使用docker镜像快速构建TVM

news2025/1/4 7:25:15

TVM docekr编译

文章目录

  • TVM docekr编译
    • 使用云镜像
    • 使用docker进行本地构建

使用云镜像

  • 下载docker镜像

如果对docker指令不熟悉可以查阅: docker cli命令行 AP I

TVM docker hub镜像

docker pull tlcpack/ci-cpu:20230604-060130-0af9ff90e
  • 运行container
docker run --name 2306_tvm_cpu -it -v /Users/chendongsheng/github/tvm:/root/workspace/tvm  374265cb4bb3
  • 如果docker desttop有权限问题,执行
# docker的权限出现问题后,请这么处理。
sudo chown -R $(whoami) ~/.docker
  • 构建TVM
    在tvm的代码跟路径,创建build文件夹,将下面内容存在build文件夹内一个名为: config.cmake的文件中。具体每一项配置的含义可以参考: TVM源码编译教程
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

#--------------------------------------------------------------------
#  Template custom cmake configuration for compiling
#
#  This file is used to override the build options in build.
#  If you want to change the configuration, please use the following
#  steps. Assume you are on the root directory. First copy the this
#  file so that any local changes will be ignored by git
#
#  $ mkdir build
#  $ cp cmake/config.cmake build
#
#  Next modify the according entries, and then compile by
#
#  $ cd build
#  $ cmake ..
#
#  Then build in parallel with 8 threads
#
#  $ make -j8
#--------------------------------------------------------------------

#---------------------------------------------
# Backend runtimes.
#---------------------------------------------

# Whether enable CUDA during compile,
#
# Possible values:
# - ON: enable CUDA with cmake's auto search
# - OFF: disable CUDA
# - /path/to/cuda: use specific path to cuda toolkit
set(USE_CUDA OFF)

# Whether to enable NCCL support:
# - ON: enable NCCL with cmake's auto search
# - OFF: disable NCCL
# - /path/to/nccl: use specific path to nccl
set(USE_NCCL OFF)

# Whether enable ROCM runtime
#
# Possible values:
# - ON: enable ROCM with cmake's auto search
# - OFF: disable ROCM
# - /path/to/rocm: use specific path to rocm
set(USE_ROCM OFF)

# Whether to enable RCCL support:
# - ON: enable RCCL with cmake's auto search
# - OFF: disable RCCL
# - /path/to/rccl: use specific path to rccl
set(USE_RCCL OFF)

# Whether enable SDAccel runtime
set(USE_SDACCEL OFF)

# Whether enable Intel FPGA SDK for OpenCL (AOCL) runtime
set(USE_AOCL OFF)

# Whether enable OpenCL runtime
#
# Possible values:
# - ON: enable OpenCL with OpenCL wrapper to remove dependency during build
#       time and trigger dynamic search and loading of OpenCL in runtime
# - OFF: disable OpenCL
# - /path/to/opencl-sdk: use specific path to opencl-sdk
set(USE_OPENCL OFF)

# Wheather to allow OPENCL cl_mem access to host
# cl_mem will be allocated with CL_MEM_ALLOC_HOST_PTR
# OpenCLWorkspace->GetHostPtr API returns the host accessible pointer
set(USE_OPENCL_ENABLE_HOST_PTR OFF)

# Whether enable Metal runtime
set(USE_METAL OFF)

# Whether enable Vulkan runtime
#
# Possible values:
# - ON: enable Vulkan with cmake's auto search
# - OFF: disable vulkan
# - /path/to/vulkan-sdk: use specific path to vulkan-sdk
set(USE_VULKAN OFF)

# Whether to use spirv-tools.and SPIRV-Headers from Khronos github or gitlab.
#
# Possible values:
# - OFF: not to use
# - /path/to/install: path to your khronis spirv-tools and SPIRV-Headers installation directory
#
set(USE_KHRONOS_SPIRV OFF)

# whether enable SPIRV_KHR_DOT_PRODUCT
set(USE_SPIRV_KHR_INTEGER_DOT_PRODUCT OFF)

# Whether enable OpenGL runtime
set(USE_OPENGL OFF)

# Whether enable MicroTVM runtime
set(USE_MICRO OFF)

# Whether enable RPC runtime
set(USE_RPC ON)

# Whether to build the C++ RPC server binary
set(USE_CPP_RPC OFF)

# Whether to build the C++ native runtime tool binary
set(USE_CPP_RTVM OFF)

# Whether to build the iOS RPC server application
set(USE_IOS_RPC OFF)

# Whether embed stackvm into the runtime
set(USE_STACKVM_RUNTIME OFF)

# Whether enable tiny embedded graph executor.
set(USE_GRAPH_EXECUTOR ON)

# Whether enable tiny graph executor with CUDA Graph
set(USE_GRAPH_EXECUTOR_CUDA_GRAPH OFF)

# Whether enable pipeline executor.
set(USE_PIPELINE_EXECUTOR OFF)

# Whether to enable the profiler for the graph executor and vm
set(USE_PROFILER ON)

# Whether enable microTVM standalone runtime
set(USE_MICRO_STANDALONE_RUNTIME OFF)

# Whether build with LLVM support
# Requires LLVM version >= 4.0
#
# Possible values:
# - ON: enable llvm with cmake's find search
# - OFF: disable llvm, note this will disable CPU codegen
#        which is needed for most cases
# - /path/to/llvm-config: enable specific LLVM when multiple llvm-dev is available.
set(USE_LLVM ON)

# Whether use MLIR to help analyze, requires USE_LLVM is enabled
# Possible values: ON/OFF
set(USE_MLIR OFF)

#---------------------------------------------
# Contrib libraries
#---------------------------------------------
# Whether to build with BYODT software emulated posit custom datatype
#
# Possible values:
# - ON: enable BYODT posit, requires setting UNIVERSAL_PATH
# - OFF: disable BYODT posit
#
# set(UNIVERSAL_PATH /path/to/stillwater-universal) for ON
set(USE_BYODT_POSIT OFF)

# Whether use BLAS, choices: openblas, atlas, apple
set(USE_BLAS none)

# Whether to use MKL
# Possible values:
# - ON: Enable MKL
# - /path/to/mkl: mkl root path
# - OFF: Disable MKL
# set(USE_MKL /opt/intel/mkl) for UNIX
# set(USE_MKL ../IntelSWTools/compilers_and_libraries_2018/windows/mkl) for WIN32
# set(USE_MKL <path to venv or site-packages directory>) if using `pip install mkl`
set(USE_MKL OFF)

# Whether use DNNL library, aka Intel OneDNN: https://oneapi-src.github.io/oneDNN
#
# Now matmul/dense/conv2d supported by -libs=dnnl,
# and more OP patterns supported in DNNL codegen(json runtime)
#
# choices:
# - ON: Enable DNNL in BYOC and -libs=dnnl, by default using json runtime in DNNL codegen
# - JSON: same as above.
# - C_SRC: use c source runtime in DNNL codegen
# - path/to/oneDNN:oneDNN root path
# - OFF: Disable DNNL
set(USE_DNNL OFF)

# Whether use Intel AMX instructions.
set(USE_AMX OFF)

# Whether use OpenMP thread pool, choices: gnu, intel
# Note: "gnu" uses gomp library, "intel" uses iomp5 library
set(USE_OPENMP none)

# Whether use contrib.random in runtime
set(USE_RANDOM ON)

# Whether use NNPack
set(USE_NNPACK OFF)

# Possible values:
# - ON: enable tflite with cmake's find search
# - OFF: disable tflite
# - /path/to/libtensorflow-lite.a: use specific path to tensorflow lite library
set(USE_TFLITE OFF)

# /path/to/tensorflow: tensorflow root path when use tflite library
set(USE_TENSORFLOW_PATH none)

# Required for full builds with TFLite. Not needed for runtime with TFLite.
# /path/to/flatbuffers: flatbuffers root path when using tflite library
set(USE_FLATBUFFERS_PATH none)

# Possible values:
# - OFF: disable tflite support for edgetpu
# - /path/to/edgetpu: use specific path to edgetpu library
set(USE_EDGETPU OFF)

# Possible values:
# - ON: enable cuDNN with cmake's auto search in CUDA directory
# - OFF: disable cuDNN
# - /path/to/cudnn: use specific path to cuDNN path
set(USE_CUDNN OFF)

# Whether use cuBLAS
set(USE_CUBLAS OFF)

# Whether use MIOpen
set(USE_MIOPEN OFF)

# Whether use MPS
set(USE_MPS OFF)

# Whether use rocBlas
set(USE_ROCBLAS OFF)

# Whether use contrib sort
set(USE_SORT ON)

# Whether to use Arm Compute Library (ACL) codegen
# We provide 2 separate flags since we cannot build the ACL runtime on x86.
# This is useful for cases where you want to cross-compile a relay graph
# on x86 then run on AArch.
#
# An example of how to use this can be found here: docs/deploy/arm_compute_lib.rst.
#
# USE_ARM_COMPUTE_LIB - Support for compiling a relay graph offloading supported
#                       operators to Arm Compute Library. OFF/ON
# USE_ARM_COMPUTE_LIB_GRAPH_EXECUTOR - Run Arm Compute Library annotated functions via the ACL
#                                     runtime. OFF/ON/"path/to/ACL"
set(USE_ARM_COMPUTE_LIB OFF)
set(USE_ARM_COMPUTE_LIB_GRAPH_EXECUTOR OFF)

# Whether to build with Arm Ethos-N support
# Possible values:
# - OFF: disable Arm Ethos-N support
# - path/to/arm-ethos-N-stack: use a specific version of the
#   Ethos-N driver stack
set(USE_ETHOSN OFF)
# If USE_ETHOSN is enabled, use ETHOSN_HW (ON) if Ethos-N hardware is available on this machine
# otherwise use ETHOSN_HW (OFF) to use the software test infrastructure
set(USE_ETHOSN_HW OFF)

# Whether to build with Arm(R) Ethos(TM)-U NPU codegen support
set(USE_ETHOSU OFF)

# Whether to build with CMSIS-NN external library support.
# See https://github.com/ARM-software/CMSIS_5
set(USE_CMSISNN OFF)

# Whether to build with TensorRT codegen or runtime
# Examples are available here: docs/deploy/tensorrt.rst.
#
# USE_TENSORRT_CODEGEN - Support for compiling a relay graph where supported operators are
#                        offloaded to TensorRT. OFF/ON
# USE_TENSORRT_RUNTIME - Support for running TensorRT compiled modules, requires presense of
#                        TensorRT library. OFF/ON/"path/to/TensorRT"
set(USE_TENSORRT_CODEGEN OFF)
set(USE_TENSORRT_RUNTIME OFF)

# Whether use VITIS-AI codegen
set(USE_VITIS_AI OFF)

# Build Verilator codegen and runtime
set(USE_VERILATOR OFF)

#Whether to use CLML codegen
set(USE_CLML OFF)
# USE_CLML_GRAPH_EXECUTOR - CLML SDK PATH or ON or OFF
set(USE_CLML_GRAPH_EXECUTOR OFF)

# Build ANTLR parser for Relay text format
# Possible values:
# - ON: enable ANTLR by searching default locations (cmake find_program for antlr4 and /usr/local for jar)
# - OFF: disable ANTLR
# - /path/to/antlr-*-complete.jar: path to specific ANTLR jar file
set(USE_ANTLR OFF)

# Whether use Relay debug mode
set(USE_RELAY_DEBUG ON)

# Whether to build fast VTA simulator driver
set(USE_VTA_FSIM OFF)

# Whether to build cycle-accurate VTA simulator driver
set(USE_VTA_TSIM OFF)

# Whether to build VTA FPGA driver (device side only)
set(USE_VTA_FPGA OFF)

# Whether use Thrust
set(USE_THRUST OFF)

# Whether use cuRAND
set(USE_CURAND OFF)

# Whether to build the TensorFlow TVMDSOOp module
set(USE_TF_TVMDSOOP OFF)

# Whether to build the PyTorch custom class module
set(USE_PT_TVMDSOOP OFF)

# Whether to use STL's std::unordered_map or TVM's POD compatible Map
set(USE_FALLBACK_STL_MAP OFF)

# Whether to enable Hexagon support
set(USE_HEXAGON OFF)
set(USE_HEXAGON_SDK /path/to/sdk)

# Whether to build the minimal support android rpc server for Hexagon
set(USE_HEXAGON_RPC OFF)

# Hexagon architecture to target when compiling TVM itself (not the target for
# compiling _by_ TVM). This applies to components like the TVM runtime, but is
# also used to select correct include/library paths from the Hexagon SDK when
# building runtime for Android.
# Valid values are v65, v66, v68, v69, v73.
set(USE_HEXAGON_ARCH "v68")

# Whether to use QHL library
set(USE_HEXAGON_QHL OFF)

# Whether to use ONNX codegen
set(USE_TARGET_ONNX OFF)

# Whether enable BNNS runtime
set(USE_BNNS OFF)

# Whether to build static libtvm_runtime.a, the default is to build the dynamic
# version: libtvm_runtime.so.
#
# The static runtime library needs to be linked into executables with the linker
# option --whole-archive (or its equivalent). The reason is that the TVM registry
# mechanism relies on global constructors being executed at program startup.
# Global constructors alone are not sufficient for the linker to consider a
# library member to be used, and some of such library members (object files) may
# not be included in the final executable. This would make the corresponding
# runtime functions to be unavailable to the program.
set(BUILD_STATIC_RUNTIME OFF)

# Caches the build so that building is faster when switching between branches.
# If you switch branches, build and then encounter a linking error, you may
# need to regenerate the build tree through "make .." (the cache will
# still provide significant speedups).
# Possible values:
# - AUTO: search for path to ccache, disable if not found.
# - ON: enable ccache by searching for the path to ccache, report an error if not found
# - OFF: disable ccache
# - /path/to/ccache: use specific path to ccache
set(USE_CCACHE AUTO)

# Whether to use libbacktrace to supply linenumbers on stack traces.
# Possible values:
# - ON: Find libbacktrace from system paths. Report an error if not found.
# - OFF: Don't use libbacktrace.
# - /path/to/libbacktrace: Looking for the libbacktrace header and static lib from a user-provided path. Report error if not found.
# - COMPILE: Build and link to libbacktrace from 3rdparty/libbacktrace.
# - AUTO:
#   - Find libbacktrace from system paths.
#   - If not found, fallback to COMPILE on Linux or MacOS, fallback to OFF on Windows or other platforms.
set(USE_LIBBACKTRACE AUTO)

# Whether to install a signal handler to print a backtrace on segfault.
# Need to have USE_LIBBACKTRACE enabled.
set(BACKTRACE_ON_SEGFAULT OFF)

# Whether to enable PAPI support in profiling. PAPI provides access to hardware
# counters while profiling.
# Possible values:
# - ON: enable PAPI support. Will search PKG_CONFIG_PATH for a papi.pc
# - OFF: disable PAPI support.
# - /path/to/folder/containing/: Path to folder containing papi.pc.
set(USE_PAPI OFF)

# Whether to use GoogleTest for C++ unit tests. When enabled, the generated
# build file (e.g. Makefile) will have a target "cpptest".
# Possible values:
# - ON: enable GoogleTest. The package `GTest` will be required for cmake
#   to succeed.
# - OFF: disable GoogleTest.
# - AUTO: cmake will attempt to find the GTest package, if found GTest will
#   be enabled, otherwise it will be disabled.
# Note that cmake will use `find_package` to find GTest. Please use cmake's
# predefined variables to specify the path to the GTest package if needed.
set(USE_GTEST AUTO)

# Enable using CUTLASS as a BYOC backend
# Need to have USE_CUDA=ON
set(USE_CUTLASS OFF)

# Enable to show a summary of TVM options
set(SUMMARIZE OFF)

# Whether to use LibTorch as backend
# To enable pass the path to the root libtorch (or PyTorch) directory
# OFF or /path/to/torch/
set(USE_LIBTORCH OFF)

# Whether to use the Universal Modular Accelerator Interface
set(USE_UMA OFF)

# Set custom Alloc Alignment for device allocated memory ndarray points to
set(USE_KALLOC_ALIGNMENT 64)

  • 构建指令
# 配置
cmake .. -G Ninja
# 编译
ninja
# 安装
ninja install 
  • 设置python环境
# add TVM path
export TVM_HOME=/root/workspace/tvm/
export PYTHONPATH=$TVM_HOME/python:${PYTHONPATH}
  • 测试python环境
root@3a017d3a3d46:~/workspace/tvm/build# python
Python 3.8.16 (default, Dec  7 2022, 01:12:06) 
[GCC 11.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import tvm
>>> print(tvm.__version__)
0.15.dev0
>>> 

使用docker进行本地构建

** 本地构建CPU上的镜像,我一直在失败,我放弃了 **
下面是记录本地构建的过程和报错,供参考:

# 在tvm的跟路径下的docker文件夹内,存放着构建镜像的dockerfile和帮助构建的脚本
sudo ./docker/build.sh ci_cpu   

# 创建镜像
docker run --name 2306_tvm_cpu -it -v /Users/chendongsheng/github/tvm:/root/workspace/tvm  374265cb4bb3

# 设置工作空间:-w /path/to/dir/
  • 报错记录
    image-20240107051528597

image-20240107054530431

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1364165.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Java面试——框架篇

1、Spring框架中的单例bean是线程安全的吗&#xff1f; 所谓单例就是所有的请求都用一个对象来处理&#xff0c;而多例则指每个请求用一个新的对象来处理。 结论&#xff1a;线程不安全。 Spring框架中有一个Scope注解&#xff0c;默认的值就是singleton&#xff0c;单例的。一…

Java学习——设计模式——行为型模式2

文章目录 行为型模式状态模式观察者模式中介者模式迭代器模式访问者模式备忘录模式解释器模式 行为型模式 行为型模式用于描述程序在运行时复杂的流程控制&#xff0c;即描述多个类或对象之间怎样相互协作共同完成单个对象无法单独完成的任务&#xff0c;涉及算法与对象间职责的…

kubernetes(六)

文章目录 1. k8s架构2. k8s安装2.1 颁发证书2.2 部署etcd集群2.3 master节点安装2.3.1 api-server服务安装2.3.2 controller-manager服务安装2.3.3 scheduler服务安装 2.4 node节点安装2.5 配置flannel网络 1. k8s架构 2. k8s安装 # 增加免密操作 [rootk8s-node3 ~]# ssh-keyge…

搭建一个教育小程序的必要步骤

随着科技的飞速发展&#xff0c;小程序已经深入到我们生活的方方面面。对于教育行业来说&#xff0c;小程序的出现不仅为教育机构提供了新的宣传和互动平台&#xff0c;更为学生和家长带来了更为便捷的学习体验。那么&#xff0c;如何开发一款适合教育机构的小程序呢&#xff1…

react+AntDesign 之 pc端项目案例

1.环境搭建以及初始化目录 CRA是一个底层基于webpack快速创建React项目的脚手架工具 # 使用npx创建项目 npx create-react-app react-jike# 进入到项 cd react-jike# 启动项目 npm start2.安装SCSS SASS 是一种预编译的 CSS&#xff0c;支持一些比较高级的语法&#xff0c;…

鸿蒙OS:不止手机,是物联网应用开发

鸿蒙开发是华为自主研发的面向全场景的分布式操作系统&#xff0c;旨在将生活场景中各类终端进行整合&#xff0c;实现不同终端设备间的快速连接、资源共享、匹配合适设备、提供流畅的全场景体验。 鸿蒙开发具有以下特点&#xff1a; 面向全场景&#xff1a;鸿蒙系统能够覆盖…

[足式机器人]Part2 Dr. CAN学习笔记-动态系统建模与分析 Ch02-3流体系统建模

本文仅供学习使用 本文参考&#xff1a; B站&#xff1a;DR_CAN Dr. CAN学习笔记-动态系统建模与分析 Ch02-12课程介绍电路系统建模、基尔霍夫定律 流量 flow rate q q q m 3 / s m^3/s m3/s 体积 volume V V V m 3 m^3 m3 高度 heigh h h h m m m 压强 pressure p p p …

竞赛练一练 第23期:NOC大赛每日一练,python题目刷题第8天,包含答案解析

题目来自:NOC 大赛创客智慧编程赛项Python 复赛模拟题(二) NOC大赛创客智慧编程赛项Python 复赛模拟题(二) 第一题: 编写一个成绩评价系统,当输入语文、数学和英语三门课程成绩时,输出三门课程总成绩及其等级。 (1)程序提示用户输入三个数字,数字分别表示语文、数学、…

Vue3使用Pinia

1.安装 npm i pinia 2.搭建架子文件 2.1main.js import { createApp } from vue // 引入pinia import { createPinia } from piniaimport App from ./App.vue import router from ./router // 创建pinia const app createApp(App) //安装pinia app.use(createPinia())app.use(…

线程安全、共享变量的可见性

Java中的线程安全问题 谈到线程安全问题&#xff0c;我们先说说什么是共享资源。所谓共享资源&#xff0c;就是说该资源被多个线程所持有或者说多个线程都可以去访问该资源。 线程安全问题是指当多个线程同时读写一个共享资源并且没有任何同步措施时&#xff0c;导致出现脏数…

适合前后端开发的可视化编辑器(拖拽控件)

分享一个面向研发人群使用的前后端分离的低代码软件——JNPF。 JNPF与市面上其他的低代码&#xff08;轻流、宜搭、微搭、简道云、轻流、活字格等等&#xff09;&#xff0c;后者更倾向于非编程人员使用&#xff0c;让业务线人员自行构建应用程序。而 JNPF 这款低代码产品是面向…

【STM32学习】硬件CRC与传统CRC-32计算的不同点

硬件CRC与传统CRC-32计算的不同点 1、stm32的硬件CRC32与传统CRC-32有何不同&#xff1f;2、解决办法 1、stm32的硬件CRC32与传统CRC-32有何不同&#xff1f; ①STM32F103的硬件CRC校验是对整个32位字进行CRC计算&#xff0c;传统的CRC-32是逐字节的计算。 ②STM32的硬件CRC32的…

美食管理与推荐系统Python+Django网站系统+协同过滤推荐算法【计算机课设】

一、介绍 美食管理与推荐系统。本系统使用Python作为主要开发语言开发的一个美食管理推荐网站平台。 网站前端界面采用HTML、CSS、BootStrap等技术搭建界面。后端采用Django框架处理用户的逻辑请求&#xff0c;并将用户的相关行为数据保存在数据库中。通过Ajax技术实现前后端的…

【ThreeJS入门——】WEB 3D可视化技术——threejs

简介 网页上已经可以做出很多复杂的动画&#xff0c;精美的效果。下图就是通过WebGL在网页中绘制高性能的3D图形。 threejs是一个让用户通过javascript入手进入搭建webgl项目的类库。 1、搭建第一个场景和物体 三维的物体要渲染在二维的屏幕上。首先要创建一个场景来放置物体…

ASP.NET可视化流程设计器源码

源码介绍: ASP.NET可视化流程设计器源码已应用于众多大型企事业单位。拥有全浏览器兼容的可视化流程设计器、表单设计器、基于角色的权限管理等系统开发必须功能&#xff0c;大大为您节省开发时间&#xff0c;是您开发OA.CRM、HR等企事业各种应用管理系统和工作流系统的最佳基…

技术旅程分享:收获与成长的探索

2023年对我而言是充满挑战和机遇的一年&#xff0c;我在这段时间里积累了丰富的技术经验和个人成长。通过不懈努力和持续学习&#xff0c;我在技术领域迈出了一系列坚实的步伐。在这篇文章中&#xff0c;我将分享我在这段时间中的收获和技术成长经历&#xff0c;与CSDN的朋友们…

Vue实现加减法验证码

引入Vue.js 在HTML文件的<head>标签中引入Vue.js的CDN链接&#xff1a; <script src"https://cdn.jsdelivr.net/npm/vue2.6.11/dist/vue.min.js"></script>创建Vue实例 接下来&#xff0c;我们要创建一个Vue实例&#xff0c;并将其挂载到HTML文…

MIT 6.s081 实验解析——labs2

系列文章目录 MIT 6.s081 实验解析——labs1 MIT 6.s081 实验解析——labs2 文章目录 系列文章目录测试判断流程System call tracingsysinfo![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/ab9ca34f1fc64b6aa1df74613dc1a397.png) 测试判断流程 完成代码后将.c文…

领取的试用云服务器在哪

系列文章目录 华为云服务器试用领取 领取的试用云服务器在哪 文章目录 系列文章目录步骤如下 步骤如下 领取完之后在官网下找 在下面找到华为云耀云服务器L实例。 点击进入。 点击HECS。 即可找到自己的云服务器。 需要注意所勾选的地址&#xff0c;选完自己云服务器的地址…

msckf-vio 跑Euroc数据集,并用evo进行评估

所需材料&#xff1a; Euroc数据集主页&#xff1a;https://projects.asl.ethz.ch/datasets/doku.php?idkmavvisualinertialdatasetsevo评估工具代码&#xff1a;https://github.com/MichaelGrupp/evo向msckf-vio中添加保存位姿的代码&#xff0c;可参考https://blog.csdn.ne…