大模型LLM在 Text2SQL 上的应用实践

news2024/11/24 16:33:30

一、前言

目前,大模型的一个热门应用方向Text2SQL,它可以帮助用户快速生成想要查询的SQL语句,再结合可视化技术可以降低使用数据的门槛,更便捷的支持决策。本文将从以下四个方面介绍LLM在Text2SQL应用上的基础实践。

· Text2SQL概述

· LangChain基础知识

· 基于SQLDatabaseChain的Text2SQL实践

· 后续计划

二、Text2SQL概述

Text-to-SQL(或者Text2SQL),顾名思义就是把文本转化为SQL语言,更学术一点的定义是:把数据库领域下的自然语言(Natural Language,NL)问题,转化为在关系型数据库中可以执行的结构化查询语言(Structured Query Language,SQL),因此Text-to-SQL也可以被简写为NL2SQL。

在这里插入图片描述

· 输入:自然语言问题,比如“查询表t_user的相关信息,结果按id降序排序,只保留前10个数据

· 输出:SQL,比如 “SELECT * FROM t_user ORDER BY id DESC LIMIT 10

Text2SQL应用主要是帮助用户减少开发时间,降低开发成本。“打破人与结构化数据之间的壁垒”,即普通用户可以通过自然语言描述完成复杂数据库的查询工作,得到想要的结果。

在这里插入图片描述

基于LLM的应用开发基本架构如上图,本文介绍以LangChain + OpenAI + RDB的方式来实现Text2SQL的实践方案。

三、LangChain基础知识

LangChain是一个面向大语言模型的应用开发框架,如果将大语言模型比作人的大脑,那么可以将LangChain可以比作人的五官和四肢,它可以将外部数据源、工具和大语言模型连接在一起,既可以补充大语言模型的输入,也可以承接大语言模型的输出。

LangChain提供各种不同的组件帮助使用LLM,如下图所示,核心组件有Models、Indexes、Chains、Memory、Prompt以及Agent。

在这里插入图片描述

3.1 Models

LangChain本身不提供LLM,提供通用的接口访问LLM,可以很方便的更换底层的LLM以及自定义自己的LLM。主要有2大类的Models:

1)LLM:将文本字符串作为输入并返回文本字符串的模型,类似OpenAI的text-davinci-003

2)Chat Models:由语言模型支持将聊天消息列表作为输入并返回聊天消息的模型。一般使用的ChatGPT以及Claude为Chat Models。

与模型交互可以通过给予Prompt的方式,LangChain通过PromptTemplate的方式方便我们构建以及复用Prompt。

代码示例如下:

from langchain import PromptTemplate

# 定义提示模板
prompt = PromptTemplate(input_variables=["question"], template="""
  简洁和专业的来回答用户的问题。

  如果无法从中得到答案,请说 “根据已知信息无法回答该问题” 或 “没有提供足够的相关信息”,不允许在答案中添加编造成分,答案请使用中文。 
问题是:{question}""",)

print(prompt.format_prompt(question="如何进行数据治理"))

3.2 Indexes

索引和外部数据进行集成,用于从外部数据获取答案。如下图所示,主要的步骤:

· 通过Document Loaders加载各种不同类型的数据源

· 通过Text Splitters进行文本语义分割

· 通过Vectorstore进行非结构化数据的向量存储

· 通过Retriever进行文档数据检索

在这里插入图片描述

3.3 Chains

LangChain通过chain将各个组件进行链接,以及chain之间进行链接,用于简化复杂应用程序的实现。其中主要有LLMChain、SQLDatabase Chain以及Sequential Chain。

3.3.1 LLMChain

最基本的链为LLMChain,由PromptTemplate、LLM和OutputParser组成。LLM的输出一般为文本,OutputParser用于让LLM结构化输出并进行结果解析,方便后续的调用。

在这里插入图片描述

其实现原理如图所示,包含三步:

· 输入问题

· 拼接提示,根据提示模板将问题转化为提示

· 模型推理,输出答案

代码如下所示:

from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain import OpenAI
import os

os.environ["OPENAI_API_KEY"] = "Your openai key"
# 定义模型
llm = OpenAI(temperature=0)

# 定义提示模板
prompt = PromptTemplate(input_variables=["question"], template="""
    简洁和专业的来回答用户的问题。

    如果无法从中得到答案,请说 “根据已知信息无法回答该问题” 或 “没有提供足够的相关信息”,不允许在答案中添加编造成分,答案请使用中文。

    问题是:{question}""",)
# 定义chain
chain = LLMChain(llm=llm, prompt=prompt, verbose=True)
# 执行chain
print(chain.run("如何开展数据治理"))

3.3.2 SQLDatabaseChain

SQLDatabaseChain能够通过模型自动生成SQL并执行,其实现原理如图所示,包含如下过程:

图片

· 输入问题;

· 获取数据库Schema,Schema包含数据库所有表的建表语句和数据示例,LangChain支持多种关系型数据库,包括MariaDB、MySQL、SQLite、ClickHouse、PrestoDB等;

· 拼接提示,根据提示模板将问题、数据库Schema转化为提示,并且提示中包含指示,要求模型在理解问题和数据库Schema的基础上,能够按一定的格式输出查询SQL、查询结果和问题答案等;

· 模型推理,这一步预期模型根据问题、数据库Schema推理、输出的答案中包含查询SQL,并从中提取出查询SQL;

· 执行查询SQL,从数据库中获取查询结果;

· 拼接提示,和上一次拼接的提示基本一致,只是其中的提示中包含了前两步已获取的查询SQL、查询结果;

· 模型推理,这一步预期模型根据问题、数据库Schema、查询SQL和查询结果推理出最终的问题答案。

3.3.3 SequentialChain

SequentialChains是按预定义顺序执行的链。SimpleSequentialChain为顺序链的最简单形式,其中每个步骤都有一个单一的输入/输出,一个步骤的输出是下一个步骤的输入。SequentialChain为顺序链更通用的形式,允许多个输入/输出。

3.4 Memory

正常情况下Chain无状态的,每次交互都是独立的,无法知道之前历史交互的信息。LangChain使用Memory组件保存和管理历史消息,这样可以跨多轮进行对话,在当前会话中保留历史会话的上下文。Memory组件支持多种存储介质,可以与Mongo、Redis、SQLite等进行集成,以及简单直接形式就是Buffer Memory。

3.5 Agent

Agent字面含义就是代理,如果说LLM是大脑,Agent就是代理大脑使用工具Tools。目前的大模型一般都存在知识过时、逻辑计算能力低等问题,通过Agent访问工具,可以去解决这些问题。目前这个领域特别活跃,诞生了类似AutoGPT、BabyAGI、AgentGPT等一堆优秀的项目。传统使用LLM,需要给定Prompt一步一步地达成目标,通过Agent是给定目标,其会自动规划并达到目标。

四、基于SQLDatabaseChain的Text2SQL实践

4.1 简介

LangChain提供基于LLM的SQLDatabaseChain,可以利用LLM的能力将自然语言的query转化为SQL,连接DB进行查询,并利用LLM来组装润色结果,返回最终answer。

在后台,LangChain 使用SQLAlchemy连接到 SQL 数据库。因此,SQLDatabaseChain可以与 SQLAlchemy 支持的任何 SQL 方言一起使用,例如 MS SQL、MySQL、MariaDB、PostgreSQL、Oracle和 SQLite。

4**.**2 数据准备

本案例使用SQLite 和示例Chinook 数据库,用户可按照https://database.guide/2-sample-databases-sqlite/ 上的说明进行设置。Chinook表示一个数字多媒体商店,包含了顾客(Customer)、雇员(Employee)、歌曲(Track)、订单(Invoice)及其相关的表和数据,数据模型如下图所示。

图片

4.3实践过程

需求: 测试中文提问“总共有多少员工?”,即英文提问“How many employees are there?”

期望: 模型先给出查询Employee表记录数的SQL,再根据查询结果给出最终的答案。

(1)测试中文提问,代码如下所示:

from langchain.llms import OpenAI
from langchain.utilities import SQLDatabase
from langchain_experimental.sql import SQLDatabaseChain
import os

os.environ["OPENAI_API_KEY"] = "Your openai key"

db = SQLDatabase.from_uri("sqlite:///..../Chinook.db")
llm = OpenAI(temperature=0, verbose=True)
db_chain = SQLDatabaseChain.from_llm(llm, db, verbose=True)
db_chain.run("总共有多少员工?")

输出结果如下:

在这里插入图片描述

这里我们使用商业化的OpenAI,并将其temperature设为0,因为查询DB不太需要创造性和多样性。从返回的过程来看,自然语言被翻译成了SQL,得到查询结果后,解析包装结果,最终返回我们可以理解的答案。这里LLM成功将“总共”转成select count(*),并准确地识别出表名,且最终组装出正确的结果。

注意: 对于数据敏感项目,可以在 SQLDatabaseChain 初始化中指定 return_direct=True,以直接返回 SQL 查询的输出,而无需任何其他格式设置。这样可以防止 LLM 看到数据库中的任何内容。但请注意,默认情况下,LLM 仍然可以访问数据库方案(即所用方言、表名和列名)

(2)测试英文提问,也可以得到我们想要的结果:

在这里插入图片描述

通过上例,我们可以借助LangChain提供的SQLDatabaseChain,轻松地连接LLM与Database,自然语言的方式输入,自然语言的方式输出,借助LLM的强大能力来理解问题、生成SQL查询数据并输出结果。

五、后续计划

随着大模型的发展,LangChain是目前最火的LLM开发框架之一,能和外部数据源交互、能集成各种常用的组件等等,大大降低了LLM应用开发的门槛。基于SQLDatabaseChain实现的Text2SQL只是最基础的实践方式,但对于逻辑复杂的查询在稳定性、可靠性、安全性方面可能无法达到预期,比如输出幻觉问题、数据安全问题。如何解决或减少该类问题的出现,可改进的措施和方案在后续专题中继续讨论,大家一起群策群力。总之,实现高稳定、高可靠的基于LLM的应用,是一个持续改进的过程,是一个多种技术相结合的过程。

参考文献:

https://docs.langchain.com/docs/

https://platform.openai.com/

https://database.guide/2-sample-databases-sqlite/

https://www.langchain.asia/modules/chains/examples/sqlite

https://mp.weixin.qq.com/s/pgRC71IkSXrOjZg3W9V72g

https://zhuanlan.zhihu.com/p/640580808

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1372856.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

22、Kubernetes核心技术 - 整合Rancher通过界面管理k8s集群

目录 一、概述 二、Rancher API Server 的功能 2.1、授权和角色权限控制 2.2、使用 Kubernetes 的功能 2.3、配置云端基础信息 2.4、查看集群信息 三、Rancher 安装 3.1、前置环境 3.2、通过 Docker 来进行安装Rancher 3.3、在 Rancher 的界面上绑定k8s集群 3.4、在 …

redis 主从同步和故障切换的几个坑

数据不一致 当我们从节点读取一个数据时,和主节点读取的数据不一致,这是因为主从同步的命令是异步进行的,一般情况下是主从同步延迟导致的,为什么会延迟, 主要二个原因 1、网络状态不好 2、网络没问题,从节…

java 项目使用 activi 设计流程,流程线上设置条件表达式时出现以下错误

项目场景: 背景: java 项目使用 activi 设计流程,流程线上设置条件表达式后,保存时出现错误 问题描述 问题: java 项目使用 activi 设计流程,流程线上设置条件表达式后,保存时出现以下错误&…

Matlab 之数据分布拟合

文章目录 Part.I IntroductionPart.II Distribution Fitter APP 的使用Chap.I APP 简介Chap.II 简单使用 Part.III 通过代码实现分布拟合Chap.I 基于 fitdist 函数Chap.II 获取数据的频率分布后进行曲线拟合 Reference Part.I Introduction 本文主要介绍了如何使用 Matlab 对数…

Linux学习记录——삼십팔 网络层IP协议

文章目录 1、了解IP协议2、IP协议报文1、8位服务类型2、16位总长度(字节数)3、8位生存时间(TTL) 3、网段划分1、网段划分和CIDR方案2、子网划分简单方法3、IP地址问题的解决方案 4、公网内网1、内网分配2、运营商管理方法 5、路由…

2024年3月10日PMI认证考试的报名时间确定!

⏰中国大陆地区2024年第1期PMI认证考试于3月10日举办 ⏰报名时间: 为减少同一时间集中报名造成的网络拥堵,本次报名将采取以下形式分地区、分批次开放报名。👇 1️⃣第1批报名城市:⏰2024年1月11日10:00至1月18日16:00&#xff0c…

【昕宝爸爸定制】如何将集合变成线程安全的?

如何将集合变成线程安全的? ✅典型解析🟢拓展知识仓☑️Java中都有哪些线程安全的集合?🟠线程安全集合类的优缺点是什么🟡如何选择合适的线程安全集合类☑️如何解决线程安全集合类并发冲突问题✔️乐观锁实现方式 (具体步骤)。✅…

基于 Validator 类实现 ParamValidator,用于校验函数参数

目录 一、前置说明1、总体目录2、相关回顾3、本节目标 二、操作步骤1、项目目录2、代码实现3、测试代码4、日志输出 三、后置说明1、要点小结2、下节准备 一、前置说明 1、总体目录 《 pyparamvalidate 参数校验器,从编码到发布全过程》 2、相关回顾 使用 TypeV…

dubbo的springboot集成

1.什么是dubbo? Apache Dubbo 是一款 RPC 服务开发框架,用于解决微服务架构下的服务治理与通信问题,官方提供了 Java、Golang 等多语言 SDK 实现。使用 Dubbo 开发的微服务原生具备相互之间的远程地址发现与通信能力, 利用 Dubbo …

vmlinux, System.map; cmake的find_package(Clang)产生的变量们; geogebra单位切向量(简单例子)

linux4.15.y内核中的函数个数 依赖关系: vmlinux, vmlinux.bin, bzImage cd /bal/linux-stable/ file vmlinux #vmlinux: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), statically linked, BuildID[sha1]b99bbd9dda1ec2751da246d4a7ae4e6fcf7d789b, not str…

Git远端删除的分支,本地依然能看到 git remote prune origin

在远端已经删除ylwang_dev_786等三四个分支,本地git branch -a 时 依然显示存在。 执行 git remote show origin 会展示被删除的那些分支 当你在Git远程仓库(如GitLab)上删除一个分支后,这个变更不会自动同步到每个开发者的本地…

【教学类-45-01】X-Y之间的“三连加“题(a+b+c=)

作品展示: 背景需求: 我常去的大4班孩子们基本都适应了0-5之间的加法题,做题速度极快。 为了增加“花样”,吸引幼儿参与,修改参数,从二连加12变为三连加111。 素材准备: 代码重点 代码展示 X-Y 之间的3…

springboot基于java的小区物业管理系统(保安巡逻绿化消防)设计+jsp

小区物业管理系统采用的是JAVA语言开发,利用MySQL为数据库, 使用IDEA平台来编写代码,框架方面选择的是springbootweb框架,采用B/S结构实现系统。本系统的设计与开发过程中严格遵守软件工程的规范,运用软件设计模式&…

uniapp最简单的底部兼容安全区域显示

效果图&#xff1a; 1.html写上动态padding-bottom <view class"button-wrap" :style"padding-bottom:bottomPaddingrpx"><view class"com-btn cencel-btn">取消</view><view class"com-btn confirm-btn " cl…

Xcalibur软件Qual Brower程序的使用

找到Qual Brower&#xff1a;在System>Program里 打开采集的数据文件*.RAW&#xff0c;软件界面主窗口能查看色谱图和质谱图&#xff1a; 1、图形的放大和拷贝、色谱中查看峰的质谱信息&#xff1a; 点亮如图图像右上角的按钮&#xff0c;可以激活该图形并进行操作&#x…

前端 Node 项目迁徙为桌面 Electron 应用笔记

起因 我的服务器到期了&#xff0c;服务器上有几个服务&#xff0c;人家问这几个网站怎么不好使了&#xff0c;奈何服务器续费太贵租不起了… 但是服务还是要提供的&#xff0c;所以我在想如何把 node 的项目变成桌面端应用&#xff0c;于是有了这个笔记 效果展示 页面没啥…

强化学习10——免模型控制Q-learning算法

Q-learning算法 主要思路 由于 V π ( s ) ∑ a ∈ A π ( a ∣ s ) Q π ( s , a ) V_\pi(s)\sum_{a\in A}\pi(a\mid s)Q_\pi(s,a) Vπ​(s)∑a∈A​π(a∣s)Qπ​(s,a) &#xff0c;当我们直接预测动作价值函数&#xff0c;在决策中选择Q值最大即动作价值最大的动作&…

如何寻找到相对完整的真正的游戏的源码 用来学习?

在游戏开发的学习之路上&#xff0c;理论与实践是并重的两个方面。对于许多热衷于游戏开发的学习者来说&#xff0c;能够接触到真实的、完整的游戏源码无疑是一个极好的学习机会。但问题来了&#xff1a;我们该如何寻找到这些珍贵的资源呢&#xff1f; 开源游戏项目 GitHub:地…

BUUCTF ---> Encrypto

转眼就一月十号了&#xff0c;本来今天不想更的&#xff0c;&#xff08;因为我懒&#xff09;是因为明天要考python&#xff0c;好像还不止 但是呢&#xff0c;发现BUUCTF的密码学模块刚好可以用到py的脚本&#xff0c;那就当时复习一下吧&#xff01;&#xff01; 这里就要介…

http跟https有什么区别?

HTTPS和HTTP的概念&#xff1a; HTTP&#xff1a;是互联网上应用最为广泛的一种网络协议&#xff0c;是一个客户端和服务器端请求和应答的标准&#xff08;TCP&#xff09;&#xff0c;用于从WWW服务器传输超文本到本地浏览器的传输协议&#xff0c;它可以使浏览器更加高效&am…