.06&&sd<0.12)data.push_back({mean,sd});
    }
    std::random_shuffle(data.begin(),data.end());
    sharpe.close();
    //聚类
    ui->pushButton->setText("聚类中...");
    QApplication::processEvents();
    auto labels=std::get<1>(dkm::kmeans_lloyd(data,9));
    ui->pushButton->setText("开始");
    QApplication::processEvents();
    //作图
    QChart *chart = new QChart();
    //chart->setAnimationOptions(QChart::SeriesAnimations);
    //chart->legend()->setVisible(false);

    QList<QScatterSeries*> serieses;
    QList<QColor> colors{
        QColor(Qt::black),
                QColor(Qt::cyan),
                QColor(Qt::red),
                QColor(Qt::green),
                QColor(Qt::magenta),
                QColor(Qt::yellow),
                QColor(Qt::gray),
                QColor(Qt::blue),
                QColor("#A27E36")
    };
    for(int i=0;i<9;i++){
        QScatterSeries *temp = new QScatterSeries();
        temp->setName(QString::number(i));
        temp->setColor(colors[i]);
        temp->setMarkerSize(10.0);
        serieses.append(temp);
        chart->addSeries(temp);
    }
    chart->createDefaultAxes();

    /*
                             v4
-------------------------------------------------------------
      Percentiles      Smallest
 1%     -.023384        -.35985
 5%    -.0115851       -.349373
10%    -.0078976       -.325249       Obs             613,849
25%    -.0037067       -.324942       Sum of Wgt.     613,849

50%     .0000567                      Mean           .0004866
                        Largest       Std. Dev.      .0130231
75%     .0041332        1.28376
90%     .0091571        1.52169       Variance       .0001696
95%     .0132541        2.73128       Skewness       95.21884
99%     .0273964        4.56203       Kurtosis       28540.15

                             v5
-------------------------------------------------------------
      Percentiles      Smallest
 1%     .0073016       4.68e-07
 5%     .0112397       7.22e-07
10%     .0135353       7.84e-07       Obs             613,849
25%     .0180452       8.21e-07       Sum of Wgt.     613,849

50%     .0248626                      Mean           .0282546
                        Largest       Std. Dev.      .0213631
75%     .0343356         3.2273
90%     .0458472        3.32199       Variance       .0004564
95%     .0549695        4.61189       Skewness       68.11651
99%     .0837288        4.75981       Kurtosis       11569.69

     */

    QValueAxis *axisX = qobject_cast<QValueAxis *>(chart->axes(Qt::Horizontal).at(0));
    axisX->setRange(-0.06,0.06);
    axisX->setTitleText("平均值");
    axisX->setLabelFormat("%.2f");

    QValueAxis *axisY = qobject_cast<QValueAxis *>(chart->axes(Qt::Vertical).at(0));
    axisY->setRange(0,0.12);
    axisY->setTitleText("标准差");
    axisY->setLabelFormat("%.2f");

    ui->widget->setRenderHint(QPainter::Antialiasing);
    ui->widget->setChart(chart);

    int i=0;
    auto labelsiter=labels.begin();
    for(auto &&point : data){
        if(end_flag)return;
        serieses[*labelsiter]->append(QPointF(point[0],point[1]));
        i++;
        labelsiter++;
        if(i%1000==0){
            QApplication::processEvents();
        }
    }
}

void kmeans::on_pushButton_2_clicked()
{
    end_flag=true;
}

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1377233.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

HarmonyOS4.0系统性深入开发18公共事件简介

公共事件简介 HarmonyOS通过CES&#xff08;Common Event Service&#xff0c;公共事件服务&#xff09;为应用程序提供订阅、发布、退订公共事件的能力。 公共事件从系统角度可分为&#xff1a;系统公共事件和自定义公共事件。 系统公共事件&#xff1a;CES内部定义的公共事…

如何利用RPA做UI自动化测试对传统自动化的降维打击

写在前面 RPA软件一开始的目的并不是自动化测试&#xff0c;而是要把电脑上面几十个、上百个常用的软件&#xff0c;通过机器人流程自动化来打通&#xff0c;通过一个软件来控制几十个、上百个软件。而这个过程&#xff0c;其实覆盖了软件自动化测试。 所谓降维打击&#xff0c…

webpack初始化

1.下载 webpack webpack-cli 到项目 (版本独立) ** npm i webpack webpack-cli --save-dev ** 2.项目中运行工具命念&#xff0c;采用自定义命令的方式(局部命令)

Python商业数据挖掘实战——爬取网页并将其转为Markdown

前言 「作者主页」&#xff1a;雪碧有白泡泡 「个人网站」&#xff1a;雪碧的个人网站 ChatGPT体验地址 文章目录 前言前言正则表达式进行转换送书活动 前言 在信息爆炸的时代&#xff0c;互联网上的海量文字信息如同无尽的沙滩。然而&#xff0c;其中真正有价值的信息往往埋…

【源码阅读】事件订阅包v2

1、Feed Feed 实现一对多订阅&#xff0c;其中事件的载体是通道。发送到 Feed 的值会同时传送到所有订阅的通道。 与Typemux的对比 链接: link TypeMux是一个同步的事件框架&#xff0c;当有一个被订阅的事件发生的时候&#xff0c;会遍历该事件对应的订阅者通道&#xff0c;…

ZigBee快速入门——外部中断(Key)

外部中断 :::tips 理解三道锁&#xff1a;EA——IENx——PxIEN EA-总开关 IENx-中断使能功能配置&#xff0c;可以配置程总线 IO中断&#xff08;P0、P1、P2&#xff09;&#xff0c;也可以配置程定时器等中断 PxIEN-总线中具体某一位的中断允许&#xff0c;如刚刚已经配置了 I…

vue3项目部署到服务器,刚打开没事,一刷新页面就404

vue3项目部署到服务器&#xff0c;刚打开没事&#xff0c;一刷新页面就404 vue3项目&#xff0c;在本地调试时各方面都没毛病&#xff0c;刷新也没毛病&#xff0c;但是&#xff0c;扔到服务器上&#xff0c;第一次打开是正常的&#xff0c;再刷新下就404了&#xff0c;不知道什…

软件测评中心▏性能测试之压力测试、负载测试的区别和联系简析

在如今的信息时代&#xff0c;软件已经成为人们日常工作和生活不可或缺的一部分。然而&#xff0c;随着软件的发展和应用范围的不断扩大&#xff0c;软件性能的优劣也成为了影响用户使用体验的重要因素。 软件性能测试即对软件在不同条件下的性能进行评估和验证的过程。通过模…

《MCtalk·CEO对话》正式上线!首期对话高成资本

2015 年 10 月&#xff0c;网易智企发布第一款产品&#xff0c;正式踏上了 ToB 商业化之路。从那以后&#xff0c;我们每年举办不同主题的科技峰会&#xff0c;分享最新的行业体感和洞察&#xff1b;访谈各界企业领导者&#xff0c;记录他们的创新与创业经历&#xff1b;走过大…

黑帽SEO简介

什么是黑帽 SEO&#xff1f; 黑帽SEO是一种违反搜索引擎指南的做法&#xff0c;用于使网站在搜索结果中排名更高。这些不道德的策略并不能解决搜索者的问题&#xff0c;并且通常以搜索引擎的惩罚而告终。黑帽技术包括关键字填充、伪装和使用专用链接网络。 出现在搜索结果中对…

确定性网络技术怎样实现网络的可靠性?

确定性网络技术通过采用特定的协议、机制和策略&#xff0c;有助于提高网络的可靠性。本文通过一些关键的方面&#xff0c;来说明确定性网络技术如何实现这一目标。 时钟同步机制 时钟同步机制是确定性网络中的核心角色。为了实现高度可靠的通信&#xff0c;需要采用先进的时钟…

如何进行有竞争力的SEO审计以超越行业竞争对手

许多营销人员都有兴趣密切关注竞争对手的搜索引擎优化 &#xff08;SEO&#xff09;。这是有道理的——无论你是刚开始做SEO&#xff0c;还是已经做了一段时间&#xff0c;你都希望对搜索引擎结果页面&#xff08;SERP&#xff09;的竞争格局有一个清晰的认识&#xff0c;这样你…

构建基于RHEL9系列(CentOS9,AlmaLinux9,RockyLinux9等)的MySQL8.0.32的RPM包

本文适用&#xff1a;rhel9系列&#xff0c;或同类系统(CentOS9,AlmaLinux9,RockyLinux9等) 文档形成时期&#xff1a;2023年 因系统版本不同&#xff0c;构建部署应略有差异&#xff0c;但本文未做细分&#xff0c;对稍有经验者应不存在明显障碍。 因软件世界之复杂和个人能力…

2024年软件测试面试八股文【含答案】

Part1 1、你的测试职业发展是什么&#xff1f;【文末有面试文档免费领取】 测试经验越多&#xff0c;测试能力越高。所以我的职业发展是需要时间积累的&#xff0c;一步步向着高级测试工程师奔去。而且我也有初步的职业规划&#xff0c;前3年积累测试经验&#xff0c;按如何做…

SpringBoot3.X源码分析(启动流程)

SpringBootApplication(scanBasePackages {"com.javaedge.base"} ) public class BaseApplication {public BaseApplication() {}public static void main(String[] args) {SpringApplication.run(BaseApplication.class, args);} } 1 启动入口 静态辅助类&#x…

博弈类问题

巴什博弈(Bash Game) String bashGame2(int n, int m) {return n % (m 1) ! 0 ? "先手" : "后手";} #include<iostream> #include<string> using namespace std;string compute(int n) {return n % 6 ! 0 ? "October wins!" : &q…

iOS开发进阶(六):Xcode14 使用信号量造成线程优先级反转问题修复

文章目录 一、前言二、关于线程优先级反转三、优先级反转会造成什么后果四、怎么避免线程优先级反转五、使用信号量可能会造成线程优先级反转&#xff0c;且无法避免六、延伸阅读&#xff1a;iOS | Xcode中快速打开终端6.1 .sh绑定6.2 执行 pod install 脚本 七、延伸阅读&…

adrv9009使用记录

这里写自定义目录标题 1.首先下载cygwin&#xff0c;CSDN可以直接搜索&#xff0c;按照对应的安装就可以&#xff0c;最后记得加一个make安装包&#xff0c;不然在make时候会导致指令不存在 2.下载完成之后&#xff0c;去adi-github官网找到对应版本的adrv9009工程 https://git…

为什么要进行漏洞扫描工作

随着互联网的普及和信息技术的飞速发展&#xff0c;网络安全问题愈发引人关注。其中&#xff0c;漏洞扫描作为保障网络安全的重要手段&#xff0c;受到了广泛的关注和应用。本文将详细介绍漏洞扫描的概念、效果、使用场景等&#xff0c;以期为读者提供有关漏洞扫描的全面了解。…

PPT自动化处理

python-pptx模块 可以创建、修改PPT(.pptx)文件非Python标准模块&#xff0c;需要单独安装 在线安装方式 pip install python-pptx 读取slide幻灯片 .slides 获取shape形状 slide.shapes 判断一个shape中是否存在文字 shape.has_text_frame 获取文字框 shape.text_f…