leetcode动态规划(零钱兑换II、组合总和 Ⅳ)

news2024/11/19 14:31:52

518.零钱兑换II

给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。

示例 1:

输入: amount = 5, coins = [1, 2, 5]
输出: 4
解释: 有四种方式可以凑成总金额:

5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1
示例 2:

输入: amount = 3, coins = [2]
输出: 0
解释: 只用面额2的硬币不能凑成总金额3。
示例 3:

输入: amount = 10, coins = [10]
输出: 1
注意,你可以假设:

0 <= amount (总金额) <= 5000
1 <= coin (硬币面额) <= 5000
硬币种类不超过 500 种
结果符合 32 位符号整数
思路
这是一道典型的背包问题,一看到钱币数量不限,就知道这是一个完全背包。

对完全背包还不了解的同学,可以看这篇:动态规划:关于完全背包,你该了解这些!(opens new window)

但本题和纯完全背包不一样,纯完全背包是凑成背包最大价值是多少,而本题是要求凑成总金额的物品组合个数!

注意题目描述中是凑成总金额的硬币组合数,为什么强调是组合数呢?

例如示例一:

5 = 2 + 2 + 1

5 = 2 + 1 + 2

这是一种组合,都是 2 2 1。

如果问的是排列数,那么上面就是两种排列了。

组合不强调元素之间的顺序,排列强调元素之间的顺序。 其实这一点我们在讲解回溯算法专题的时候就讲过了哈。

那我为什么要介绍这些呢,因为这和下文讲解遍历顺序息息相关!

回归本题,动规五步曲来分析如下:

确定dp数组以及下标的含义
dp[j]:凑成总金额j的货币组合数为dp[j]

确定递推公式
dp[j] 就是所有的dp[j - coins[i]](考虑coins[i]的情况)相加。

所以递推公式:dp[j] += dp[j - coins[i]];

这个递推公式大家应该不陌生了,我在讲解01背包题目的时候在这篇494. 目标和 (opens new window)中就讲解了,求装满背包有几种方法,公式都是:dp[j] += dp[j - nums[i]];

dp数组如何初始化
首先dp[0]一定要为1,dp[0] = 1是 递归公式的基础。如果dp[0] = 0 的话,后面所有推导出来的值都是0了。

那么 dp[0] = 1 有没有含义,其实既可以说 凑成总金额0的货币组合数为1,也可以说 凑成总金额0的货币组合数为0,好像都没有毛病。

但题目描述中,也没明确说 amount = 0 的情况,结果应该是多少。

这里我认为题目描述还是要说明一下,因为后台测试数据是默认,amount = 0 的情况,组合数为1的。

下标非0的dp[j]初始化为0,这样累计加dp[j - coins[i]]的时候才不会影响真正的dp[j]

dp[0]=1还说明了一种情况:如果正好选了coins[i]后,也就是j-coins[i] == 0的情况表示这个硬币刚好能选,此时dp[0]为1表示只选coins[i]存在这样的一种选法。

确定遍历顺序
本题中我们是外层for循环遍历物品(钱币),内层for遍历背包(金钱总额),还是外层for遍历背包(金钱总额),内层for循环遍历物品(钱币)呢?

我在动态规划:关于完全背包,你该了解这些! (opens new window)中讲解了完全背包的两个for循环的先后顺序都是可以的。

但本题就不行了!

因为纯完全背包求得装满背包的最大价值是多少,和凑成总和的元素有没有顺序没关系,即:有顺序也行,没有顺序也行!

而本题要求凑成总和的组合数,元素之间明确要求没有顺序。

所以纯完全背包是能凑成总和就行,不用管怎么凑的。

本题是求凑出来的方案个数,且每个方案个数是为组合数。

那么本题,两个for循环的先后顺序可就有说法了。

我们先来看 外层for循环遍历物品(钱币),内层for遍历背包(金钱总额)的情况。

代码如下:

for (int i = 0; i < coins.size(); i++) { // 遍历物品
    for (int j = coins[i]; j <= amount; j++) { // 遍历背包容量
        dp[j] += dp[j - coins[i]];
    }
}

假设:coins[0] = 1,coins[1] = 5。

那么就是先把1加入计算,然后再把5加入计算,得到的方法数量只有{1, 5}这种情况。而不会出现{5, 1}的情况。

所以这种遍历顺序中dp[j]里计算的是组合数!

如果把两个for交换顺序,代码如下:

for (int j = 0; j <= amount; j++) { // 遍历背包容量
    for (int i = 0; i < coins.size(); i++) { // 遍历物品
        if (j - coins[i] >= 0) dp[j] += dp[j - coins[i]];
    }
}

背包容量的每一个值,都是经过 1 和 5 的计算,包含了{1, 5} 和 {5, 1}两种情况。

此时dp[j]里算出来的就是排列数!

可能这里很多同学还不是很理解,建议动手把这两种方案的dp数组数值变化打印出来,对比看一看!(实践出真知)

举例推导dp数组
输入: amount = 5, coins = [1, 2, 5] ,dp状态图如下:
在这里插入图片描述

最后红色框dp[amount]为最终结果。

以上分析完毕,C++代码如下:

class Solution {
public:
    int change(int amount, vector<int>& coins) {
        vector<int> dp(amount + 1, 0);
        dp[0] = 1;
        for (int i = 0; i < coins.size(); i++) { // 遍历物品
            for (int j = coins[i]; j <= amount; j++) { // 遍历背包
                dp[j] += dp[j - coins[i]];
            }
        }
        return dp[amount];
    }
};

Python:

class Solution:
    def change(self, amount: int, coins: List[int]) -> int:
        dp = [0]*(amount + 1)
        dp[0] = 1
        # 遍历物品
        for i in range(len(coins)):
            # 遍历背包
            for j in range(coins[i], amount + 1):
                dp[j] += dp[j - coins[i]]
        return dp[amount]
  1. 组合总和 Ⅳ
    给定一个由正整数组成且不存在重复数字的数组,找出和为给定目标正整数的组合的个数。

示例:

nums = [1, 2, 3]
target = 4
所有可能的组合为: (1, 1, 1, 1) (1, 1, 2) (1, 2, 1) (1, 3) (2, 1, 1) (2, 2) (3, 1)

请注意,顺序不同的序列被视作不同的组合。

因此输出为 7。

思路
对完全背包还不了解的同学,可以看这篇:动态规划:关于完全背包,你该了解这些!(opens new window)

本题题目描述说是求组合,但又说是可以元素相同顺序不同的组合算两个组合,其实就是求排列!

弄清什么是组合,什么是排列很重要。

组合不强调顺序,(1,5)和(5,1)是同一个组合。

排列强调顺序,(1,5)和(5,1)是两个不同的排列。

大家在公众号里学习回溯算法专题的时候,一定做过这两道题目回溯算法:39.组合总和 (opens new window)和回溯算法:40.组合总和II (opens new window)会感觉这两题和本题很像!

但其本质是本题求的是排列总和,而且仅仅是求排列总和的个数,并不是把所有的排列都列出来。

如果本题要把排列都列出来的话,只能使用回溯算法爆搜。

动规五部曲分析如下:

确定dp数组以及下标的含义
dp[i]: 凑成目标正整数为i的排列个数为dp[i]

确定递推公式
dp[i](考虑nums[j])可以由 dp[i - nums[j]](不考虑nums[j]) 推导出来。

因为只要得到nums[j],排列个数dp[i - nums[j]],就是dp[i]的一部分。

在动态规划:494.目标和 (opens new window)和 动态规划:518.零钱兑换II (opens new window)中我们已经讲过了,求装满背包有几种方法,递推公式一般都是dp[i] += dp[i - nums[j]];

本题也一样。

dp数组如何初始化
因为递推公式dp[i] += dp[i - nums[j]]的缘故,dp[0]要初始化为1,这样递归其他dp[i]的时候才会有数值基础。

至于dp[0] = 1 有没有意义呢?

其实没有意义,所以我也不去强行解释它的意义了,因为题目中也说了:给定目标值是正整数! 所以dp[0] = 1是没有意义的,仅仅是为了推导递推公式。

至于非0下标的dp[i]应该初始为多少呢?

初始化为0,这样才不会影响dp[i]累加所有的dp[i - nums[j]]。

确定遍历顺序
个数可以不限使用,说明这是一个完全背包。

得到的集合是排列,说明需要考虑元素之间的顺序。

本题要求的是排列,那么这个for循环嵌套的顺序可以有说法了。

在动态规划:518.零钱兑换II (opens new window)中就已经讲过了。

如果求组合数就是外层for循环遍历物品,内层for遍历背包。

如果求排列数就是外层for遍历背包,内层for循环遍历物品。

如果把遍历nums(物品)放在外循环,遍历target的作为内循环的话,举一个例子:计算dp[4]的时候,结果集只有 {1,3} 这样的集合,不会有{3,1}这样的集合,因为nums遍历放在外层,3只能出现在1后面!

所以本题遍历顺序最终遍历顺序:target(背包)放在外循环,将nums(物品)放在内循环,内循环从前到后遍历。

举例来推导dp数组
我们再来用示例中的例子推导一下:

在这里插入图片描述

如果代码运行处的结果不是想要的结果,就把dp[i]都打出来,看看和我们推导的一不一样。

以上分析完毕,C++代码如下:

class Solution {
public:
    int combinationSum4(vector<int>& nums, int target) {
        vector<int> dp(target + 1, 0);
        dp[0] = 1;
        for (int i = 0; i <= target; i++) { // 遍历背包
            for (int j = 0; j < nums.size(); j++) { // 遍历物品
                if (i - nums[j] >= 0 && dp[i] < INT_MAX - dp[i - nums[j]]) {
                    dp[i] += dp[i - nums[j]];
                }
            }
        }
        return dp[target];
    }
};

Python:

class Solution:
    def combinationSum4(self, nums: List[int], target: int) -> int:
        dp = [0] * (target + 1)
        dp[0] = 1
        for i in range(1, target + 1):  # 遍历背包
            for j in range(len(nums)):  # 遍历物品
                if i - nums[j] >= 0:
                    dp[i] += dp[i - nums[j]]
        return dp[target]

优化版

class Solution:
    def combinationSum4(self, nums: List[int], target: int) -> int:
        dp = [0] * (target + 1)  # 创建动态规划数组,用于存储组合总数
        dp[0] = 1  # 初始化背包容量为0时的组合总数为1

        for i in range(1, target + 1):  # 遍历背包容量
            for j in nums:  # 遍历物品列表
                if i >= j:  # 当背包容量大于等于当前物品重量时
                    dp[i] += dp[i - j]  # 更新组合总数

        return dp[-1]  # 返回背包容量为target时的组合总数

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1375616.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

conda安装和配置以及处理OSError: [WinError 123]异常

conda安装和配置 由于更换电脑&#xff0c;浅浅记录下conda安装和配置。以及处理这次安装的 OSError: [WinError 123] 异常。 conda的作用 下载之前&#xff0c;先了解下为什么需要使用conda&#xff0c;它是一个开源的Anaconda是专注于数据分析的Python发行版本&#xff0c;…

RK3399平台入门到精通系列讲解(驱动篇)eventpoll结构体详解

🚀返回总目录 文章目录 一、eventpoll 结构体二 、epitem 结构体三、eppoll_entry 结构体eventpoll 结构体:eventpoll 结构体是 epoll 在内核中的核心结构epitem 结构体:epitem 结构体用于表示 epoll 实例中的事件项eppoll_entry 结构体:它的作用就是关联Socket等待队列中…

VUE3相比VUE2升级了哪些内容

目录 一、Vue 3 、Vue 2 对比及提升项 二、 Vue 3 创建app.vue示例 三、Vue3 的setup、Vue2 的 data对比 一、Vue 3 、Vue 2 对比及提升项 性能提升&#xff1a;Vue 3 做了大量的优化工作&#xff0c;提升了运行时的性能。例如&#xff0c;在模板编译时进行的静态分析和优化…

DLinear模型:Are Transformers Effective for Time Series Forecasting?

本文发表于2022年8月份 Abstract 基于Transformer的长时间序列预测模型不断涌现&#xff0c;并且性能在过去几年力不断提高&#xff0c;但Transformer是否对长时间序列问题有效&#xff1f; 具体来说&#xff0c;Transformer是提取长序列中各元素间语义关联最成功的模型&…

模型评估:A/B测试的陷阱

互联网公司中&#xff0c;A/B测试是验证新模块、新功能、新产品是否有效&#xff1b;新算法、新模型的效果是否有提升&#xff1b;新设计是否受到用户欢迎&#xff1b;新更改是否影响用户体验的主要测试方法。在机器学习领域中&#xff0c;A/B测试是验证模型最终效果的主要手段…

js逆向第16例:猿人学第12题入门级js

文章目录 一、前言二、定位关键参数三、代码实现一、前言 任务:抓取这5页的数字,计算加和并提交结果 既然是入门级,那肯定很简单了 二、定位关键参数 控制台查看请求数据,m值应该就是关键参数了 进入堆栈 马上定位到了m值"m": btoa(yuanrenxue + window.pag…

商品源数据如何采集,您知道吗?

如今&#xff0c;电子商务已经渗透到了人们生活的方方面面。2020年新冠肺炎突如其来&#xff0c;打乱了人们正常的生产生活秩序&#xff0c;给经济发展带来了极大的影响。抗击疫情过程中&#xff0c;为避免人员接触和聚集&#xff0c;以“无接触配送”为营销卖点的电子商务迅速…

安达发|APS换产矩阵功能带来的便利

APS换产矩阵功能是一种在生产计划和排程中广泛应用的工具&#xff0c;它能够帮助企业实现生产过程的优化和效率提升。通过使用APS换产矩阵功能&#xff0c;企业可以更好地管理生产线上的资源&#xff0c;合理安排生产任务&#xff0c;提高生产效率和产品质量。 1&#xff0e;AP…

Spacedesk | 最新版本移动端扩展PC副屏

我的设备&#xff1a; 电脑:戴尔G15 5511、i7-11800H、Windows 11、RTX3060&#xff08;推荐显卡高级一些&#xff0c;算力差点的可能带不动这款软件&#xff09; 平板&#xff1a;荣耀V6、麒麟985、安卓10、分辨率2000*1200&#xff08;手机也行&#xff0c;我用的平板&…

Windows 双网卡链路聚合解决方案

Windows 双网卡链路聚合解决方案 链路聚合方案1&#xff1a;Metric介绍操作 方案2&#xff1a;NetSwitchTeam介绍操作 方案3&#xff1a;NIC介绍操作 方案4&#xff1a;Intel PROSet 链路聚合 指将多个物理端口汇聚在一起&#xff0c;形成一个逻辑端口&#xff0c;以实现出/入…

Overleaf Docker编译复现计划

Overleaf Docker编译复现计划 Overleaf Pro可以支持不同年份的Latex镜像自由选择编译&#xff0c;这实在是一个让人看了心痒痒的功能。但是很抱歉&#xff0c;这属于Pro付费功能。但是我研究了一下&#xff0c;发现其实和Docker编译相关的代码&#xff0c;社区版的很多代码都没…

Windows下Python+PyCharm+miniconda+Cuda/GPU 安装步骤

1. 官网安装Python 3.9 Python Release Python 3.9.0 | Python.org 2. 安装pycharm https://download.jetbrains.com/python/pycharm-professional-2023.3.2.exe 3. 安装miniconda Miniconda — miniconda documentation 4. 安装完miniconda 创建虚拟环境 conda create …

吴飞教授 人工智能 模型与算法 启发式搜索课件发散分析

一、文章介绍 本文是针对吴飞教授在MOOC课程 &#xff1a;《人工智能&#xff1a;模型与算法》 2.1节 启发式搜索的课前发散 在课程2.1节 启发式搜索章节中&#xff0c;吴飞教授以如何计算城市地图两点之间最短路径为例&#xff0c;重点讲授了贪婪最佳优先搜索和A*搜索算法&a…

Android 集成firebase 推送(FCM)

1&#xff0c;集成firebase 基础 1>googleService文件 2>项目级gradle 3>app级gradle 4>setting 2&#xff0c;推送相关 重点&#xff1a; 源文档&#xff1a;设置 Firebase Cloud Messaging 客户端应用 (Android) (google.com) /*** 监听推送的消息* 三种情况…

php中常用的几个安全函数

1. mysql_real_escape_string() 这个函数对于在PHP中防止SQL注入攻击很有帮助&#xff0c;它对特殊的字符&#xff0c;像单引号和双引号&#xff0c;加上了“反斜杠”&#xff0c;确保用户的输入在用它去查询以前已经是安全的了。但你要注意你是在连接着数据库的情况下使用这个…

抵御爬虫的前线护盾:深度解读验证码技术的演变历程

一.前言 在当今信息技术迅速发展的背景下&#xff0c;网站和在线服务面临着日益增长的自动化访问威胁&#xff0c;这些大多来自于各类爬虫程序。这种大量的自动化访问不仅对网站的正常运行构成压力&#xff0c;还可能导致敏感数据的泄露&#xff0c;甚至被用于不正当竞争和恶意…

微内核、宏内核、混合内核,三者到底有什么区别?

最近几年&#xff0c;随着国内大厂纷纷发布自研操作系统&#xff0c;大家对这些操作系统的出身和相貌吵得不可开交。然而&#xff0c;本文并不打算陷入这种无尽的争论之中。 在计算机技术的发展历程中&#xff0c;所有的技术都是在不断的迭代和发展中形成的&#xff0c;无论是…

win10在启动游戏时报错,提示“d3dx9_25.dll文件丢失”,怎么办?d3dx9_25.dll丢失如何自动修复

一、d3dx9_25.dll文件是什么&#xff1f; d3dx9_25.dll是DirectX的一部分&#xff0c;DirectX是一种由微软开发的专门处理与多媒体、游戏程序和视频相关的应用程序接口。d3dx9_25.dll文件是DirectX9中一个重要的dll文件&#xff0c;主要负责处理3D图形程序&#xff0c;作用是帮…

python高校舆情分析系统+可视化+情感分析 舆情分析+Flask框架(源码+文档)✅

毕业设计&#xff1a;2023-2024年计算机专业毕业设计选题汇总&#xff08;建议收藏&#xff09; 毕业设计&#xff1a;2023-2024年最新最全计算机专业毕设选题推荐汇总 &#x1f345;感兴趣的可以先收藏起来&#xff0c;点赞、关注不迷路&#xff0c;大家在毕设选题&#xff…

图片双线性插值原理解析与代码 Python

一、原理解析 图片插值是图片操作中最常用的操作之一。为了详细解析其原理&#xff0c;本文以 33 图片插值到 55 图片为例进行解析。如上图左边蓝色方框是 55 的目标图片&#xff0c;右边红色方框是 33 的源图片。上图中&#xff0c;蓝/红色方框是图片&#xff0c;图片中的蓝/红…