Hotspot源码解析-第十七章-虚拟机万物创建(三)

news2024/10/5 15:38:09

17.4 Java堆空间内存分配

分配Java堆内存前,我们先通过两图来了解下C堆、Java堆、内核空间、native本地空间的关系。

1、从图17-1来看,Java堆的分配其实就是从Java进程运行时堆中选中一块内存区域来映射

2、从图17-2,可以看中各内存空间的关系,当然实际的内存区域比这个复杂的多,这里只是概括说明

图17-1
在这里插入图片描述

图17-2
在这里插入图片描述

17.4.1 genCollectedHeap.cpp

17.4.1.1 GenCollectedHeap::initialize
jint GenCollectedHeap::initialize() {
  // 这一步只是对c2编译器开通使用时,做一些参数赋值操作,这里就不展开讲
  CollectedHeap::pre_initialize();

  // 这里获取分代数_n_gens,就是2
  int i;
  _n_gens = gen_policy()->number_of_generations();

  // 保证2个值相等wordSize和HeapWordSize分别是在操作系统和Java堆中代表一个字word占用内存的大小,这两个值必然相同,否则出错
  guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");

  // Java堆的对齐值,这个在`章节17.2.1.1`中有介绍
  size_t gen_alignment = Generation::GenGrain;
 // 获取分代对象数组,这个在`章节17.2.1.1`中有介绍,数组元素就2个,索引0元素表示年轻代,索引1元素表示老年代
  _gen_specs = gen_policy()->generations();

  // 分别遍历新生代和老年代,并设置各自分代的空间大小(初始值和最大值),同时确保内存对齐
  for (i = 0; i < _n_gens; i++) {
    _gen_specs[i]->align(gen_alignment);
  }

  // 下面才是给Java堆分配空间

  char* heap_address;
  size_t total_reserved = 0;
  int n_covered_regions = 0;
  ReservedSpace heap_rs;
  // 这是最外层Java堆的内存对齐值
  size_t heap_alignment = collector_policy()->heap_alignment();
  // 分配java堆内存,看`章节17.4.1.2`
  heap_address = allocate(heap_alignment, &total_reserved,
                          &n_covered_regions, &heap_rs);

  if (!heap_rs.is_reserved()) {
    vm_shutdown_during_initialization(
      "Could not reserve enough space for object heap");
    return JNI_ENOMEM;
  }
  // 将分配的Java堆内存,用 MemRegion 内存区域对象管理起来
  _reserved = MemRegion((HeapWord*)heap_rs.base(),
                        (HeapWord*)(heap_rs.base() + heap_rs.size()));

  // 参数赋值
  _reserved.set_word_size(0);
  _reserved.set_start((HeapWord*)heap_rs.base()); // Java堆内存的首地址
  size_t actual_heap_size = heap_rs.size(); // Java堆内存大小
    // Java堆内存的限制地址,也就是不能超过这条线
  _reserved.set_end((HeapWord*)(heap_rs.base() + actual_heap_size)); 
  // 接下来就是把Java堆按分代算法,分成4个区域(新生代、S1、S2、老年代)管理起来,这块逻辑,我们放`第十八章`讲
  _rem_set = collector_policy()->create_rem_set(_reserved, n_covered_regions);
  set_barrier_set(rem_set()->bs());

  _gch = this;

  for (i = 0; i < _n_gens; i++) {
    ReservedSpace this_rs = heap_rs.first_part(_gen_specs[i]->max_size(), false, false);
    _gens[i] = _gen_specs[i]->init(this_rs, i, rem_set());
    heap_rs = heap_rs.last_part(_gen_specs[i]->max_size());
  }
  clear_incremental_collection_failed();

#if INCLUDE_ALL_GCS
  // If we are running CMS, create the collector responsible
  // for collecting the CMS generations.
  if (collector_policy()->is_concurrent_mark_sweep_policy()) {
    bool success = create_cms_collector();
    if (!success) return JNI_ENOMEM;
  }
#endif // INCLUDE_ALL_GCS

  return JNI_OK;
}
17.4.1.2 GenCollectedHeap::allocate
char* GenCollectedHeap::allocate(size_t alignment,
                                 size_t* _total_reserved,
                                 int* _n_covered_regions,
                                 ReservedSpace* heap_rs){
  const char overflow_msg[] = "The size of the object heap + VM data exceeds "
    "the maximum representable size";

  // Now figure out the total size.
  size_t total_reserved = 0;
  int n_covered_regions = 0;
  const size_t pageSize = UseLargePages ?
      os::large_page_size() : os::vm_page_size();

  assert(alignment % pageSize == 0, "Must be");
  // 遍历_gen_specs,求得新生代和老年代的分配大小
  for (int i = 0; i < _n_gens; i++) {
    total_reserved += _gen_specs[i]->max_size();
    if (total_reserved < _gen_specs[i]->max_size()) {
      vm_exit_during_initialization(overflow_msg);
    }
    n_covered_regions += _gen_specs[i]->n_covered_regions();  // 最终为2
  }
  assert(total_reserved % alignment == 0,
         err_msg("Gen size; total_reserved=" SIZE_FORMAT ", alignment="
                 SIZE_FORMAT, total_reserved, alignment));

  // Needed until the cardtable is fixed to have the right number
  // of covered regions.
  n_covered_regions += 2;  // 再加2,就是4,也就是把堆最终分成4个区(新生代、S1、S2、老年代)

  *_total_reserved = total_reserved;
  *_n_covered_regions = n_covered_regions;
  // 分配内存,实现细节看`章节17.4.2`
  *heap_rs = Universe::reserve_heap(total_reserved, alignment);
  return heap_rs->base();
}

17.4.2 universe.cpp

17.4.2.1 Universe::reserve_heap
ReservedSpace Universe::reserve_heap(size_t heap_size, size_t alignment) {
  assert(alignment <= Arguments::conservative_max_heap_alignment(),
      err_msg("actual alignment " SIZE_FORMAT " must be within maximum heap alignment " SIZE_FORMAT,
          alignment, Arguments::conservative_max_heap_alignment()));
  // 通过内存对齐,得到要分配的空间大小
  size_t total_reserved = align_size_up(heap_size, alignment);
  assert(!UseCompressedOops || (total_reserved <= (OopEncodingHeapMax - os::vm_page_size())),
      "heap size is too big for compressed oops");
  // 大页时考虑,本系列文章中不考虑大而情况,忽略
  bool use_large_pages = UseLargePages && is_size_aligned(alignment, os::large_page_size());
  assert(!UseLargePages
      || UseParallelGC
      || use_large_pages, "Wrong alignment to use large pages");
  // 取出Java堆的基址base的值,32位机器时,就是0,实现细节看`章节17.4.2.2`
  char* addr = Universe::preferred_heap_base(total_reserved, alignment, Universe::UnscaledNarrowOop);
  // 创建一个ReservedHeapSpace对象,该对象就是用来保留连续内存地址范围空间的数据结构,实现细节看`章节17.4.3`
  ReservedHeapSpace total_rs(total_reserved, alignment, use_large_pages, addr);

  if (UseCompressedOops) {
    if (addr != NULL && !total_rs.is_reserved()) {
      // Failed to reserve at specified address - the requested memory
      // region is taken already, for example, by 'java' launcher.
      // Try again to reserver heap higher.
      addr = Universe::preferred_heap_base(total_reserved, alignment, Universe::ZeroBasedNarrowOop);

      ReservedHeapSpace total_rs0(total_reserved, alignment,
          use_large_pages, addr);

      if (addr != NULL && !total_rs0.is_reserved()) {
        // Failed to reserve at specified address again - give up.
        addr = Universe::preferred_heap_base(total_reserved, alignment, Universe::HeapBasedNarrowOop);
        assert(addr == NULL, "");

        ReservedHeapSpace total_rs1(total_reserved, alignment,
            use_large_pages, addr);
        total_rs = total_rs1;
      } else {
        total_rs = total_rs0;
      }
    }
  }

  if (!total_rs.is_reserved()) {
    vm_exit_during_initialization(err_msg("Could not reserve enough space for " SIZE_FORMAT "KB object heap", total_reserved/K));
    return total_rs;
  }

  if (UseCompressedOops) {
    // Universe::initialize_heap() will reset this to NULL if unscaled
    // or zero-based narrow oops are actually used.
    address base = (address)(total_rs.base() - os::vm_page_size());
    Universe::set_narrow_oop_base(base);
  }
  // 返回total_rs
  return total_rs;
}
17.4.2.2 Universe::preferred_heap_base
char* Universe::preferred_heap_base(size_t heap_size, size_t alignment, NARROW_OOP_MODE mode) {
  assert(is_size_aligned((size_t)OopEncodingHeapMax, alignment), "Must be");
  assert(is_size_aligned((size_t)UnscaledOopHeapMax, alignment), "Must be");
  assert(is_size_aligned(heap_size, alignment), "Must be");

  // HeapBaseMinAddress 是操作系统明确设定的堆内存的最低地址限制,默认设置的是2*G,这里按alignment对齐,把HeapBaseMinAddress的值按alignment对齐后,作为堆内存的最低地址
  uintx heap_base_min_address_aligned = align_size_up(HeapBaseMinAddress, alignment);

  size_t base = 0;
#ifdef _LP64  // 下面是对64位机器及使用压缩指针时的实现,我们只讲32位的,这块逻辑略过
  if (UseCompressedOops) {
    assert(mode == UnscaledNarrowOop  ||
           mode == ZeroBasedNarrowOop ||
           mode == HeapBasedNarrowOop, "mode is invalid");
    const size_t total_size = heap_size + heap_base_min_address_aligned;
    // Return specified base for the first request.
    if (!FLAG_IS_DEFAULT(HeapBaseMinAddress) && (mode == UnscaledNarrowOop)) {
      base = heap_base_min_address_aligned;

    // If the total size is small enough to allow UnscaledNarrowOop then
    // just use UnscaledNarrowOop.
    } else if ((total_size <= OopEncodingHeapMax) && (mode != HeapBasedNarrowOop)) {
      if ((total_size <= UnscaledOopHeapMax) && (mode == UnscaledNarrowOop) &&
          (Universe::narrow_oop_shift() == 0)) {
        // Use 32-bits oops without encoding and
        // place heap's top on the 4Gb boundary
        base = (UnscaledOopHeapMax - heap_size);
      } else {
        // Can't reserve with NarrowOopShift == 0
        Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);

        if (mode == UnscaledNarrowOop ||
            mode == ZeroBasedNarrowOop && total_size <= UnscaledOopHeapMax) {

          // Use zero based compressed oops with encoding and
          // place heap's top on the 32Gb boundary in case
          // total_size > 4Gb or failed to reserve below 4Gb.
          uint64_t heap_top = OopEncodingHeapMax;

          // For small heaps, save some space for compressed class pointer
          // space so it can be decoded with no base.
          if (UseCompressedClassPointers && !UseSharedSpaces &&
              OopEncodingHeapMax <= 32*G) {

            uint64_t class_space = align_size_up(CompressedClassSpaceSize, alignment);
            assert(is_size_aligned((size_t)OopEncodingHeapMax-class_space,
                   alignment), "difference must be aligned too");
            uint64_t new_top = OopEncodingHeapMax-class_space;

            if (total_size <= new_top) {
              heap_top = new_top;
            }
          }

          // Align base to the adjusted top of the heap
          base = heap_top - heap_size;
        }
      }
    } else {
      // UnscaledNarrowOop encoding didn't work, and no base was found for ZeroBasedOops or
      // HeapBasedNarrowOop encoding was requested.  So, can't reserve below 32Gb.
      Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);
    }

    // Set narrow_oop_base and narrow_oop_use_implicit_null_checks
    // used in ReservedHeapSpace() constructors.
    // The final values will be set in initialize_heap() below.
    if ((base != 0) && ((base + heap_size) <= OopEncodingHeapMax)) {
      // Use zero based compressed oops
      Universe::set_narrow_oop_base(NULL);
      // Don't need guard page for implicit checks in indexed
      // addressing mode with zero based Compressed Oops.
      Universe::set_narrow_oop_use_implicit_null_checks(true);
    } else {
      // Set to a non-NULL value so the ReservedSpace ctor computes
      // the correct no-access prefix.
      // The final value will be set in initialize_heap() below.
      Universe::set_narrow_oop_base((address)UnscaledOopHeapMax);
#if defined(_WIN64) || defined(AIX)
      if (UseLargePages) {
        // Cannot allocate guard pages for implicit checks in indexed
        // addressing mode when large pages are specified on windows.
        Universe::set_narrow_oop_use_implicit_null_checks(false);
      }
#endif //  _WIN64
    }
  }
#endif

  assert(is_ptr_aligned((char*)base, alignment), "Must be");
  // 最终返回base,在32位机器时,虚拟机就是返回0
  return (char*)base; // also return NULL (don't care) for 32-bit VM
}

17.4.3 virtualspace.cpp

17.4.3.1 ReservedHeapSpace::ReservedHeapSpace
ReservedHeapSpace::ReservedHeapSpace(size_t size, size_t alignment,
                                     bool large, char* requested_address) :
  /* 先调用父类构造函数
  */
  ReservedSpace(size, alignment, large,
                requested_address,
                (UseCompressedOops && (Universe::narrow_oop_base() != NULL) &&
                 Universe::narrow_oop_use_implicit_null_checks()) ?
                  lcm(os::vm_page_size(), alignment) : 0) {
  if (base() != NULL) {
    MemTracker::record_virtual_memory_type((address)base(), mtJavaHeap);
  }

  // Only reserved space for the java heap should have a noaccess_prefix
  // if using compressed oops.
  protect_noaccess_prefix(size);
}
17.4.3.2 ReservedSpace::ReservedSpace
ReservedSpace::ReservedSpace(size_t size, size_t alignment,
                             bool large,
                             char* requested_address,
                             const size_t noaccess_prefix) {
  initialize(size+noaccess_prefix, alignment, large, requested_address,
             noaccess_prefix, false);
}
17.4.3.3 ReservedSpace::initialize

入口函数: ReservedHeapSpace total_rs(total_reserved, alignment, use_large_pages, addr);

参数:

total_reserved 对应 size:空间大小

alignment 对应 alignment:内存对齐值

use_large_pages 对应 large:这里不考虑大页,就设置为false

addr 对应 requested_address:32位时,addr为0

noaccess_prefix 为 0

executable 为 false

void ReservedSpace::initialize(size_t size, size_t alignment, bool large,
                               char* requested_address,
                               const size_t noaccess_prefix,
                               bool executable) {
  // 看源码得知,这里就是取page size(页大小),没什么逻辑
  const size_t granularity = os::vm_allocation_granularity();
  // 断言检验
  assert((size & (granularity - 1)) == 0,
         "size not aligned to os::vm_allocation_granularity()");
  assert((alignment & (granularity - 1)) == 0,
         "alignment not aligned to os::vm_allocation_granularity()");
  assert(alignment == 0 || is_power_of_2((intptr_t)alignment),
         "not a power of 2");
  // 取二者最大值对齐
  alignment = MAX2(alignment, (size_t)os::vm_page_size());

  // Assert that if noaccess_prefix is used, it is the same as alignment.
  assert(noaccess_prefix == 0 ||
         noaccess_prefix == alignment, "noaccess prefix wrong");

  _base = NULL;
  _size = 0;
  _special = false;
  _executable = executable;
  _alignment = 0;
  _noaccess_prefix = 0;
  if (size == 0) {
    return;
  }

  // 不存在大页,special 为 false
  bool special = large && !os::can_commit_large_page_memory();
  char* base = NULL;
  // 32位机器时 requested_address == 0,这条线也不会走
  if (requested_address != 0) {
    requested_address -= noaccess_prefix; // adjust requested address
    assert(requested_address != NULL, "huge noaccess prefix?");
  }
  // special为false,这个if不会走
  if (special) {

    base = os::reserve_memory_special(size, alignment, requested_address, executable);

    if (base != NULL) {
      if (failed_to_reserve_as_requested(base, requested_address, size, true)) {
        // OS ignored requested address. Try different address.
        return;
      }
      // Check alignment constraints.
      assert((uintptr_t) base % alignment == 0,
             err_msg("Large pages returned a non-aligned address, base: "
                 PTR_FORMAT " alignment: " PTR_FORMAT,
                 base, (void*)(uintptr_t)alignment));
      _special = true;
    } else {
      // failed; try to reserve regular memory below
      if (UseLargePages && (!FLAG_IS_DEFAULT(UseLargePages) ||
                            !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {
        if (PrintCompressedOopsMode) {
          tty->cr();
          tty->print_cr("Reserve regular memory without large pages.");
        }
      }
    }
  }

  if (base == NULL) {
    if (requested_address != 0) {
      base = os::attempt_reserve_memory_at(size, requested_address);
      if (failed_to_reserve_as_requested(base, requested_address, size, false)) {
        // OS ignored requested address. Try different address.
        base = NULL;
      }
    } else {
      // 这一步就是通过系统调用mmap映射一块size大小的内存,Java堆内存就是mmap映射出来的
      base = os::reserve_memory(size, NULL, alignment);
    }
    // 映射失败,直接退出函数,分配Java堆内存失败
    if (base == NULL) return;

    // 验证对齐,为啥要验证呢,因为base是mmap映射后返回的内存首地址,这个地址是os自己的规则选取的一个地址,不一定能按照alignment对齐,所以这一定要验证
    if ((((size_t)base + noaccess_prefix) & (alignment - 1)) != 0) {
      // base没有对齐,只能释放刚才mmap映射的内存,然后重试
      if (!os::release_memory(base, size)) fatal("os::release_memory failed");
      // 确保对齐
      size = align_size_up(size, alignment);
      // 再次mmap映射内存,返回的base同样有上面一样的不对齐问题,所以这个函数中包含了手动对齐操作,细节看`章节17.4.3.4`
      base = os::reserve_memory_aligned(size, alignment);

      if (requested_address != 0 &&
          failed_to_reserve_as_requested(base, requested_address, size, false)) {
        // As a result of the alignment constraints, the allocated base differs
        // from the requested address. Return back to the caller who can
        // take remedial action (like try again without a requested address).
        assert(_base == NULL, "should be");
        return;
      }
    }
  }
  // Done
  _base = base;  // 最终拿到了Java堆的首地址
  _size = size;  // 最终拿到了Java堆的大小
  _alignment = alignment;  // 对齐值
  _noaccess_prefix = noaccess_prefix;  // 0

  // 断言判断
  assert(noaccess_prefix == 0 ||
         noaccess_prefix == _alignment, "noaccess prefix wrong");

  assert(markOopDesc::encode_pointer_as_mark(_base)->decode_pointer() == _base,
         "area must be distinguisable from marks for mark-sweep");
  assert(markOopDesc::encode_pointer_as_mark(&_base[size])->decode_pointer() == &_base[size],
         "area must be distinguisable from marks for mark-sweep");
}
17.4.3.4 os_posix.cpp->os::reserve_memory_aligned
char* os::reserve_memory_aligned(size_t size, size_t alignment) {
  assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
      "Alignment must be a multiple of allocation granularity (page size)");
  assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");

  size_t extra_size = size + alignment;
  assert(extra_size >= size, "overflow, size is too large to allow alignment");
  // mmap映射一块内存区域,返回首地址
  char* extra_base = os::reserve_memory(extra_size, NULL, alignment);

  if (extra_base == NULL) {
    return NULL;
  }

  // 手动对齐
  char* aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);

  // [  |                                       |  ]
  // ^ extra_base
  //    ^ extra_base + begin_offset == aligned_base
  //     extra_base + begin_offset + size       ^
  //                       extra_base + extra_size ^
  // |<>| == begin_offset
  //                              end_offset == |<>|
  // 用对齐后的地址-mmap的首地址,得出与首地址的偏移值
  size_t begin_offset = aligned_base - extra_base;
  // 结束地址对齐后的偏移
  size_t end_offset = (extra_base + extra_size) - (aligned_base + size);
  // begin_offset > 0,表示确实有偏移,那就把extra_base到偏移的这部分释放掉,因为有新的首地址了
  if (begin_offset > 0) {
      os::release_memory(extra_base, begin_offset);
  }
  // end_offset > 0,表示确实有偏移,那就把end_offset偏移的这部分释放掉,因为有新的限制地址了
  if (end_offset > 0) {
      os::release_memory(extra_base + begin_offset + size, end_offset);
  }
  // 返回首地址
  return aligned_base;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1371857.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

03-Nacos微服务注册中心--快速入门

一、简介 Nacos&#xff08;Naming Configuration Service&#xff09; 是一个易于使用的动态服务发现、配置和服务管理平台&#xff0c;用于构建云原生应用程序 服务发现是微服务架构中的关键组件之一。Nacos 致力于帮助您发现、配置和管理微服务。Nacos 提供了一组简单易用…

NOIP2012提高组day1-T3:开车旅行

题目链接 [NOIP2012 提高组] 开车旅行 题目描述 小 A \text{A} A 和小 B \text{B} B 决定利用假期外出旅行&#xff0c;他们将想去的城市从 1 1 1 到 n n n 编号&#xff0c;且编号较小的城市在编号较大的城市的西边&#xff0c;已知各个城市的海拔高度互不相同&#xf…

Word2Vec的CBOW模型

Word2Vec中的CBOW&#xff08;Continuous Bag of Words&#xff09;模型是一种用于学习词向量的神经网络模型。CBOW的核心思想是根据上下文中的周围单词来预测目标单词。 例如&#xff0c;对于句子“The cat climbed up the tree”&#xff0c;如果窗口大小为5&#xff0c;那么…

websocket: 了解并利用nodejs实现webSocket前后端通信

目录 第一章 前言 1.1 起源 1.2 短轮询与长轮询 1.2.1 短轮询 1.2.2 长轮询 1.2.3 长连接&#xff08;SSE&#xff09; 1.2.4 websocket 第二章 利用Node以及ws创建webSocket服务器 2.1 创建ws服务器&#xff08;后端部分&#xff09; 2.1.1 了解一下 2.1.2 代创建W…

day-05 删除子串后的字符串最小长度

思路 通过不断地检查是否含有"AB"或"CD"&#xff0c;如果有则将其从字符串中删除&#xff0c;直到"AB"或"CD"都不存在时&#xff0c;返回字符串的长度 解题方法 //检测是否有"AB" for(int i0;i<len-1;i){ if(s.charAt(i…

【Python】使用tkinter设计开发Windows桌面程序记事本(1)

下一篇&#xff1a; 记事本介绍 电脑记事本是一种简单的文本编辑器&#xff0c;用于在电脑上创建、编辑和存储文本文件。它通常被用作轻量级的文本编辑工具&#xff0c;适用于简单的文本编辑任务&#xff0c;如写日记、做笔记、编写代码等。以下是对电脑记事本的详细介绍&…

LeetCode刷题--- 最小路径和

个人主页&#xff1a;元清加油_【C】,【C语言】,【数据结构与算法】-CSDN博客 个人专栏 力扣递归算法题 http://t.csdnimg.cn/yUl2I 【C】 ​​​​​​http://t.csdnimg.cn/6AbpV 数据结构与算法 ​​​http://t.csdnimg.cn/hKh2l 前言&#xff1a;这个专栏主要讲述动…

wireshark使用教程

目录 windows平台安装Wireshark组件选择Additional TasksPacket CaptureUSB CaptureNpcap Installation Options Ubuntu上安装 Wireshark不使用 sudo 运行 Wireshark 使用GUI抓包使用命令行抓包确定抓取哪个网卡的报文抓取数据包停止抓包设置过滤条件 参考资料 Wireshark 是一款…

救赎之道,就在其中

时光荏苒&#xff0c;不知不觉距离我踏入职场的第一天已经快一年了。最近也是看到平台举办年度征文活动&#xff0c;借此契机重新审视自己这两年来的成长历程&#xff0c;也希望对正在迷茫的人提供一些精神上的慰藉。 1.对未来的迷茫 如果要给两年前的自己打上标签&#xff0…

Flink-CEP 实战教程

文章目录 1. 基本概念1.1 CEP 是什么1.2 模式&#xff08;Pattern&#xff09;1.3 应用场景 2. 快速上手2.1 引入依赖2.2 入门实例 3. 模式API&#xff08;Pattern API&#xff09;3.1 个体模式3.1.1 基本形式3.1.2 量词&#xff08;Quantifiers &#xff09;3.1.3 条件&#x…

KVM系统虚拟化性能测试过程总结

buildroot编译 为啥要用buildroot 支持很多&#xff1a;交叉编译工具链、根文件系统生成、内核映像编译和引导加载程序编译。使用简单&#xff1a;使用类似内核的menuconfig、gconfig和xconfig配置界面&#xff0c;使用buildroot构建基本系统很容易。支持很多的包&#xff1a…

蓝凌EIS智慧协同平台 ShowUserInfo.aspx sql注入漏洞

漏洞描述&#xff1a; 蓝凌EIS智慧协同平台是一个简单、高效的工作方式专为成长型企业打造的沟通、协同、社交的移动办公平台&#xff0c;覆盖OA、沟通、客户、人事、知识等管理需求&#xff0c;集合了非常丰富的模块&#xff0c;满足组织企业在知识、项目管理系统建设等需求的…

[Linux进程(一)] 什么是进程?PCB的底层是什么?以及进程标识符pid与ppid

文章目录 1、前言2、描述进程 — PCB(os怎么管理进程呢)3、查看进程3.1 方法一3.2 方法二 4、系统调用获取进程标示符(PID)4.1 获取进程的ID4.2 获取进程的父进程ID 5、系统调用创建子进程-fork 1、前言 大家经常都在讲进程&#xff0c;而它到底是什么呢&#xff1f; 这里给大…

x-cmd pkg | dua - 磁盘使用分析器

目录 简介首次用户技术特点竞品和相关作品进一步阅读 简介 dua 是 Disk Usage Analyzer 的简写&#xff0c;该工具可以快速查看给定目录的磁盘空间使用情况。 对于想要深入了解磁盘空间使用情况并有效管理存储的用户来说&#xff0c;Dua 是一个很有价值的工具。通过使用 Dua …

Java流程控制的陷阱

文章目录 1. switch中break的作用2. switch支持的数据类型3. else隐含的条件4. 省略花括号的陷阱5. for循环的结构6. 使用标签跳出双层for循环 流程控制三种&#xff1a;顺序结构、分支结构、循环结构 分支机构两种&#xff1a;if语句、switch语句 循环结构&#xff1a;while循…

每日一篇英语文章分享:I have a dream. 争取早日阅读论文自由.

我有一个梦想》&#xff08;英文&#xff1a;I have a dream&#xff09;是美国黑人民权运动领袖马丁路德金于1963年8月28日在华盛顿林肯纪念堂发表的纪念性演讲。 《我有一个梦想》是马丁路德金在美国黑人受种族歧视和迫害由来已久的背景下&#xff0c;为了推动美国国内黑人争…

安达发|APS智能排产软件有哪些条件约束功能

APS智能排产软件是一种基于先进算法和人工智能技术的生产计划与调度系统&#xff0c;它可以帮助企业实现生产资源的优化配置&#xff0c;提高生产效率和降低生产成本。在实际应用中&#xff0c;APS智能排产软件需要满足多种条件约束功能&#xff0c;以满足不同企业的需求。以下…

python 和shell 变量互相传递

嗨喽~大家好呀&#xff0c;这里是魔王呐 ❤ ~! python更多源码/资料/解答/教程等 点击此处跳转文末名片免费获取 主要介绍python和shell变量互相传递方法&#xff0c;使用了环境变量、管道等方法。 python -> shell&#xff1a; 1.环境变量 import os var123或var123 o…

【手搓深度学习算法】用线性回归预测波士顿房价

线性回归 线性回归是一种监督学习方法&#xff0c;用于建立因变量与一个或多个自变量之间的关系。线性回归的目标是找到一条直线&#xff0c;使得所有数据点到这条直线的距离之和最小。 线性回归的基本形式如下&#xff1a; y β 0 β 1 x 1 β 2 x 2 . . . β n x n ϵ…

Linux学习之网络编程(纯理论)

写在前面 刚刚更新完Linux系统编程&#xff0c;特别推荐大家去看的Linux系统编程&#xff0c;总共44个小时&#xff0c;老师讲的非常好&#xff0c;我是十天肝完的&#xff0c;每天大概看20集&#xff0c;每天还要以写blog的形式来写笔记来总结一下&#xff0c;虽然这十天有点…