7个Pandas绘图函数助力数据可视化

news2024/11/15 7:17:39

大家好,在使用Pandas分析数据时,会使用Pandas函数来过滤和转换列,连接多个数据帧中的数据等操作。但是,生成图表将数据在数据帧中可视化通常比仅仅查看数字更有帮助。

Pandas具有几个绘图函数,可以使用它们快速轻松地实现数据可视化,文中将介绍这些函数。

一、创建Pandas数据帧

首先创建一个用于分析的示例数据帧,将数据帧命名为df_employees,其中包含员工记录。我们将使用Faker和NumPy的随机模块来填充数据帧,生成200条记录。

注意:如果开发环境中没有安装Faker,请使用pip安装:pip install Faker

运行以下代码片段来创建df_employees,并向其中填充记录:

import pandas as pd
from faker import Faker
import numpy as np

# 实例化Faker对象
fake = Faker()
Faker.seed(27)

# 为员工创建一个数据帧
num_employees = 200
departments = ['Engineering', 'Finance', 'HR', 'Marketing', 'Sales', 'IT']

years_with_company = np.random.randint(1, 10, size=num_employees)
salary = 40000 + 2000 * years_with_company * np.random.randn()

employee_data = {
 'EmployeeID': np.arange(1, num_employees + 1),
 'FirstName': [fake.first_name() for _ in range(num_employees)],
 'LastName': [fake.last_name() for _ in range(num_employees)],
 'Age': np.random.randint(22, 60, size=num_employees),
 'Department': [fake.random_element(departments) for _ in range(num_employees)],
 'Salary': np.round(salary),
 'YearsWithCompany': years_with_company
}

df_employees = pd.DataFrame(employee_data)

# 显示数据帧的头部
df_employees.head(10)

设置种子以便重现结果,所以每次运行此代码,都会得到相同的记录。

以下是数据帧的前几条记录:

图片

df_employees.head(10)的输出结果

二、Pandas绘图函数

1. 散点图

散点图通常用于了解数据集中任意两个变量之间的关系。对于df_employees数据帧,让我们创建一个散点图来可视化员工年龄和工资之间的关系。这将帮助大家了解员工年龄和工资之间是否存在一定的相关性。

要绘制散点图,可以使用plot.scatter(),如下所示:

# 散点图:年龄与工资
df_employees.plot.scatter(x='Age', y='Salary', title='Scatter Plot: Age vs Salary', xlabel='Age', ylabel='Salary', grid=True)

图片

对于此示例数据帧,并未看到员工年龄和工资之间的任何相关性。

2. 折线图

折线图适用于识别连续变量(通常是时间或类似刻度)上的趋势和模式。

在创建df_employees数据帧时,已经定义了员工在公司工作年限与工资之间的线性关系,观察一下显示工作年限与平均工资变化的折线图。

按工作年限分组找到平均工资,然后使用plot.line()绘制折线图:

# 折线图:平均工资随工作年限的变化趋势
average_salary_by_experience = df_employees.groupby('YearsWithCompany')['Salary'].mean()
df_employees['AverageSalaryByExperience'] = df_employees['YearsWithCompany'].map(average_salary_by_experience)

df_employees.plot.line(x='YearsWithCompany', y='AverageSalaryByExperience', marker='o', linestyle='-', title='Average Salary Trend Over Years of Experience', xlabel='Years With Company', ylabel='Average Salary', legend=False, grid=True)

图片

由于选择使用员工在公司工作年限的线性关系来填充薪资字段,因此可以清晰地看到折线图反映了这一点。

3. 直方图

可以使用直方图来可视化连续变量的分布情况,方法是将数值划分成区间或分段,并显示每个分段中的数据点数量。

使用plot.hist()绘制直方图来了解员工年龄的分布情况,如下所示:

# 直方图:年龄分布
df_employees['Age'].plot.hist(title='Age Distribution', bins=15)

图片

4. 箱形图

箱形图有助于了解变量的分布、扩散情况,并用于识别异常值。创建一个箱形图,比较不同部门间的工资分布情况,从而对组织部的工资分布情况进行高层次的比较。

箱形图还有助于确定薪资范围以及每个部门的有用信息,如中位数薪资和潜在的异常值等。

在这里,使用根据“部门(Department)”分组的“薪资(Salary)”列来绘制箱形图:

# 箱形图:按部门分列的薪金分布情况
df_employees.boxplot(column='Salary', by='Department', grid=True, vert=False)

图片

从箱线图中,可以看到某些部门的薪资分布比其他部门更广泛。

5. 条形图

如果想要了解变量在出现频率方面的分布情况,可以使用条形图。

使用plot.bar()绘制一个条形图来可视化员工数量:

# 条形图:按部门的员工数量
df_employees['Department'].value_counts().plot.bar(title='Employee Count by Department')

图片

6. 面积图

面积图通常用于可视化在连续轴或分类轴上的累积分布变量。对于员工数据帧,可以绘制不同年龄组的累积薪资分布图。为了将员工映射到基于年龄组的区间中,需要使用pd.cut()

然后通过“年龄组(AgeGroup)”对薪资进行累积求和,为了得到面积图,使用plot.area()

# 面积图:不同年龄组的累积薪资分布
df_employees['AgeGroup'] = pd.cut(df_employees['Age'], bins=[20, 30, 40, 50, 60], labels=['20-29', '30-39', '40-49', '50-59'])
cumulative_salary_by_age_group = df_employees.groupby('AgeGroup')['Salary'].cumsum()

df_employees['CumulativeSalaryByAgeGroup'] = cumulative_salary_by_age_group

df_employees.plot.area(x='AgeGroup', y='CumulativeSalaryByAgeGroup', title='Cumulative Salary Distribution Over Age Groups', xlabel='Age Group', ylabel='Cumulative Salary', legend=False, grid=True)

图片

7. 饼图

饼图有助于可视化各个部门在整体组织中的薪资分布比例。

对于我们的示例,创建一个饼图来显示组织中各个部门的薪资分布是很有意义的。

通过部门对员工的薪资进行分组,然后使用plot.pie()来绘制饼图:

# 饼图:按部门划分的薪资分布
df_employees.groupby('Department')['Salary'].sum().plot.pie(title='Department-wise Salary Distribution', autopct='%1.1f%%')

图片

三、总结

以上就是本文介绍的7个用于快速数据可视化的Pandas绘图函数,也可以尝试使用matplotlibseaborn生成更漂亮的图表。对于快速数据可视化,上述这些函数非常方便,实现过程较为轻松。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1367210.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MINCO+汽车

规划典型的解决方法: 如何准确的描述他的动力学,实际上是对这个物理对象进行建模.(规划等于开环的控制,控制等于闭环的规划),规划系统要做到是假设已知系统模型的情况下去计算一些可能会影响比较好的 未来运动的指令,做未来运动轨迹的推演.对自己建模的情况下还需对环境有个比较…

Java技术专题:「入门到精通系列」深入探索常用的六种加密技术和实现

文章目录 1. 引言2. 对称加密3. 非对称加密4. 哈希算法5. 消息摘要6. 数字签名7. 数字证书8. 拓展功能与未来展望 🎉欢迎来到Java学习路线专栏~探索Java中的静态变量与实例变量 ☆* o(≧▽≦)o *☆嗨~我是IT陈寒🍹✨博客主页:IT陈寒的博客&am…

第一个Java网络爬虫程序

目录 前言第一个Java网络爬虫程序总结 前言 网络爬虫是一种获取互联网信息的技术,它可以模拟浏览器行为,访问网站并提取所需的数据。在这个小Demo中,我们使用Java语言结合HttpClient库实现了一个简单的爬虫程序,用于抓取汽车之家…

任务调度中心

可以服务器配置和权限,分配任务执行。当服务器下线后,任务会被在线服务器接管,当重新上线后会在次执行任务。接管任务的服务器会释放任务。调度过程的实现,可以二次开发。基于 netty tcp 通信开发。 下载地址: http:/…

听GPT 讲Rust源代码--library/core/benches

File: rust/library/core/benches/slice.rs 文件路径:rust/library/core/benches/slice.rs 这个文件是Rust标准库中的一个示例(benchmark)文件,用来测试切片(slice)在不同情况下的性能。 Rust的切片是对数组…

QT:单例

单例的定义 官方定义:单例是指确保一个类在任何情况下都绝对只有一个实例,并提供一个全局访问点。 单例的写法 抓住3点: 构造函数私有化(确保只有一个实例)提供一个可以获取构造实例的接口(提供唯一的实…

在 sealos 上使用 redisinsight 完美管理 redis

先起一个 redis 集群,在 sealos 上可以点点鼠标就搞定: 简单两步,redis 集群搞定。 再启动 RedisInsight, 是一个 redis 的可视化管理工具。 就可以看到部署后的地址了。进去之后填写 redis 的链接信息即可: 链接信息在数据库的…

已解决 ValueError: Data cardinality is ambiguous 问题

博主猫头虎的技术世界 🌟 欢迎来到猫头虎的博客 — 探索技术的无限可能! 专栏链接: 🔗 精选专栏: 《面试题大全》 — 面试准备的宝典!《IDEA开发秘籍》 — 提升你的IDEA技能!《100天精通Golang》…

网络字节序与主机字节序

字节序区分 多字节的数值在内存中高低位的排列方式会影响所表示的数值处理方式和显示。字节序以字节为基本单位,表示不同字节的存储顺序。 从存储顺序上区分,可分为大端字节序和小端字节序。从处理上区分,可区分为网络字节序和主机字节序。…

YY9702.102-2021 医疗设备EMC检测知识

一:CE(传导发射试验) 在做医疗器械机器EMC实验时,根据YY9706.102-2021的要求,按照图一流程先对表一进行填写。 设备分类和分组:《GB4824-2019》 根据以上对ME设备进行分组和分类,例如血透机属于…

Java课程设计个人博客

目录 引言:在此说明在本次课设过程中所遇到的困难! 一、项目搭建的问题 Q1:Web项目应用啥么编译器编写? Q2:如何创建Web项目(MAVEN)? Q3:Tomcat服务器开头控制台显示乱码如何解决? Q4:Tomcat服务器怎么设置项目的…

gem5学习(9):构建gem5——Building gem5

目录 一、Requirements for gem5 二、Getting the code 三、Your first gem5 build 1、gem5 binary types 四、Common errors 1、gcc版本过低 2、使用非默认版本的python 3、未安装M4宏处理器 4、Protobuf版本过低 前面的gem5学习(3)—&#xf…

Java面试高招:程序员如何在面试中脱颖而出

Java面试高招:程序员如何在面试中脱颖而出 《Java面试高招:程序员如何在面试中脱颖而出》摘要引言面试经历面试失败的反思 面试技巧侦探式的问题解决无敌铁金刚的坚定决心 参考资料 博主 默语带您 Go to New World. ✍ 个人主页—— 默语 的博客&#x1…

安全典型配置(六)配置IPSG限制非法主机访问内网案例(静态绑定)

相关文章学习: 安全典型配置(一)使用ACL限制FTP访问权限案例 安全典型配置(二)使用ACL限制用户在特定时间访问特定服务器的权限案例 安全典型配置(三)使用ACL禁止特定用户上网案例安全典型配置…

产品经理如何做好需求评审?掌握五大关键要素

随着产品经理职位的日益重要,对产品需求的评审也越来越重要。一个成功的产品经理需要不仅仅是拥有好的产品理念和市场分析能力,更需要拥有好的需求评审能力,这样才能够确保产品能够顺利开发,最终成功上市。那么,产品经…

【系统高级-环境变量】path配置一整行,而不是列表

这是列表编辑方便。但是不知道为什么变成一行,非常的令人抓狂,经过研究发现,第一个环境变量必须为C:\Windows\system32 开头才可以 文章如下 修改环境变量中的一行变成列表形式_环境变量编辑不是列表-CSDN博客

WiFi6工业网关能为工业物联网带来哪些改进?

WiFi 6( 802.11ax)比其前身WiFi 5(802.11ac)带来了多项改进,例如更快的通信速率、更大的带宽容量、在多设备连入时更稳定的性能、更大的链接范围、增强的安全性以及更好地支持物联网工作负载等,本篇就为大家…

实战:使用docker容器化服务与文件挂载-2

接着上文,演示Elasticsearch 和 Kibana 的安装,并讲解文件挂载 Elasticsearch of Docker (Kibana) 1、Elasticsearch 安装 ElasticSearch 使用 Docker 安装:https://www.yuque.com/zhangshuaiyin/guli-mall/dwrp5b 1.…

Linux第20步_在虚拟机上安装“Visual Studio Code”

1、双击windows系统桌面上的“FileZilla Client.exe”,打开FTP客户端,点击03软件下的Visual Studio Code,发现code_1.50.1-1602600906_amd64。 2、点击“文件”,然后点击“站点管理器”,见下图操作: 3、点…

猫头虎分享已解决Bug || Go Error: cannot use str (type string) as type int in assignment

博主猫头虎的技术世界 🌟 欢迎来到猫头虎的博客 — 探索技术的无限可能! 专栏链接: 🔗 精选专栏: 《面试题大全》 — 面试准备的宝典!《IDEA开发秘籍》 — 提升你的IDEA技能!《100天精通Golang》…