Python将Labelme文件的真实框和预测框绘制到图片上

news2024/11/15 10:23:39

Python将Labelme文件的真实框和预测框绘制到图片上

  • 前言
  • 前提条件
  • 相关介绍
  • 实验环境
  • Python将Labelme文件的标注信息绘制到图片上
    • 代码实现
    • 输出结果

在这里插入图片描述

前言

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小应用专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
  • YOLOv8 Ultralytics:使用Ultralytics框架训练RT-DETR实时目标检测模型
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

前提条件

  • 熟悉Python

相关介绍

  • Python是一种跨平台的计算机程序设计语言。是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。
  • PyTorch 是一个深度学习框架,封装好了很多网络和深度学习相关的工具方便我们调用,而不用我们一个个去单独写了。它分为 CPU 和 GPU 版本,其他框架还有 TensorFlow、Caffe 等。PyTorch 是由 Facebook 人工智能研究院(FAIR)基于 Torch 推出的,它是一个基于 Python 的可续计算包,提供两个高级功能:1、具有强大的 GPU 加速的张量计算(如 NumPy);2、构建深度神经网络时的自动微分机制。
  • YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。它是一个在COCO数据集上预训练的物体检测架构和模型系列,代表了Ultralytics对未来视觉AI方法的开源研究,其中包含了经过数千小时的研究和开发而形成的经验教训和最佳实践。
  • Labelme是一款图像标注工具,由麻省理工(MIT)的计算机科学和人工智能实验室(CSAIL)研发。它是用Python和PyQT编写的,开源且免费。Labelme支持Windows、Linux和Mac等操作系统。
  • 这款工具提供了直观的图形界面,允许用户在图像上标注多种类型的目标,例如矩形框、多边形、线条等,甚至包括更复杂的形状。标注结果以JSON格式保存,便于后续处理和分析。这些标注信息可以用于目标检测、图像分割、图像分类等任务。
  • 总的来说,Labelme是一款强大且易用的图像标注工具,可以满足不同的图像处理需求。
  • Labelme标注json文件是一种用于存储标注信息的文件格式,它包含了以下几个主要的字段:
    • version: Labelme的版本号,例如"4.5.6"。
    • flags: 一些全局的标志,例如是否是分割任务,是否有多边形,等等。
    • shapes: 一个列表,每个元素是一个字典,表示一个标注对象。每个字典包含了以下几个字段:
      • label: 标注对象的类别名称,例如"dog"。
      • points: 一个列表,每个元素是一个坐标对,表示标注对象的边界点,例如[[10, 20], [30, 40]]。
      • group_id: 标注对象的分组编号,用于表示属于同一组的对象,例如1。
      • shape_type: 标注对象的形状类型,例如"polygon",“rectangle”,“circle”,等等。
      • flags: 一些针对该标注对象的标志,例如是否是难例,是否被遮挡,等等。
    • lineColor: 标注对象的边界线颜色,例如[0, 255, 0, 128]。
    • fillColor: 标注对象的填充颜色,例如[255, 0, 0, 128]。
    • imagePath: 图像文件的相对路径,例如"img_001.jpg"。
    • imageData: 图像文件的二进制数据,经过base64编码后的字符串,例如"iVBORw0KGgoAAAANSUhEUgAA…"。
    • imageHeight: 图像的高度,例如600。
    • imageWidth: 图像的宽度,例如800。

以下是一个Labelme标注json文件的示例:

{
  "version": "4.5.6",
  "flags": {},
  "shapes": [
    {
      "label": "dog",
      "points": [
        [
          121.0,
          233.0
        ],
        [
          223.0,
          232.0
        ],
        [
          246.0,
          334.0
        ],
        [
          121.0,
          337.0
        ]
      ],
      "group_id": null,
      "shape_type": "polygon",
      "flags": {}
    }
  ],
  "lineColor": [
    0,
    255,
    0,
    128
  ],
  "fillColor": [
    255,
    0,
    0,
    128
  ],
  "imagePath": "img_001.jpg",
  "imageData": "iVBORw0KGgoAAAANSUhEUgAA...",
  "imageHeight": 600,
  "imageWidth": 800
}

实验环境

  • Python 3.x (面向对象的高级语言)

Python将Labelme文件的标注信息绘制到图片上

  • 项目结构
    在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

代码实现

import os
import cv2
import json
import copy

def query_info_in_json_and_rectangle(in_img_path,real_json_path,pred_json_path,out_img_path):
    '''
    查询json文件的信息并绘制
    '''
    img = cv2.imread(in_img_path)

    # 绘制真实框
    with open(real_json_path,'r') as f:
        json_data = json.load(f)
    # print(json_data)

    # 以查询label信息为例,比如输出'label' == "49"的标注信息
    json_data_shape =  copy.deepcopy(json_data['shapes'])
    if json_data_shape != []:
        for i in json_data_shape:
            x1 = int(i['points'][0][0])
            y1 = int(i['points'][0][1])
            x2 = int(i['points'][1][0])
            y2 = int(i['points'][1][1])

            xmin = min(x1,x2)
            ymin = min(y1,y2)
            xmax = max(x1,x2)
            ymax = max(y1,y2)

            label_name = i['label']

            cv2.rectangle(img,(xmin,ymin),(xmax,ymax),(0, 0, 255), 2, cv2.LINE_AA)
            cv2.putText(img,label_name,(xmin-5,ymin), cv2.FONT_HERSHEY_SIMPLEX, 1,(0,0,255),2)

    # 绘制预测框
    with open(pred_json_path,'r') as f:
        json_data = json.load(f)
    # print(json_data)

    # 以查询label信息为例,比如输出'label' == "49"的标注信息
    json_data_shape =  copy.deepcopy(json_data['shapes'])
    if json_data_shape != []:
        for i in json_data_shape:
            x1 = int(i['points'][0][0])
            y1 = int(i['points'][0][1])
            x2 = int(i['points'][1][0])
            y2 = int(i['points'][1][1])

            xmin = min(x1,x2)
            ymin = min(y1,y2)
            xmax = max(x1,x2)
            ymax = max(y1,y2)

            label_name = i['label']

            cv2.rectangle(img,(xmin,ymin),(xmax,ymax),(255, 0, 0), 1, cv2.LINE_AA)
            cv2.putText(img,label_name,(xmin-5,ymin), cv2.FONT_HERSHEY_SIMPLEX, 1,(255,0,0),1)
    
        cv2.imwrite(out_img_path,img)
    else: # 无标注信息保存原图
        cv2.imwrite(out_img_path,img)
        


if __name__=="__main__":
    in_img_dir = 'images/'
    real_json_dir = 'jsons/'
    pred_json_dir = 'results/'


    output_dir = 'output_imgs/'
    if not os.path.exists(output_dir):
        os.mkdir(output_dir) 

    img_name_list = [i for i in os.listdir(in_img_dir) if i.endswith('.png') or i.endswith('.jpg') or i.endswith('.tif') or i.endswith('.jpeg') or i.endswith('.bmp')]
    # print(img_name_list)

    for img_name in img_name_list:
        in_img_path = in_img_dir + img_name
        if img_name.endswith('.jpeg'):
            real_json_path = real_json_dir + img_name[:-5]+'.json'
            pred_json_path = pred_json_dir + img_name[:-5]+'.json'
        else:
            real_json_path = real_json_dir + img_name[:-4]+'.json'
            pred_json_path = pred_json_dir + img_name[:-4]+'.json'

        
        out_img_path = output_dir + img_name
        # 将Labelme文件的标注信息绘制到图片上
        query_info_in_json_and_rectangle(in_img_path,real_json_path,pred_json_path,out_img_path)

输出结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 注:真实框(红色),预测框(蓝色)
  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小应用专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
  • YOLOv8 Ultralytics:使用Ultralytics框架训练RT-DETR实时目标检测模型
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1367175.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

这些专利知识你知道吗?

专利作为一种重要的知识产权保护形式。专利不仅成为了企业核心竞争力的重要组成部分,也成为了国家创新发展的重要支撑。 专利是指国家专利主管机关授予发明创造申请人的一种专有权,这种专有权具有独占性、排他性和法律强制性,能够为持有者带来…

通过盲对抗性扰动实时击败基于DNN的流量分析系统

文章信息 论文题目:Defeating DNN-Based Traffic Analysis Systems in Real-Time With Blind Adversarial Perturbations 期刊(会议):30th USENIX Security Symposium 时间:2021 级别:CCF A 文章链接&…

基于sigma-delta和MASHIII调制器的频率合成器simulink建模与仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 Sigma-Delta调制器原理 4.2 数学模型 4.3 噪声整形 4.4 MASH III调制器原理 4.5 基于Sigma-Delta和MASH III的频率合成器 5.算法完整程序工程 1.算法运行效果图预览 其误差当系统进…

已解决 Java Error: java.lang.UnsupportedOperationException 问题

博主猫头虎的技术世界 🌟 欢迎来到猫头虎的博客 — 探索技术的无限可能! 专栏链接: 🔗 精选专栏: 《面试题大全》 — 面试准备的宝典!《IDEA开发秘籍》 — 提升你的IDEA技能!《100天精通Golang》…

Linux学习记录——삽심칠 传输层TCP协议(2)

文章目录 1、滑动窗口2、拥塞控制3、延迟应答4、捎带应答5、总结TCP可靠性和性能提高6、面向字节流7、粘包问题8、异常情况9、全连接、半连接 上一篇是传输层TCP协议(1)。本篇默认读者已经清楚TCP报头各个部分、可靠性和握手挥手的含义。 有时候会把客户…

《中学物理奇妙日志——30天物理学探索之旅》提纲

《中学物理奇妙日志——30天物理学探索之旅》提纲 第一部分:物理学基础(第1-5天) 第一天:引言 - 从生活中的物理现象出发,阐述物理学的定义与重要性 子主题:物理学的历史、发展及在现代生活中的广泛应用 …

Postman Newman 教程:轻松管理 API 自动化测试步骤

Postman 中的 Newman 是什么? Newman 是一个 CLI(命令行界面)工具,用于运行 Postman 中的集合(Collection)和环境(Environment)来进行自动化测试。它允许直接从命令行运行 Postman …

不求人,自己找到全网最火的编程项目。

文章目录 一. 到哪儿去找项目?二. 什么是最好的项目?三. 怎么高效找项目?四. 怎么高速下载项目? 一. 到哪儿去找项目? 书上习题网络课程线下培训Github、Gitee、开源中国 最好的找项目的地方是github。 二. 什么是最…

【读书笔记】网空态势感知理论与模型(七)

通过网络级对象依赖关系揭示0Day攻击路径 1. 研究动机 0Day攻击是攻击者和防御者之间信息不对称的结果。赛门铁克研究人员认为,典型的0Day攻击平均隐藏312天才会被觉察。 受到SKRM模型启发,Patrol系统以全局视野来调查在某一个路径上的0Day攻击行为。从…

Redis中字符串表示是如何设计与实现的?

文章目录 Redis中字符串表示是如何设计与实现的(SDS)?引言简单动态字符串底层数据结构为什么不用char *举个🌰如何优化append操作?总结 Redis中字符串表示是如何设计与实现的(SDS)? …

Tomcat 的 work 目录缓存导致的JSP页面图片更新问题

一、问题分析 1. 修改后重新部署没有变化 笔者之前部署了一个后台管理项目,通过它来发布课程内容,其中有一个 JSP 课程页面,在该 JSP 页面里也引用了类文件 Constant.java 里的一个变量(ALIYUN_OSS_PATH),…

7个PyCharm实用插件实现轻松编程

大家好,IDE(集成开发环境)是开发者的武器,使用一个好的IDE和一些很棒的插件,工作效率会更高。Python是一种广泛使用的编程语言,PyCharm是最受欢迎的Python IDE之一。以下介绍7个PyCharm插件,它们…

JavaScript基础(25)_dom查询练习(二)

<!DOCTYPE html> <html lang"zh"> <head><meta charset"UTF-8"><title>dom查询练习二</title><link rel"stylesheet" href"../browser_default_style/reset.css"><style>form {margi…

K8S--持久卷(PersistentVolume)的用法

原文网址&#xff1a;K8S--持久卷(PersistentVolume)的用法-CSDN博客 简介 本文介绍K8S的持久卷(PersistentVolume)的用法。 目标&#xff1a;用持久卷的方式将主机的磁盘与容器磁盘映射&#xff0c;安装nginx并运行。 --------------------------------------------------…

IO流-文件复制

IO流 概述&#xff1a;IO流&#xff0c;输入输出流&#xff08;Input Output&#xff09;流&#xff1a;一种抽象的概念&#xff0c;对数据传输的总称。&#xff08;数据在设备之间的传输称为流&#xff09;常见的功能 文件复制文件上传文件下载 学习流&#xff0c;我们要搞懂…

CSS 发光输入框动画

<template><view class="content"><input placeholder="请输入..." class="input" /> </view> </template><script></script><style>/* 设置整个页面的背景颜色为 #212121 */body{background-c…

centos7系统部署SqlServer2019

转载说明&#xff1a;如果您喜欢这篇文章并打算转载它&#xff0c;请私信作者取得授权。感谢您喜爱本文&#xff0c;请文明转载&#xff0c;谢谢。 一 关于SQL Server SQL Server数据库是Microsoft开发设计的一个关系数据库智能管理系统(RDBMS)。 二 安装部署 2.1 安装依赖 …

使用 matlab 求解最小二乘问题

有约束线性最小二乘 其标准形式为&#xff1a; min ⁡ x 1 2 ∥ C x − d ∥ 2 2 \mathop {\min }\limits_x \quad \frac{1}{2}\left\| Cx-d \right\|_2^2 xmin​21​∥Cx−d∥22​ 约束条件为&#xff1a; A ⋅ x ≤ b A e q ⋅ x b e q l b ≤ x ≤ u b \begin{aligned} …

linux创建pyspark虚拟环境

一、创建虚拟环境 conda create -n test python3.6.6 二、注意添加镜像 vi /root/.condarc channels:- http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/- http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/- http://mirrors.ustc.edu.cn/anaconda/pkgs/ma…

消息队列-RockMQ-批量收发实践

批量收发实战 发送消息是需要网络连接的如果我们单条发送吞吐量可能没有批量发送好。剖来那个发送可以减少网络IO开销&#xff0c;但是也不能一批次发送太多的数据&#xff0c;需要根据每条消息的大小和网络带宽来确定量的数目。 比如网络带宽为可以支持一次性发送8M的数据包&…