RT-Thread:SPI万能驱动 SFUD 驱动Flash W25Q64,通过 STM32CubeMX 配置 STM32 SPI 驱动

news2024/12/25 12:19:01

关键词:SFUD,FLASH,W25Q64,W25Q128,STM32F407

说明:RT-Thread 系统 使用 SPI万能驱动 SFUD 驱动 Flash W25Q64,通过 STM32CubeMX 配置 STM32 SPI 驱动。

提示:SFUD添加后的存储位置

1.打开RT-Thread Setting SPI SFUD

打开 SFUD ,SPI

右键-详细配置

SFUD的配置 放置于如下头文件 rtconfig.h

2.开启board.h/stm32F1xx_hal_config.h中关于SPI的宏定义

STEP 1:第一步打开RT-Thread Setting SPI SFUD 中已经操作实现。

STEP 2:定义与spi总线相关的宏,例如#define BSP_USING_SPI1

STEP 4:修改您的stm32xxxx_hal_config.h文件以支持spi外围设备。 定义与外围设备相关的宏,例如#define HAL_SPI_MODULE_ENABLED

STEP 3:将由stm32cubemx生成的stm32xxxx_hal_msp.c的spi init函数复制到board.c文件的末尾,例如void HAL_SPI_MspInit(SPI_HandleTypeDef * hspi)

如下复制过程,将由stm32cubemx生成的 SPI 驱动部分代码全部复制到 board.c文件的末尾

3.stm32cubemx SPI 驱动生成过程

如何打开 stm32cubemx 建工程的过程就不讲解,直接讲关于SPI的配置过程

根据对应的STM32芯片打开一个工程配置SPI部分

时钟配置

 时钟树配置

SPI接口设置

输出项目设置

代码生成器 设置

生成代码

打开文件夹

SPI.C文件夹内便是生成的关于SPI接口的配置驱动代码

4.编译烧录后 发送命令 list_device 可以看到SPI总线 SPI1 已经注册到系统

5.SPI从设备驱动编写

SPI的总线设备已经注册完毕,接下来需要进行SPI从设备驱动编写,这里直接使用开发板板载的SPI Flash W25Q64进行测试,

新建 w25q_test.c

#include <rtthread.h>
#include <board.h>
#include <rtdevice.h>
#include "drv_spi.h"
#include "spi_flash_sfud.h"

static int rt_hw_spi_flash_init(void)
{
    __HAL_RCC_GPIOB_CLK_ENABLE();
    rt_hw_spi_device_attach("spi1", "spi10", GPIOC, GPIO_PIN_0);// spi10 表示挂载在 spi3 总线上的 0 号设备,PC0是片选,这一步就可以将从设备挂在到总线中。

    if (RT_NULL == rt_sfud_flash_probe("W25Q64", "spi10"))  //注册块设备,这一步可以将外部flash抽象为系统的块设备
    {
        return -RT_ERROR;
    };

    return RT_EOK;
}
/* 导出到自动初始化 */
INIT_COMPONENT_EXPORT(rt_hw_spi_flash_init);

        不支持 SFDP 标准的 Flash 已经在 Flash 参数信息表中定义,sfud_flash_def.h 文件有关于 flash 芯片的配置信息,配置中有的型号可以直接定义使用;配置中没有,且不支持SFDP的Flash 可以自己添加。

        注意:上述代码中的 "W25Q64" 与下截图的型号无关,进过测试,将"W25Q64" 改为"W25Q664" 编译烧录后,串口打印的数据任然一样,打印信息是 SFUD 自动探测读出的 Flash 的信息。具体原理不清楚。

编译后烧录,串口会显示 FLASH 的注册信息

SFUD打印了 基本Flash参数表信息

 \ | /
- RT -     Thread Operating System
 / | \     4.0.2 build Jul  3 2020
 2006 - 2019 Copyright by rt-thread team
[SFUD] (../rt-thread/components/drivers/spi/sfud/src/sfud.c:862) The flash device manufacturer ID is 0xEF, memory type ID is 0x40, capacity ID is 0x17.
[SFUD] (../rt-thread/components/drivers/spi/sfud/src/sfud_sfdp.c:132) Check SFDP header is OK. The reversion is V1.5, NPN is 0.
[SFUD] (../rt-thread/components/drivers/spi/sfud/src/sfud_sfdp.c:175) Check JEDEC basic flash parameter header is OK. The table id is 0, reversion is V1.5, length is 16, parameter table pointer is 0x000080.
[SFUD] (../rt-thread/components/drivers/spi/sfud/src/sfud_sfdp.c:203) JEDEC basic flash parameter table info:
[SFUD] (../rt-thread/components/drivers/spi/sfud/src/sfud_sfdp.c:204) MSB-LSB  3    2    1    0
[SFUD] (../rt-thread/components/drivers/spi/sfud/src/sfud_sfdp.c:207) [0001] 0xFF 0xF9 0x20 0xE5
[SFUD] (../rt-thread/components/drivers/spi/sfud/src/sfud_sfdp.c:207) [0002] 0x03 0xFF 0xFF 0xFF
[SFUD] (../rt-thread/components/drivers/spi/sfud/src/sfud_sfdp.c:207) [0003] 0x6B 0x08 0xEB 0x44
[SFUD] (../rt-thread/components/drivers/spi/sfud/src/sfud_sfdp.c:207) [0004] 0xBB 0x42 0x3B 0x08
[SFUD] (../rt-thread/components/drivers/spi/sfud/src/sfud_sfdp.c:207) [0005] 0xFF 0xFF 0xFF 0xFE
[SFUD] (../rt-thread/components/drivers/spi/sfud/src/sfud_sfdp.c:207) [0006] 0x00 0x00 0xFF 0xFF
[SFUD] (../rt-thread/components/drivers/spi/sfud/src/sfud_sfdp.c:207) [0007] 0xEB 0x40 0xFF 0xFF
[SFUD] (../rt-thread/components/drivers/spi/sfud/src/sfud_sfdp.c:207) [0008] 0x52 0x0F 0x20 0x0C
[SFUD] (../rt-thread/components/drivers/spi/sfud/src/sfud_sfdp.c:207) [0009] 0x00 0x00 0xD8 0x10
[SFUD] (../rt-thread/components/drivers/spi/sfud/src/sfud_sfdp.c:215) 4 KB Erase is supported throughout the device. Command is 0x20.
[SFUD] (../rt-thread/components/drivers/spi/sfud/src/sfud_sfdp.c:234) Write granularity is 64 bytes or larger.
[SFUD] (../rt-thread/components/drivers/spi/sfud/src/sfud_sfdp.c:245) Target flash status register is non-volatile.
[SFUD] (../rt-thread/components/drivers/spi/sfud/src/sfud_sfdp.c:271) 3-Byte only addressing.
[SFUD] (../rt-thread/components/drivers/spi/sfud/src/sfud_sfdp.c:305) Capacity is 8388608 Bytes.
[SFUD] (../rt-thread/components/drivers/spi/sfud/src/sfud_sfdp.c:312) Flash device supports 4KB block erase. Command is 0x20.
[SFUD] (../rt-thread/components/drivers/spi/sfud/src/sfud_sfdp.c:312) Flash device supports 32KB block erase. Command is 0x52.
[SFUD] (../rt-thread/components/drivers/spi/sfud/src/sfud_sfdp.c:312) Flash device supports 64KB block erase. Command is 0xD8.
[SFUD] Find a Winbond flash chip. Size is 8388608 bytes.
[SFUD] (../rt-thread/components/drivers/spi/sfud/src/sfud.c:840) Flash device reset success.
[SFUD] W25Q64 flash device is initialize success.
[SFUD] Probe SPI flash W25Q64 by SPI device spi10 success.
msh >

6.SFUD命令介绍

        通过串口发送 sf 命令,可以查到关于 SFUD 系统的命令,可以通过命令对Flash进行读写、擦除等操作。

msh >sf
Usage:
sf probe [spi_device]           - probe and init SPI flash by given 'spi_device'
sf read addr size               - read 'size' bytes starting at 'addr'
sf write addr data1 ... dataN   - write some bytes 'data' to flash starting at 'addr'
sf erase addr size              - erase 'size' bytes starting at 'addr'
sf status [<volatile> <status>] - read or write '1:volatile|0:non-volatile' 'status'
sf bench                        - full chip benchmark. DANGER: It will erase full chip!
sf probe [spi_device]           - 探测命令:使用如 sf probe spi10 ,就能探测到挂载的spi10设备
sf read addr size               - 读flash:使用如 sf read 00 100 ,表示从地址00开始读100个字节
sf write addr data1 ... dataN   - 写flash:使用如 sf write 17 01 02 03 04 05 06 07 08 09 10 11 ,表示从17地址开始写入后面这些数据
sf erase addr size              - 擦除命令:
sf status [<volatile> <status>] - 查询状态:查询状态寄存器的值
                        - 全芯片基准测试。 危险:它将擦除整个芯片!

7.SFUD 测试程序

#include "user_cfg.h"

/*
W25Q128介绍
W25Q128是华邦公司推出的大容量SPI FLASH产品,W25Q128的容量为128M bit,该系列还有W25Q80/16/32/64等。
W25Q128将16M的容量分为256个块(Block),每个块大小为64K字节,每个块又分为16个扇区(Sector),每个扇区4K个字节。
W25Q128的最小擦除单位为一个扇区,也就是每次必须擦除4K个字节。这样我们需要给W25Q128开辟一个至少4K的缓存区,这样对SRAM要求比较高,要求芯片必须有4K以上SRAM才能很好的操作。
W25Q128的擦写周期多达10W次,具有20年的数据保存期限,支持电压为2.7~3.6V,
W25Q128支持标准的SPI,还支持双输出/四输出的SPI,最大SPI时钟可以到80Mhz(双输出时相当于160Mhz,四输出时相当于320M),更多的W25Q128的介绍,请参考W25Q128的DATASHEET。
 */


/* SPI Flash 驱动 */
static int rt_hw_spi_flash_init(void)
{
    //__HAL_RCC_GPIOB_CLK_ENABLE();
    /* 往总线 spi1 上挂载一个 spi10 从设备 */
    rt_hw_spi_device_attach("spi1", "spi10", GPIOA, GPIO_PIN_4);/*spi10 表示挂载在 spi3 总线上的 0 号设备,PC0是片选,这一步就可以将从设备挂在到总线中。*/

    /* 使用 SFUD 探测 spi10 从设备,并将 spi10 连接的 flash 初始化为块设备,名称 W25Q64DW */
    if (RT_NULL == rt_sfud_flash_probe("W25Q128JV", "spi10"))  /* 注册块设备,这一步可以将外部flash抽象为系统的块设备*/
    {
        return -RT_ERROR;
    };

    return RT_EOK;
}
/* 导出到自动初始化 */
INIT_COMPONENT_EXPORT(rt_hw_spi_flash_init);



void W25Q_Flash_test(void)
{
    sfud_err result;
    uint8_t *read_data;  // 读取到的数据
    uint8_t *write_data; // 将要写入的数据
    sfud_flash *sfud_dev = NULL;

    sfud_dev = rt_sfud_flash_find("spi10"); // 获取 sfud_dev
    // 或者 sfud_dev = rt_sfud_flash_find_by_dev_name("W25Q128");

    /*擦除 Flash 数据;flash: Flash 设备对象;addr:起始地址;size:从起始地址开始擦除数据的总大小*/
    sfud_erase(sfud_dev, 0, 1024);           // 擦除从 0 开始的 4096 字节

    write_data = rt_malloc(4096);              // 内存申请,函数会从系统堆空间中找到合适大小的内存块,然后把内存块可用地址返回给用户。
    rt_memset(write_data, 1, 4096);            // 作用是在一段内存块中填充某个给定的值,将  write_data 32 个地址填入1

    /*往 Flash 写数据:flash:Flash 设备对象;addr:起始地址;size:从起始地址开始写入数据的总大小;data:待写入的数据*/
    sfud_write(sfud_dev, 0, 4096, write_data); // 将数据 32 字节的 write_data 从 0 开始写入 flash

    read_data = rt_malloc(4096);
    rt_memset(read_data, 0, 4096);
    for (uint16_t var = 0; var < 4096; ++var)
    {
        rt_kprintf("var = %d ,data = %d \n",var,read_data[var]) ;
    }

    /*读取 Flash 数据; flash: Flash 设备对象 ;addr: 起始地址;size:从起始地址开始读取数据的总大小;data:读取到的数据*/
    sfud_read(sfud_dev, 0, 4096, read_data);   // 读取从 0 开始的 32 字节,存入 read_data

    for (uint16_t var = 0; var < 4096; ++var)
    {
        rt_kprintf("var = %d ,data = %d \n",var,read_data[var]) ;
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1372566.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【obj To 3DTiles 格式转换】 可以自定义经纬高、属性表等参数 (一)

目录 0 引言1 3DTiles数据2 objTo3DTiles2.1 工具的安装2.1.1 拓展&#xff1a;Node.js 和 npm 2.2 工具的使用2.2.1 输出成瓦片数据2.2.2 输出带有坐标参数的瓦片数据 3 查看3DTiles数据 &#x1f64b;‍♂️ 作者&#xff1a;海码007&#x1f4dc; 专栏&#xff1a;Cesiumfor…

强化学习9——免模型预测算法介绍(蒙特卡洛方法和时步差分方法)

对于大部分情况来说&#xff0c;环境是未知的&#xff0c;也就是说状态转移概率未知&#xff0c;对于这种情况的算法称为免模型预测算法。免模型算法与环境不断交互学习&#xff0c;但是需要大量的运算。 蒙特卡洛方法 蒙特卡罗方法通过重复随机抽选&#xff0c;之后运用统计…

条款21:必须返回对象时,别妄想返回其引用

考虑一个表示有理数的类&#xff0c;其中包含一个计算两个有理数相乘的函数: class Rational { public:Rational(int numerator 0, int denominator 1) :n{ numerator }, d{ denominator }{} private:int n, d; // 分子和分母friend const Rational& operator*(const R…

vue知识-03

购物车案例 要实现的功能&#xff1a; 1、计算商品总价格 2、全选框和取消全选框 3、商品数量的增加和减少 <body> <div id"app"><div class"row"><div class"col-md-6 col-md-offset-3"><h1 class"text-center…

C++模板——(4)C++泛型编程与标准模板库简介

归纳编程学习的感悟&#xff0c; 记录奋斗路上的点滴&#xff0c; 希望能帮到一样刻苦的你&#xff01; 如有不足欢迎指正&#xff01; 共同学习交流&#xff01; &#x1f30e;欢迎各位→点赞 &#x1f44d; 收藏⭐ 留言​&#x1f4dd; 勤奋&#xff0c;机会&#xff0c;乐观…

苍穹外卖Day01——解决总结1中存在的问题

前序章节&#xff1a; 苍穹外卖Day01——总结1 解决总结1中存在的问题 1. 什么是JWT2. POJO、Entity、VO、DTO3. Nginx&#xff08;反向代理&#xff09;4. Data注解 1. 什么是JWT JWT&#xff08;JSON Web Token&#xff09;是一种用于在网络应用间传递信息的开放标准&#…

智慧校园电子班牌管理系统源码 Java Android原生

智慧校园电子班牌系统源码是一种智能化的教育管理解决方案&#xff0c;它可以在学校内实现信息共享、教学管理、学生管理、家校互通等各个方面的协调与配合&#xff0c;帮助教师、学生和家长更加高效地开展教学活动、管理学生、协同合作&#xff0c;从而推动学校教育水平的提高…

【高等数学之泰勒公式】

一、从零开始 1.1、泰勒中值定理1 什么是泰勒公式?我们先看看权威解读: 那么我们从古至今到底是如何创造出泰勒公式的呢? 由上图可知&#xff0c;任一无穷小数均可以表示成用一系列数字的求和而得出的结果&#xff0c;我们称之为“无穷算法”。 那么同理我们想对任一曲线来…

Ubuntu启动Xming报错:cannot open display: :1.0

Ubuntu启动Xming报错&#xff1a;cannot open display: :1.0 1、问题描述&#xff1a;2、问题解决&#xff1a;3、实践结果&#xff1a; 叮嘟&#xff01;这里是小啊呜的学习课程资料整理。好记性不如烂笔头&#xff0c;今天也是努力进步的一天。一起加油进阶吧&#xff01; 1、…

Android 事件分发介绍

文章目录 一、目的二、环境三、相关概念3.1 事件分发 四、详细设计4.1应用布局4.1.1 应用布局结构4.1.2 LayoutInspector 4.2 关键View&方法4.2.1 相关View4.2.2 相关方法4.2.3 View与方法关系 4.3 事件分发概念图4.3.1 事件分发类图4.3.2 事件分发模型图 4.4 Activity组件…

C#编程-描述异常

描述异常 异常是在程序执行期间出现的错误。异常情况发生在运算不能正常完成的时候。当程序中出现异常是,系统会抛出错误。错误通过异常处理过程被处理。 例如,System.IO.IOException异常在试图访问非法流对象时抛出。同样,如果分母是0,整数除法运算抛出System.DivideByZ…

02.构建和使用的大型语言模型(LLMs)阶段

我们为什么要建立自己的LLMs?LLM从头开始编码是了解其机制和局限性的绝佳练习。此外,它还为我们提供了必要的知识,可以保留或微调现有的开源LLM架构,以适应我们自己的特定领域的数据集或任务。 研究表明,在建模性能方面,定制(LLMs为特定任务或领域量身定制的)可以胜过…

前端项目构建打包生成Git信息文件

系列文章目录 TypeScript 从入门到进阶专栏 文章目录 系列文章目录前言一、前端项目构建打包生成Git信息文件作用二、步骤1.引入相关的npm包1.1. **fs** 包1.2. **child_process** 包1.3. **os** 包 (非必须 如果你想生成的文件信息中包含当前电脑信息则可用)1.4. **path** 包…

Qt QCheckBox复选按钮控件

文章目录 1 属性和方法1.1 文本1.2 三态1.3 自动排他1.4 信号和槽 2 实例2.1 布局2.2 代码实现 Qt中的复选按钮类是QCheckBox它和单选按钮很相似&#xff0c;单选按钮常用在“多选一”的场景&#xff0c;而复选按钮常用在"多选多"的场景比如喜欢的水果选项中&#xf…

Python从入门到网络爬虫(控制语句详解)

前言 做任何事情都要遵循一定的原则。例如&#xff0c;到图书馆去借书&#xff0c;就需要有借书证&#xff0c;并且借书证不能过期&#xff0c;这两个条件缺一不可。程序设计亦是如此&#xff0c;需要使用流程控制实现与用户的交流&#xff0c;并根据用户需求决定程序“做什么…

特征工程:图像数据不足时的处理办法

在机器学习中&#xff0c;绝大部分模型都需要大量的数据进行训练和学习&#xff08;包括有监督学习和无监督学习&#xff09;&#xff0c;然而在实际应用中经常会遇到训练数据不足的问题。比如图像分类&#xff0c;作为计算机视觉最基本的任务之一&#xff0c;其目标是将每幅图…

Android学习(四):常用布局

Android学习&#xff08;四&#xff09;&#xff1a;常用布局 五种常用布局 线性布局&#xff1a;以水平或垂直方向排列相对布局&#xff1a;通过相对定位排列帧布局&#xff1a;开辟空白区域&#xff0c;帧里的控件(层)叠加表格布局&#xff1a;表格形式排列绝对布局&#x…

Linux的基本指令(5)

目录 bc指令 uname指令 压缩解压相关的指令 zip指令 unzip指令 tar打包压缩指令 tar解压解包指令 ​传输指令sz&rz 热键 关机命令 安装&#xff1a;yum install -y 指令 bc指令 bc命令可以很方便的进行浮点运算 Linux中的计算器 uname指令 语法&#xff1a;unam…

MySQL之导入以及导出远程备份v

目录 一.navact数据导入导出 1.1 导入 1.2 导出 二. mysqldump命令导入导出数据 2.1 导入 2.2 导出 三.load data file进行数据导入导出&#xff08;只限于单表&#xff09; 3.1 导入 3.2 导出 四.远程连接 好啦就到这里了哦!!!希望帮到你哦!!! 一.navact数据导入导…

RIP复习实验

条件: R1为外网&#xff0c;R8和r9的环回分别是172.16.1.0/24和172.16.2.0/24 中间使用78.1.1.0/24 剩下的路由器2-6使用172.16.0.0/16 要求: R1为运营商 r1远程登录r2实际登录r7 R2访问r7要求走r5去访问 全网可达 实现流程: 首先配置好各接口ip address 然后r2-r7使用rip…