基于闪电搜索算法优化的Elman神经网络数据预测 - 附代码

news2024/11/17 9:52:47

基于闪电搜索算法优化的Elman神经网络数据预测 - 附代码

文章目录

  • 基于闪电搜索算法优化的Elman神经网络数据预测 - 附代码
    • 1.Elman 神经网络结构
    • 2.Elman 神经用络学习过程
    • 3.电力负荷预测概述
      • 3.1 模型建立
    • 4.基于闪电搜索优化的Elman网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对Elman神经网络,初始权值阈值盲目随机性的缺点。采用闪电搜索算法对ELman的阈值和权值进行优化。利用电力负荷预测模型进行测试,结果表明改进后的神经网络预测性能更佳。

1.Elman 神经网络结构

Elman 型神经网络一般分为四层:输入层、隐含层(中间层)、承接层和输出层 。 如图 1所示。输入层、隐含层、输出层的连接类似于前馈式网络 ,输入层的单元仅起信号传输作用,输出层单元起线性加权作用。隐含层单元的传递函数可采用线性或非线性函数,承接层又称上 下文层或状态层,它用来记忆隐含层单元前一时刻的输出值并返回给网络的输入 , 可以认为是 一个一步延时算子。

Elman 神经网络的特点是隐含层的输出通过承接层的延迟与存储,自联到隐含层的输入。 这种自联方式使其对历史状态的数据具有敏感性,内部反馈网络的加入增强了网络本身处理动态信息的能力 ,从而达到动态建模的目的。此外, Elman 神经网络能够以任意精度逼近任意非线性映射,可以不考虑外部噪声对系统影响的具体形式,如果给出系统的输入输出数据对 , 就可以对系统进行建模 。

在这里插入图片描述

图1.Elman网络结构

2.Elman 神经用络学习过程

以图1为例 , Elman 网络的非线性状态空间表达式为 :
y ( k ) = g ( w 3 x ( k ) ) (1) y(k) = g(w^3x(k)) \tag{1} y(k)=g(w3x(k))(1)

x ( k ) = f ( w 1 x c ( k ) + w 2 ( u ( k − 1 ) ) ) (2) x(k)=f(w^1x_c(k)+w^2(u(k-1)))\tag{2} x(k)=f(w1xc(k)+w2(u(k1)))(2)

x c ( k ) = x ( k − 1 ) (3) x_c(k)=x(k-1)\tag{3} xc(k)=x(k1)(3)

式中, y y y m m m 维输出结点向量 ; x x x n n n 维中间层结点单元向量; u u u r r r 维输入向量; x c x_c xc n n n 维反馈状态向量; w 3 w^3 w3 为中间层到输出层连接权值; w 2 w^2 w2为输入层到中间层连接权值; w 1 w^1 w1为承接层到中间层的连接权值; g ( ∗ ) g(*) g()为输出神经元的传递函数,是中间层输出的线性组合; f ( ∗ ) f(*) f()为中间层神经元的传递函数,常采用 S S S 函数 。

Elman 神经网络也采用 BP 算法进行权值修正,学习指标函数采用误差平方和函数。
E ( w ) = ∑ k = 1 n ( y k ( w ) − y k ′ ( w ) ) 2 (4) E(w)=\sum_{k=1}^n(y_k(w)-y'_k(w))^2\tag{4} E(w)=k=1n(yk(w)yk(w))2(4)

3.电力负荷预测概述

电力系统由电力网、电力用户共同组成,其任务是给广大用户不间断地提供经济、可靠、符 质量标准的电能,满足各类负荷的需求,为社会发展提供动力。由于电力的生产与使用具有特殊性,即电能难以大量储存,而且各类用户对电力的需求是时刻变化的,这就要求系统发电出力应随时与系统负荷的变化动态平衡,即系统要最大限度地发挥出设备能力,使整个系统保 持稳定且高效地运行,以满足用户的需求 。 否则,就会影响供用电的质量,甚至危及系统的安全 与稳定 。 因此,电力系统负荷预测技术发展了起来,并且是这一切得以顺利进行的前提和基础。负荷预测的核心问题是预测的技术问题,或者说是预测的数学模型。传统的数学模型是用现成的数学表达式加以描述,具有计算量小、速度快的优点,但同时也存在很多的缺陷和局限性,比如不具备自学习、自适应能力、预测系统的鲁棒性没有保障等。特别是随着我国经济 的发展,电力系统的结胸日趋复杂,电力负荷变化的非线性、时变性和不确定性的特点更加明 显,很难建立一个合适的数学模型来清晰地表达负荷 和影响负荷的变量之间的 关系。而基于神经网络的非数学模型预测法,为解决数学模型法的不足提供了新的思路 。

3.1 模型建立

利用人工神经网络对电力系统负荷进行预测,实际上是利用人工神经网络可以以任意精度逼近任一非线性函数的特性及通过学习历史数据建模的优点。而在各种人工神经网络中, 反馈式神经网络又因为其具有输入延迟,进而适合应用于电力系统负荷预测。根据负荷的历史数据,选定反馈神经网络的输入、输出节点,来反映电力系统负荷运行的内在规律,从而达到预测未来时段负荷的目的。因此,用人工神经网络对电力系统负荷进行预测 ,首要的问题是确定神经网络的输入、输出节点,使其能反映电力负荷的运行规律。

一般来说,电力系统的负荷高峰通常出现在每天的 9~ 19 时之间 ,本案对每天上午的逐时负荷进行预测 ,即预测每天 9 ~ 11 时共 3 小时的负荷数据。电力系统负荷数据如下表所列,表中数据为真实数据,已经经过归 一化 。

时间负荷数据负荷数据负荷数据
2008.10.100.12910.48420.7976
2008.10.110.10840.45790.8187
2008.10.120.18280.79770.743
2008.10.130.1220.54680.8048
2008.10.140.1130.36360.814
2008.10.150.17190.60110.754
2008.10.160.12370.44250.8031
2008.10.170.17210.61520.7626
2008.10.180.14320.58450.7942

利用前 8 天的数据作为网络的训练样本,每 3 天的负荷作为输入向量,第 4 天的负荷作为目标向量。这样可以得到 5 组训练样本。第 9 天的数据作为网络的测试样本,验证网络能否合理地预测出当天的负荷数据 。

4.基于闪电搜索优化的Elman网络

闪电搜索算法原理请参考:https://blog.csdn.net/u011835903/article/details/108538622

利用闪电搜索算法对Elman网络的初始权值和阈值进行优化。适应度函数设计为测试集的绝对误差和:
f i t n e s s = ∑ i = 1 n ∣ p r e d i c t n − T r u e V a l u e n ∣ (5) fitness = \sum_{i=1}^n|predict_n - TrueValue_n| \tag{5} fitness=i=1npredictnTrueValuen(5)

5.测试结果

闪电搜索参数设置如下:

%% 网络相关参数设定
hiddNum = 18;%隐含层个数
R = size(p_train,1);%输入数据每组的维度
Q = size(t_train,1);%输出数据的维度
threshold = [0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1];%每组数据对应维度的最小(0)和最大值(1);

%% 闪电搜索相关参数设定
%% 定义闪电搜索优化参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = hiddNum*R + hiddNum + Q + hiddNum*hiddNum + Q*hiddNum;%维度,即权值与阈值的个数,承接层个数
lb = -5.*ones(1,dim);%下边界
ub = 5.*ones(1,dim);%上边界
fobj = @(x) fun(x,hiddNum,R,Q,threshold,p_train,t_train,p_test,t_test);

在这里插入图片描述
在这里插入图片描述

从结果来看,3个时刻点,闪电搜索-Elman均比原始结果Elman好,误差更小。

由于上述数据有限,大家可以用自己的数据进行测试。

6.参考文献

书籍《MATLAB神经网络43个案例分析》

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1359447.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Android 相机库CameraView源码解析 (四) : 带滤镜预览

1. 前言 这段时间,在使用 natario1/CameraView 来实现带滤镜的预览、拍照、录像功能。 由于CameraView封装的比较到位,在项目前期,的确为我们节省了不少时间。 但随着项目持续深入,对于CameraView的使用进入深水区,逐…

Javaweb之Mybatis的基础操作之新增和更新操作的详细解析

1.4 新增 功能:新增员工信息 1.4.1 基本新增 员工表结构: SQL语句: insert into emp(username, name, gender, image, job, entrydate, dept_id, create_time, update_time) values (songyuanqiao,宋远桥,1,1.jpg,2,2012-10-09,2,2022-10-…

十年磨一剑

随着不停的优化和改进,JRT开发已经接近尾声,计划过年时候低调发布JRT1.0,框架目标:只做信创下的医疗龙头而不是信创下的苟活着。 十年前,我从南京踏上去沈阳的火车,去东北参加三方协议的启航计划&#xff…

电极箔,预计到2025年市场规模将达到35亿美元

电极箔是一种关键性材料,广泛应用于太阳能电池、电动汽车电池、储能电池、5G基站电池等领域。随着新能源产业的迅猛发展,电极箔市场也在逐步壮大。下面将从全球市场和中国市场进行分析其发展趋势。全球市场分析: 在全球范围内,随着…

HarmonyOS4.0系统性深入开发14AbilityStage组件容器

AbilityStage组件容器 AbilityStage是一个Module级别的组件容器,应用的HAP在首次加载时会创建一个AbilityStage实例,可以对该Module进行初始化等操作。 AbilityStage与Module一一对应,即一个Module拥有一个AbilityStage。 DevEco Studio默…

深入理解Python中的二分查找与bisect模块

💗💗💗欢迎来到我的博客,你将找到有关如何使用技术解决问题的文章,也会找到某个技术的学习路线。无论你是何种职业,我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章,也欢…

PCIe 6.0生态业内进展分析总结-2

3.PCIe 6.0协议分析仪 (1)Keysight Keysight是德科技在2023年6月份对外宣布,第一款支持PCIe 6.0协议验证调试工具。 Keysight PCIe 6.0架构解决方案具备以下特点: 分析PCIe 6.0技术设计的数据链路/事务层 支持所有PCIe技术速率——从2.5 GT/s至64 GT/…

一篇文章认识微服务中Eureka的原理和服务注册与发现

目录 1、认识Eureka 2、Eureka原理 2.1 和Dubbo架构对比: 2.2 三大角色 3、微服务常见的注册中心 3.1 Zookeeper 3.2 Eureka 3.3 Consul 3.4 Nacos 3.5 区别 Netflix 在设计Eureka 时,遵循的就是AP原则。 CAP原则又称CAP定理,指的…

STM32使用中断方式进行USART数据收发以及printf函数的重写

时间记录:2024/1/5 一、USART/UART介绍 协议介绍 (1)起始位,一位逻辑电平0表示 (2)数据位,8-9位,逻辑高低电平,一般使用8位 (3)校验位&#xff…

5分钟搞懂AI的可解释性

大家好啊,我是董董灿。 想象一下,如果有一天,有人跑过来突然告诉你,他搞懂了人类大脑记忆的运行机制,你会是什么反应? 你可能会和我一样,把他当做疯子。 因为我觉得这个课题太深奥了&#xf…

kali-Linux安装ARL灯塔教程以及timeout of 20000ms exceeded 的解决方法

FLAG:别和妈妈诉苦,她帮不上,也睡不着。 专研方向: docker,ARL资产灯塔系统 每日emo:天冷了,你还在坚持吗? 欢迎各位与我这个菜鸟交流学习 kali安装ARL灯塔教程 1.安装docker环境,…

【智慧零售】东胜物联蓝牙网关硬件解决方案,促进零售门店数字化管理

依托物联网(IoT)、大数据、人工智能(AI)等快速发展,数字化和智能化已成为零售企业的核心竞争力。更多的企业通过引入人工智能、大数据等先进技术手段,提高门店运营效率和服务质量。 某连锁咖啡企业牢牢抓住…

位运算 (运算符)

文章目录 位运算位运算概述位运算概览& 按位与&#xff08;AND&#xff09;| 按位或&#xff08;bitwise OR&#xff09;^ 按位异或&#xff08;bitwise XOR&#xff09;~ 按位非&#xff08;bitwise NOT&#xff09;<< 左移&#xff08;bitwise shift left&#xff…

zookeeper应用场景之分布式的ID生成器

1. 分布式ID生成器的使用场景 在分布式系统中&#xff0c;分布式ID生成器的使用场景非常之多&#xff1a; 大量的数据记录&#xff0c;需要分布式ID。大量的系统消息&#xff0c;需要分布式ID。大量的请求日志&#xff0c;如restful的操作记录&#xff0c;需要唯一标识&#x…

分布式(7)

目录 31.基于Zookeeper如何实现分布式锁&#xff1f; 32.什么是ACID&#xff1f; 33.什么是分布式的XA协议&#xff1f; 34.什么是2PC&#xff1f; 35.什么是3PC&#xff1f; 31.基于Zookeeper如何实现分布式锁&#xff1f; 顺序节点 创建一个用于发号的节点“/test/lock…

Mybatis缓存实现方式

文章目录 装饰器模式Cache 接口及核心实现Cache 接口装饰器1. BlockingCache2. FifoCache3. LruCache4. SoftCache5. WeakCache 小结 缓存是优化数据库性能的常用手段之一&#xff0c;我们在实践中经常使用的是 Memcached、Redis 等外部缓存组件&#xff0c;很多持久化框架提供…

Unity3D Shader 之透视效果XRay

1、 Shader "Unlit/XRay" {Properties{_MainTex("Texture", 2D) "white" {}// 漫反射_Diffuse("Diffuse", COLOR) (1,1,1,1)// XRay 效果_XRayColor("XRay Color", COLOR) (0,1,1,1)_XRayPower("XRay Power",…

python识别验证码+灰度图片base64转换图片

一、为后面识别验证码准备 1、base64转换为图片&#xff0c;保存本地、并且置灰 上文中的base64,后面的就是包含Base64编码的PNG图像的字符串复制下来 import base64 from PIL import Image import io# 这里是你的Base64编码的字符串 base64_data "iVBORw0KGgoAAAANSUhE…

记录汇川:水塔指令解释-ST

可以通过帮助查看指令手册 PLC的IO地址映射-两种方法 第一种&#xff1a; 新建一个全局变量表&#xff0c;按照如图所示建立IO地址 第二种&#xff1a; 直接如图所示位置定义名字 注意&#xff1a;IW和QB这两个前面一个有蓝色M一个没有。 蓝色的M表示模块发生变化的时候地址不会…

不用愁企业内部知识库搭建啦,照着这样做轻松解决

在现代企业中&#xff0c;知识是一项宝贵的资源。拥有一个完善的内部知识库可以帮助企业有效地管理和分享知识&#xff0c;提高团队的协作效率&#xff0c;促进创新和发展。然而&#xff0c;对于很多企业来说&#xff0c;搭建一个高效的知识库可能会成为一项具有挑战性的任务。…