GNN algorithm(4): HAN, Heterogeneous Graph Attention Network

news2024/11/16 21:25:47

目录

background

(1) heterogeneity of graph

(2) semantic-level attention

(3) Node-level attention

(4) HAN

contributions

2. Related Work

2.1 GNN 

2.2 Network Embedding

3. Preliminary

background

4. Proposed Model

4.1 Node-level attention

ideas: challenge: hetero graph -> homo graph lose much semantics and structural info.

4.2 Semantic-level attention

ideas:semantics

4.3 Analysis of the proposed model

5.4 classification 

5.5 Analysis 


GNN, a powerful graph representation technique

problem: it not beeen fully considered in graph neural network for heterogeneous graph which contains different types of nodes and links.

  • heterogeneity
  • rich semantic information

solution: HAN(Heterogeneous graph attention network)

  • node-level attention: learn the importance between a node and its meta-path based neighbors
  • semantic-level attention: is able to learn the importance of different meta-paths.

-> model can generate node embedding by aggregating features from meta-path based neighbors in a hierarchical manner.

background

GAT: leverages attention mechanism for the homogeneous graph which includes only one type of nodes or links.

  • As a matter of fact, the real-world graph usually comes with multi-types of nodes and edges, also widely known as heterogeneous information network(HIN)
  • meta-path, a composite relation connecting two objects, is a widely used structure to capture the semantics. e.g. meta-path Movie-Actor-Movie(MAM) -> 因为只有依据meta-path才能得到meta-path based neighbors.
  • heterogeneous graph contains more comprehensive information and rich semantics. depending on the meta-paths, the relation between nodes in the heterogeneous graph can have different semantics.

(1) heterogeneity of graph

problem: an intrinsic property of heterogeneous graph -> different types of nodes have different traits and their features may fall in different feature spaces.

-> how to handle such complex structured information and preserve the diverse feature information simultaneously is an urgent problem that needs to be solved.

(2) semantic-level attention

background: Different meta-paths in the heterogeneous graph may extract diverse semantic information.

problem: how to select the most meaningful meta-paths and fuse the semantic information for the specific task.

solution: semantic-level attention aims to learn the importance of each meta-path and assign proper weights to them.

problem: treating different meta-path equally is unpractical and will weaken the semantic information <- some useful meta-paths

(3) Node-level attention

how to distinguish subtle difference of these neighbors and select some informative neighbors is required.

solution: node-level attention aims to learn the importance of meta-path based neighbors and assign different attention values to them.

e.g. The Terminator movie <-> meta-path relation

problem: how to design a model which can discover the subtle  differences of neighbors and learn their weights properly will be desired.

(4) HAN

solution: HAN

  • node-level attention: learn meta-path based neighbors' attention values
  • semantic-level attention: learn meta-paths' attention values

-> our model can get the optimal combination of neighbors and multiple meta-paths in a hierarchical manner, which enables the learned node embeddings to better capture the complex structure and rich semantic information in a heterogeneous graph.

contributions

  • first attempt to study the heterogeneous gnn based on attention mechanism. -> GNN directly applied to heterogeneous graph.
  • HAN
  • superiority -> good interpretability for heterogeneous graph analysis.

2. Related Work

2.1 GNN 

  • GCN, spectral approach, which design a graph convolutional network via a localized first-order approximation of spectral graph convolutions(graph Fourier).
  • GraphSAGE, non-spectral approach, which performs a neural network based aggregator over a fixed size node neighbor. generates embeddings by aggregating features from a node's local neighborhood.
  • GAT, proposed to learn the importance between nodes and its neighbors and fuse the neighbors to perform node classification.

2.2 Network Embedding

Network Representation Learning(NRI) -> is proposed to embed network into a low dimensional space while preserving the network structure and property so that the learned embeddings can be applied to the downstream network tasks.

Heterogeneous graph embedding mainly focuses on preserving the meta-path based structural information.

Aim-1: needs to conduct grid search to find the optimal weights of meta-paths.

3. Preliminary

background

  • different meta-paths always reveal different semantics.
  • Given a meta-path φ,there exists a set of meta-path based neighbors of each node which can reveal diverse structural and rich semantics in a heterogeneous graph.
  • graph neural network has been proposed to deal with arbitrary graph-structure data. however, all of them are designed for homogeneous network.

4. Proposed Model

semi-supervised gnn for heterogenous graph.

(1) nodel-level attention -> learn the weight of meta-path based neighbors and aggregate them to get the semantic-spicific node embedding.

for node i, 同一meta-path(即semantics)下,求 neighbors weight.

(2) semantic-level attention -> can tell the difference for meta-paths and get the optimal weighted combination of the semantic-specific node embedding.

for node i, different meta-path 的 weight

4.1 Node-level attention

problem: due to the heterogeneity of nodes, different types of nodes have different feature spaces.

solution: design type-specific transformation matrix M_{\Phi i} to project the features of different types of nodes into the same feature space.

<- type-specific transformation matrix is based on node-type rather than edge-type.

  • asymmetric不对称, node-level attention can preserve the asymmetric which is a critical property of heterogeneous graph.

ideas: challenge: hetero graph -> homo graph lose much semantics and structural info.

  • problem-1: fail to learn the meta-path importance well.
  • problem-2: heterogeneous element can't be applied directly with gnn, but converting into homogeneous graph first.

attention weight \alpha_{ij}^{\Phi} is generated for single meta-path, it is semantic-specific and able to capture one kind of semantic information.

-> multi-head attention, repeat the node-level attention for k times and concatenate the learned embeddings as the semantic-specific embeddings.

4.2 Semantic-level attention

need to fuse multiple semantics which can be revealed by meta-paths.

ideas:semantics

这里的semantics只是nlp传统意义上很狭隘的语序概念,而在更广泛的语义概念上,包括形状、图片、音色、颜色等可以指明一个物体独特性的语义属性

4.3 Analysis of the proposed model

5.4 classification 

problem: the variance of graph-structured data can be quite high.

solution: repeat the process for 10 times and report the average.

HAN -> designs for heterogeneous graph, captures the rich semantics successfully and show its superiority.

5.5 Analysis 

  • node-level attention, learn the attention values between nodes and its neighbors in a meta-path
  • semantic-level attention, learn the attention values between meta-paths. 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/136650.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Unity脚本(四)

视频教程&#xff1a;https://www.bilibili.com/video/BV12s411g7gU?p149 目录 键盘输入 InputManager 键盘输入 当通过名称指定的按键被用户按住时返回true&#xff1a; bool resultInput.GetKey(KeyCode.A); 当用户按下指定名称按键时的那一帧返回true&#xff1a;…

Python学习笔记——变量和简单数据类型

编码默认情况下&#xff0c;Python 3 源码文件以 UTF-8 编码&#xff0c;所有字符串都是 unicode 字符串。 当然你也可以为源码文件指定不同的编码。标识符第一个字符必须是字母表中字母或下划线 _ 。标识符的其他的部分由字母、数字和下划线组成。标识符对大小写敏感。在 Pyth…

【深度学习】机器学习\深度学习常见相关公开数据集汇总(图像处理相关数据集、自然语言处理相关数据集、语音处理相关数据集)

一、前言 1. 介绍 常来说&#xff0c;深度学习的关键在于实践。从图像处理到语音识别&#xff0c;每一个细分领域都有着独特的细微差别和解决方法。 然而&#xff0c;你可以从哪里获得这些数据呢&#xff1f;现在大家所看到的大部分研究论文都用的是专有数据集&#xff0c;这…

超声波测距传感器认知

目录 一、超声波测距传感器认知 二、从零编程实现超声波测距 三、项目——感应开关盖垃圾桶 1、开发步骤 2、感应开关盖垃圾桶代码测试 一、超声波测距传感器认知 超声波测距模块是用来测量距离的一种产品&#xff0c;通过发送和接收超声波&#xff0c;利用时间差和声音…

【网络】udp_socket编程

目录 1.认识端口号 1.1 理解端口号和进程ID 1.2 理解源端口号和目的端口号 2.认识TCP协议 3.认识UDP协议 4.网络字节序 5.socket编程接口 5.1socket常见API 5.2sockaddr结构 sockaddr结构 sockaddr_in 结构 in_addr结构 6.简单的UDP网络程序 6.1创建套接字 6.2 …

【Docker】三 镜像容器常用命令

这里写目录标题1 配置镜像加速器2 Docker镜像常用命令2.1 搜索镜像2.2 下载镜像[重要]2.3 列出镜像[重要]2.3 删除本地镜像[重要]2.4 保存镜像2.5 加载镜像2.6 构建镜像[重要]3 容器常用命令3.1 新建并启动容器[重要]3.2 列出容器[重要]3.3 停止容器[重要]3.4 强制停止容器[重要…

你可以不用Git,但不能不会Git(三)基础(下)

目录 一.将文件添加至忽略列 二.日志记录操作 三.比较文件差异 四.还原文件 一.将文件添加至忽略列 一般我们总会有些文件无需纳入Git的管理&#xff0c;也不希望它们总出现在未跟踪文件列表。通常都是些自动生成的文件&#xff0c;比如日志文件&#xff0c;或者编译过程中…

重学 Java 设计模式-结构型模式-适配器模式

重学 Java 设计模式-结构型模式-适配器模式 内容摘自&#xff1a;添加链接描述 适配器模式介绍 图片来自&#xff1a;https://refactoringguru.cn/design-patterns/adapter(opens new window) 适配器模式的主要作用就是把原本不兼容的接口&#xff0c;通过适配修改做到统一。…

canva绘制(二次、三次)贝塞尔曲线并且图片在曲线上运动

下图为实现效果&#xff08;图片在三次贝塞尔曲线中运动&#xff09; <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"…

Spring之注解开发

目录 一&#xff1a;Bean基本注解开发 二&#xff1a;Bean依赖注入注解开发 三&#xff1a;非自定义Bean注解开发 四&#xff1a;Bean配置类的注解开发 五&#xff1a;Spring配置其他注解 六&#xff1a;Spring注解的解析原理 一&#xff1a;Bean基本注解开发 Spring除了…

【区块链】区块链技术学习总结

文章目录一、区块链技术简介1.1 区块链概念1.2 区块链应用1.2.1 区块链1.0技术&#xff1a;比特币1.2.2 区块链2.0技术&#xff1a;以太坊1.2.3 区块链3.0技术&#xff1a;价值互联网二、区块链1.0技术比特币2.1 比特币2.1.1 比特币概念2.1.2 比特币性质2.1.3 比特币解决的问题…

Springboot扩展点之BeanDefinitionRegistryPostProcessor

前言通过这篇文章来大家分享一下&#xff0c;另外一个Springboot的扩展点BeanDefinitionRegistryPostProcessor&#xff0c;一般称这类扩展点为容器级后置处理器&#xff0c;另外一类是Bean级的后置处理器&#xff1b;容器级的后置处理器会在Spring容器初始化后、刷新前这个时间…

第二章 chrony服务器

文章目录第二章 chrony服务器1.1安装与配置1.2同步网络时间服务器1.3 配置时间服务器1.4 chronyc 命令1.5常见时区课后练习第一题&#xff1a;第一台机器从阿里云同步时间&#xff0c;第二台机器从第一台机器同步时间第二题&#xff1a;第一台服务器使用系统时间作为第二台服务…

jetson nano GPIO控制说明

文章目录一.GPIO介绍二.安装GPIO库python库C库三.几种常用的通信协议UARTPWMI2CI2SSPI四.控制函数说明python&#xff08;[参考](https://pypi.org/project/Jetson.GPIO/)&#xff09;C五.例程一.GPIO介绍 GPIO&#xff08;General Purpose Input Output&#xff09;通用输入输…

干货 | Web自动化测试中显式等待与隐式等待该怎么用?

在实际工作中等待机制可以保证代码的稳定性&#xff0c;保证代码不会受网速、电脑性能等条件的约束。等待就是当运行代码时&#xff0c;如果页面的渲染速度跟不上代码的运行速度&#xff0c;就需要人为的去限制代码执行的速度。在做 Web 自动化时&#xff0c;一般要等待页面元素…

高压放大器在电子束增材制造聚焦消像散控制技术研究的应用

实验名称&#xff1a;高压放大器在电子束增材制造聚焦消像散控制技术研究的应用 研究方向&#xff1a;增材制造 实验目的&#xff1a; 电子束选区熔化技术&#xff0c;即电子束3D打印技术&#xff0c;属于金属增材制造的分支。该技术以电子束为热源&#xff0c;在计算机控制下以…

华为防火墙配置笔记

防火墙&#xff08;Firewall&#xff09;也称防护墙&#xff0c;是由Check Point创立者Gil Shwed于1993年发明并引入国际互联网&#xff08;US5606668&#xff08;A&#xff09;1993-12-15&#xff09;防火墙是位于内部网和外部网之间的屏障&#xff0c;它按照系统管理员预先定…

实战工作十年的Code Review方法论与实践总结

作为卓越工程文化的一部分&#xff0c;Code Review其实一直在进行中&#xff0c;只是各团队根据自身情况张驰有度&#xff0c;松紧可能也不一&#xff0c;这里简单梳理一下CR的方法和团队实践。 一、为什么要CR 提前发现缺陷 在CodeReview阶段发现的逻辑错误、业务理解偏差、…

CleanMyMac2023Mac下载排行最好的清理工具

CleanMyMac是Mac清理工具&#xff0c;具有很多功能。例如‬&#xff0c;删除大量不可见的缓存文件&#xff0c;可以批量删除未使用的DMG、不完整的下载以及其余的旧包。不过由于MAC系统不像windows那样会产生缓存或系统垃圾&#xff0c; 使用Win电脑很多人会下载各类系统优化软…

MQ面试题总结

✅作者简介&#xff1a;热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏&#xff1a;Java面试题…