vins 实机测试 rs_d435 + imu

news2025/1/16 20:18:55

vins 实机测试

文章目录

  • 1. imu标定
  • 2. camera内参标定
  • 3. imu-cam 外参标定
  • 4. vins 实际运行
  • 5. realsense

1. imu标定

git clone https://github.com/gaowenliang/code_utils.git
git clone https://github.com/gaowenliang/imu_utils.git

编译运行,
roslaunch imu_node imu_node.launch 
录rosbag
rosbag record /imu -o imu.bag
回放数据并进行标定
rosbag play -r 200 imu.bag
roslaunch imu_utils calb_imu.launch
<launch>
    <node pkg="imu_utils" type="imu_an" name="imu_an" output="screen">
        <param name="imu_topic" type="string" value= "/imu"/>
        <param name="imu_name" type="string" value= "demo"/>
        <param name="data_save_path" type="string" value= "$(find imu_utils)/data/"/>
        <param name="max_time_min" type="int" value= "92"/>
        <param name="max_cluster" type="int" value= "100"/>
    </node>
</launch>

result

%YAML:1.0
---
type: IMU
name: demo
Gyr:
   unit: " rad/s"
   avg-axis:
      gyr_n: 1.1579014862814587e-03
      gyr_w: 1.2080473993001349e-05
   x-axis:
      gyr_n: 7.8848718937629160e-04
      gyr_w: 1.1330695111173287e-05
   y-axis:
      gyr_n: 1.6161269692829495e-03
      gyr_w: 7.6665713225286887e-06
   z-axis:
      gyr_n: 1.0690903001851347e-03
      gyr_w: 1.7244155545302071e-05
Acc:
   unit: " m/s^2"
   avg-axis:
      acc_n: 2.9601230975888886e-02
      acc_w: 7.9342809029857330e-04
   x-axis:
      acc_n: 2.4602981097020603e-02
      acc_w: 7.1949651700994606e-04
   y-axis:
      acc_n: 2.6079587164852428e-02
      acc_w: 7.3517233974109439e-04
   z-axis:
      acc_n: 3.8121124665793614e-02
      acc_w: 9.2561541414467935e-04

2. camera内参标定

ref: https://wiki.ros.org/camera_calibration

sudo apt install ros-noetic-usb-cam   ros-noetic-camera-calibration

usb_cam 源码: git clone  git@github.com:ros-drivers/usb_cam.git

运行

标定板棋盘格:

https://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration?action=AttachFile&do=view&target=check-108.pdf

usb_cam.launch

<launch>
  <arg name="image_view" default="false" />

  <node name="cam0" pkg="usb_cam" type="usb_cam_node" output="screen" >
      <rosparam command="load" file="$(find usb_cam)/config/usb_cam.yml"/>
  </node>
  <node if="$(arg image_view)" name="image_view" pkg="image_view" type="image_view" respawn="false" output="screen">
    <remap from="image" to="/cam0/image_raw"/>
    <param name="autosize" value="true" />
  </node>
</launch>

roslaunch usb_cam usb_cam.launch

rosrun camera_calibration cameracalibrator.py --size 8x6 --square 0.0244 image:=/usb_cam/image_raw  camera:=/usb_cam

棋盘格·标定结果

**** Calibrating ****
mono pinhole calibration...
D = [-0.0276431859616864, 0.05488145026340878, -0.0005282408469462047, -0.0067853851219709105, 0.0]
K = [524.1288091767894, 0.0, 333.5105867456761, 0.0, 523.1947915574598, 239.9741914015902, 0.0, 0.0, 1.0]
R = [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0]
P = [525.1634521484375, 0.0, 328.12270221472863, 0.0, 0.0, 528.1163940429688, 239.20473370594664, 0.0, 0.0, 0.0, 1.0, 0.0]
None
# oST version 5.0 parameters


[image]

width
640

height
480

[narrow_stereo]

camera matrix
524.128809 0.000000 333.510587
0.000000 523.194792 239.974191
0.000000 0.000000 1.000000

distortion
-0.027643 0.054881 -0.000528 -0.006785 0.000000

rectification
1.000000 0.000000 0.000000
0.000000 1.000000 0.000000
0.000000 0.000000 1.000000

projection
525.163452 0.000000 328.122702 0.000000
0.000000 528.116394 239.204734 0.000000
0.000000 0.000000 1.000000 0.000000

('Wrote calibration data to', '/tmp/calibrationdata.tar.gz')

rosrun kalibr kalibr_calibrate_cameras  --target /home/kint/work/kalibr_workspace/data/april_6x6.yaml    --bag /home/kint/work/vi_ws/cam_imu_2024-01-04-15-39-36.bag  --models pinhole-radtan  --topics /cam0/image_raw  --show-extraction
 
rosrun kalibr kalibr_calibrate_cameras  --target /home/kint/work/kalibr_workspace/data/april_6x6.yaml    --bag /home/kint/work/vi_ws/rs_d435_cam_imu_2024-01-04-17-23-03.bag   --models pinhole-radtan  --topics /camera/color/image_raw  --show-extraction

april·标定结果

cam0:
  cam_overlaps: []
  camera_model: pinhole
  distortion_coeffs: [0.1275672152449369, -0.295951445225514, -0.0005669310686147839, -0.00039780673670447125]
  distortion_model: radtan
  intrinsics: [580.6826631313598, 582.9348842345427, 333.60826920015415, 244.81883705086946]
  resolution: [640, 480]
  rostopic: /camera/color/image_raw

3. imu-cam 外参标定

参考:https://github.com/ethz-asl/kalibr
https://github.com/ethz-asl/kalibr/wiki/installation

sudo apt-get install python3-catkin-tools python3-osrf-pycommon # ubuntu 20.04
sudo apt-get install -y \
    git wget autoconf automake nano \
    libeigen3-dev libboost-all-dev libsuitesparse-dev \
    doxygen libopencv-dev \
    libpoco-dev libtbb-dev libblas-dev liblapack-dev libv4l-dev

# Ubuntu 20.04
sudo apt-get install -y python3-dev python3-pip python3-scipy \
    python3-matplotlib ipython3 python3-wxgtk4.0 python3-tk python3-igraph python3-pyx

https://github.com/ethz-asl/kalibr/wiki/downloads 下载标定板

NameTargetConfig
Aprilgrid 6x6 0.8x0.8 m (A0 page)pdfyaml
rosrun  kalibr kalibr_calibrate_imu_camera \
--target /home/kint/work/kalibr_workspace/data/april_6x6.yaml \
--cam /home/kint/work/kalibr_workspace/data/cam.yaml \
--imu /home/kint/work/kalibr_workspace/data/imu.yaml \
--bag /home/kint/work/vi_ws/cam_imu0.bag 

april_6x6.yaml

target_type: 'aprilgrid' #gridtype
tagCols: 6               #number of apriltags
tagRows: 6               #number of apriltags
tagSize: 0.0211           #size of apriltag, edge to edge [m]
tagSpacing: 0.2986          #ratio of space between tags to tagSize
codeOffset: 0            #code offset for the first tag in the aprilboard

cam.yaml

cam0:
  cam_overlaps: []
  camera_model: pinhole
  distortion_coeffs: [0.1275672152449369, -0.295951445225514, -0.0005669310686147839, -0.00039780673670447125]
  distortion_model: radtan
  intrinsics: [580.6826631313598, 582.9348842345427, 333.60826920015415, 244.81883705086946]
  resolution: [640, 480]
  rostopic: /camera/color/image_raw

imu.yaml

#Accelerometers
accelerometer_noise_density: 3.3646456935574526e-02 #Noise density (continuous-time)
accelerometer_random_walk:   4.3950304954064600e-04    #Bias random walk

#Gyroscopes
gyroscope_noise_density:     1.1620361962149783e-03   #Noise density (continuous-time)
gyroscope_random_walk:       9.3617466820677679e-06   #Bias random walk

rostopic:                    /imu  #the IMU ROS topic
update_rate:                 100.0      #Hz (for discretization of the values above)

外参标定结果

kint@kint:~/work/kalibr_workspace$ rosrun  kalibr kalibr_calibrate_imu_camera --target /home/kint/work/kalibr_workspace/data/april_6x6.yaml --cam /home/kint/work/kalibr_workspace/data/cam.yaml --imu /home/kint/work/kalibr_workspace/data/imu.yaml --bag /home/kint/work/vi_ws/cam_imu0.bag

importing libraries
the rosdep view is empty: call 'sudo rosdep init' and 'rosdep update'
Initializing IMUs:
	Number of messages: 65282
Initializing camera chain:
Extracting calibration target corners
  Extracted corners for 3777 images (of 10625 images)                              

Building the problem

Estimating time shift camera to imu:

Initializing a pose spline with 64959 knots (100.000000 knots per second over 649.593485 seconds)
  Time shift camera to imu (t_imu = t_cam + shift):
-0.049899223470539586

Estimating imu-camera rotation prior

Initializing a pose spline with 64959 knots (100.000000 knots per second over 649.593485 seconds)
Initializing a pose spline with 64971 knots (100.000000 knots per second over 649.713485 seconds)

Initializing the bias splines with 32486 knots
 
Residuals
----------------------------
Reprojection error (cam0) [px]:     mean 0.5155776132784602, median 0.4129175412893566, std: 0.38771090059687746
 
Initializing
Optimization problem initialized with 129962 design variables and 473260 error terms
The Jacobian matrix is 1076724 x 584811
[0.0]: J: 2.92788e+07
[1]: J: 1.08954e+06, dJ: 2.81892e+07, deltaX: 1.27806, LM - lambda:10 mu:2
[2]: J: 172653, dJ: 916889, deltaX: 1.00136, LM - lambda:3.33333 mu:2

[24]: J: 62682.1, dJ: 0.0110847, deltaX: 0.000338729, LM - lambda:5.17786 mu:2
[25]: J: 62682.1, dJ: 0.00762514, deltaX: 0.000203091, LM - lambda:6.59487 mu:2

After Optimization (Results)
==================
Residuals
----------------------------
Results written to:
  Saving camera chain calibration to file: /home/kint/work/vi_ws/rs_435_2024-01-05-09-59-10--camchain-imucam.yaml
  Saving imu calibration to file: /home/kint/work/vi_ws/rs_435_2024-01-05-09-59-10--imu.yaml
  Detailed results written to file: /home/kint/work/vi_ws/rs_435_2024-01-05-09-59-10--results-imucam.txt

Generating result report... 

外参标定结果:rs_435_2024-01-05-09-59-10-camchain-imucam.yaml

cam0:
  T_cam_imu:
  - [0.9980660136864593, 0.061740755753177695, 0.007232662237817192, 0.03244989658293066]
  - [-0.06215949356871943, 0.9924592035136889, 0.10564528726002882, 0.035751985575793274]
  - [-0.0006555023266318506, -0.1058905493422342, 0.9943775751075137, -0.0025956152371000036]
  - [0.0, 0.0, 0.0, 1.0]
  cam_overlaps: []
  camera_model: pinhole
  distortion_coeffs: [0.1275672152449369, -0.295951445225514, -0.0005669310686147839, -0.00039780673670447125]
  distortion_model: radtan
  intrinsics: [580.6826631313598, 582.9348842345427, 333.60826920015415, 244.81883705086946]
  resolution: [640, 480]
  rostopic: /camera/color/image_raw
  timeshift_cam_imu: 0.018309189059828063

rosrun  kalibr kalibr_calibrate_imu_camera --target /home/kint/work/kalibr_workspace/data/april_6x6.yaml --cam /home/kint/work/kalibr_workspace/data/cam.yaml --imu /home/kint/work/vi_ws/src/calb_data/data/imu.yaml  --bag /home/kint/work/vi_ws/cam_imu_2024-01-04-15-39-36.bag
rosrun  kalibr kalibr_calibrate_imu_camera --target /home/kint/work/kalibr_workspace/data/april_6x6.yaml --cam /home/kint/work/vi_ws/src/calb_data/data/rs_cam.yaml --imu /home/kint/work/vi_ws/src/calb_data/data/imu.yaml  --bag /home/kint/work/vi_ws/rs_d435_cam_imu_2024-01-04-17-23-03.bag

4. vins 实际运行

kailbr 离线相机imu外参标定 https://github.com/ethz-asl/kalibr/wiki/installation

标定板下载: https://github.com/ethz-asl/kalibr/wiki/downloads

vins-mono (noetic) : https://github.com/kintzhao/VINS-Mono
主要是opencv 版本的差异调整

=================================

realsense d435 (30hz)+ 独立imu (100hz)

demo_rs.launch

<launch>
    <arg name="config_path" default = "$(find feature_tracker)/../config/demo/demo_rs_config.yaml" />
	  <arg name="vins_path" default = "$(find feature_tracker)/../config/../" />
    
    <node name="feature_tracker" pkg="feature_tracker" type="feature_tracker" output="log">
        <param name="config_file" type="string" value="$(arg config_path)" />
        <param name="vins_folder" type="string" value="$(arg vins_path)" />
    </node>

    <node name="vins_estimator" pkg="vins_estimator" type="vins_estimator" output="screen">
       <param name="config_file" type="string" value="$(arg config_path)" />
       <param name="vins_folder" type="string" value="$(arg vins_path)" />
    </node>

    <node name="pose_graph" pkg="pose_graph" type="pose_graph" output="screen">
        <param name="config_file" type="string" value="$(arg config_path)" />
        <param name="visualization_shift_x" type="int" value="0" />
        <param name="visualization_shift_y" type="int" value="0" />
        <param name="skip_cnt" type="int" value="0" />
        <param name="skip_dis" type="double" value="0" />
    </node>

</launch>

demo_rs_config.yaml

%YAML:1.0

#common parameters
imu_topic: "/imu"
image_topic: "/camera/color/image_raw"
output_path: "/home/kint/work/vi_ws/out/"

#camera calibration 
model_type: PINHOLE
camera_name: camera
image_width: 640
image_height: 480
distortion_parameters:
   k1: -0.027643
   k2: 0.054881
   p1: -0.000528
   p2: -0.006785
projection_parameters:
   fx: 524.128809
   fy: 523.194792
   cx: 333.510587
   cy: 239.974191

# Extrinsic parameter between IMU and Camera.
estimate_extrinsic: 0   # 0  Have an accurate extrinsic parameters. We will trust the following imu^R_cam, imu^T_cam, don't change it.
                        # 1  Have an initial guess about extrinsic parameters. We will optimize around your initial guess.
                        # 2  Don't know anything about extrinsic parameters. You don't need to give R,T. We will try to calibrate it. Do some rotation movement at beginning.                        
#If you choose 0 or 1, you should write down the following matrix.
#Rotation from camera frame to imu frame, imu^R_cam
extrinsicRotation: !!opencv-matrix
   rows: 3
   cols: 3
   dt: d
   data: [0.9980660136864593, 0.061740755753177695, 0.007232662237817192,
          -0.06215949356871943, 0.9924592035136889, 0.10564528726002882, 
          -0.0006555023266318506, -0.1058905493422342, 0.9943775751075137]

#Translation from camera frame to imu frame, imu^T_cam
extrinsicTranslation: !!opencv-matrix
   rows: 3
   cols: 1
   dt: d
   data: [0.03244989658293066, 0.035751985575793274, -0.0025956152371000036]


#feature traker paprameters
max_cnt: 180 #150            # max feature number in feature tracking
min_dist: 20 #30            # min distance between two features 
freq: 10                # frequence (Hz) of publish tracking result. At least 10Hz for good estimation. If set 0, the frequence will be same as raw image 
F_threshold: 1.0        # ransac threshold (pixel)
show_track: 1           # publish tracking image as topic
equalize: 1             # if image is too dark or light, trun on equalize to find enough features
fisheye: 0              # if using fisheye, trun on it. A circle mask will be loaded to remove edge noisy points

#optimization parameters
max_solver_time: 0.04  # max solver itration time (ms), to guarantee real time
max_num_iterations: 8   # max solver itrations, to guarantee real time
keyframe_parallax: 10.0 # keyframe selection threshold (pixel)

#imu parameters       The more accurate parameters you provide, the better performance
acc_n: 3.4897398445637821e-02          # accelerometer measurement noise standard deviation. #0.2   0.04
gyr_n: 1.0199941810169521e-03         # gyroscope measurement noise standard deviation.     #0.05  0.004
acc_w: 8.1470209699926967e-04         # accelerometer bias random work noise standard deviation.  #0.02
gyr_w: 4.4479924327109106e-06       # gyroscope bias random work noise standard deviation.     #4.0e-5
g_norm: 9.8     # gravity magnitude

#loop closure parameters
loop_closure: 1                    # start loop closure
load_previous_pose_graph: 0        # load and reuse previous pose graph; load from 'pose_graph_save_path'
fast_relocalization: 0             # useful in real-time and large project
pose_graph_save_path: "/home/kint/work/vi_ws/out/pose_graph/" # save and load path

#unsynchronization parameters
estimate_td: 0.018309189059828063 #0                      # online estimate time offset between camera and imu
td: 0.0                             # initial value of time offset. unit: s. readed image clock + td = real image clock (IMU clock)

#rolling shutter parameters
rolling_shutter: 0                  # 0: global shutter camera, 1: rolling shutter camera
rolling_shutter_tr: 0.0               # unit: s. rolling shutter read out time per frame (from data sheet). 

#visualization parameters
save_image: 1                   # save image in pose graph for visualization prupose; you can close this function by setting 0 
visualize_imu_forward: 0        # output imu forward propogation to achieve low latency and high frequence results
visualize_camera_size: 0.4      # size of camera marker in RVIZ

ref: https://www.cnblogs.com/lugendary/p/16717782.html

5. realsense

1. 库安装
sudo apt-get install libudev-dev pkg-config libgtk-3-dev
sudo apt-get install libusb-1.0-0-dev pkg-config
sudo apt-get install libglfw3-dev
sudo apt-get install libssl-dev
 
 
2. librealsense 源码安装
下载librealsense源码: https://github.com/IntelRealSense/librealsense/releases
cd librealsense
sudo cp config/99-realsense-libusb.rules /etc/udev/rules.d/
sudo udevadm control --reload-rules && udevadm trigger 
mkdir build
cd build
cmake ../ -DBUILD_EXAMPLES=true
make
sudo make install

 
3. realsense ros编译
cd ~/catkin_ws/src
git clone https://github.com/IntelRealSense/realsense-ros.git
git clone https://github.com/pal-robotics/ddynamic_reconfigure.git
cd ~/catkin_ws && catkin_make
 

录包采集数据:

rosbag  record   /camera/color/camera_info /camera/color/image_raw    /imu  -o rs_435_cam_imu

问题:Spline Coefficient Buffer Exceeded. Set larger buffer margins!

Using the levenberg_marquardt trust region policy
Initializing
Optimization problem initialized with 22710 design variables and 350146 error terms
The Jacobian matrix is 723008 x 102177
[0.0]: J: 1.40982e+06
Exception in thread block: [aslam::Exception] /home/kint/work/kalibr_workspace/src/kalibr/aslam_nonparametric_estimation/aslam_splines/src/BSplineExpressions.cpp:447: toTransformationMatrixImplementation() assert(_bufferTmin <= _time.toScalar() < _bufferTmax) failed [1.70436e+09 <= 1.70436e+09 < 1.70436e+09]: Spline Coefficient Buffer Exceeded. Set larger buffer margins!
Exception in thread block: [aslam::Exception]  

Exception in thread block: [aslam::Exception] /home/kint/work/kalibr_workspace/src/kalibr/aslam_nonparametric_estimation/aslam_splines/src/BSplineExpressions.cpp:447: toTransformationMatrixImplementation() assert(_bufferTmin <= _time.toScalar() < _bufferTmax) failed [1.70436e+09 <= 1.70436e+09 < 1.70436e+09]: Spline Coefficient Buffer Exceeded. Set larger buffer margins!
[ERROR] [1704363307.378352]: std::exception
[ERROR] [1704363307.380297]: Optimization failed!
Traceback (most recent call last):
 
RuntimeError: Optimization failed!

ref:
https://blog.csdn.net/qq_38337524/article/details/115589796
https://blog.csdn.net/qq_39779233/article/details/128704988
https://github.com/IntelRealSense/realsense-ros/issues/1665
解决方法:

  <arg name="initial_reset"             default="true"/>

修改代码/home/kint/work/vi_ws/src/kalibr/aslam_offline_calibration/kalibr/python/kalibr_calibrate_imu_camera

//LINE 199:
    iCal.buildProblem(splineOrder=6, 
                      poseKnotsPerSecond=100, 
                      biasKnotsPerSecond=50, 
                      doPoseMotionError=False,
                      doBiasMotionError=True,
                      blakeZisserCam=-1,
                      huberAccel=-1,
                      huberGyro=-1,
                      noTimeCalibration=parsed.no_time,
                      noChainExtrinsics=(not parsed.recompute_chain_extrinsics),
                      maxIterations=parsed.max_iter,
                      #timeOffsetPadding=parsed.timeoffset_padding,     #原来的代码
                      timeOffsetPadding=0.3,     #修改后
                      verbose = parsed.verbose) 

或者带参数运行

rosrun kalibr kalibr_calibrate_imu_camera --bag  calib_imu_cam.bag   --cam  camera.yaml     --imu imu.yaml --target  checkboard.yaml --timeoffset-padding 0.3

离线标定相关指令:

 rosrun kalibr kalibr_calibrate_cameras  --target /home/kint/work/kalibr_workspace/data/april_6x6.yaml    --bag /home/kint/work/vi_ws/rs_435_2024-01-05-09-59-10.bag   --models pinhole-radtan  --topics /camera/color/image_raw  --show-extraction 
rosrun  kalibr kalibr_calibrate_imu_camera --target /home/kint/work/kalibr_workspace/data/april_6x6.yaml --cam /home/kint/work/vi_ws/src/calb_data/data/rs_cam.yaml --imu /home/kint/work/vi_ws/src/calb_data/data/imu.yaml  --bag    /home/kint/work/vi_ws/rs_435_2024-01-05-09-59-10.bag

!在这里插入图片描述

roslaunch imu_node imu.launch 
roslaunch realsense2_camera d435.launch
roslaunch vins_estimator demo_rs.launch
roslaunch vins_estimator vins_rviz.launch 

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1358187.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

echarts 切换时出现上一次图形残留。

先说结果&#xff1a;悬浮高亮导致。这可能使echarts的bug。 正常情况出现这种问题&#xff0c;一般是setOption 中没有配置notMerge 导致新的配置与旧配置合并。 但是我这里始终配置notMerge: true&#xff0c;但仍然出现这种问题。 最后发现与鼠标悬浮有关。 环境 echar…

小梅哥Xilinx FPGA学习笔记20——无源蜂鸣器驱动设计与验证(音乐发生器设计)

目录 一&#xff1a;章节导读 二&#xff1a;无源蜂鸣器驱动原理 三&#xff1a;PWM 发生器模块设计 3.1 PWM 发生器模块框图 3.2 PWM 发生器模块接口功能描述 3.3 PWM波生成设计文件代码 3.4 测试仿真文件 3.5 测试仿真结果 3.6 板级调试与验证之顶层文件设计 四&am…

民营体检@2023/24:革新、挑战与本质回归

【潮汐商业评论/原创】 被“健康焦虑”困扰的Joy决定给自己来一次全身的检查&#xff0c;在网上一搜才发现&#xff0c;不仅是体检机构&#xff0c;现在各大医院也都可以体检。“感觉价格也都差不多&#xff0c;是选公立还是体检机构呢&#xff1f;”Joy陷入疑惑。 随着近几年…

洛谷 P1873 砍树 (二分 简单)

【二分答案】是分治的一种&#xff0c;这类问题很经典&#xff0c;接下来几篇文章会关于二分答案相关的文章&#xff0c;希望同学们可以完成10道以上的【二分答案】相关问题&#xff0c;以此来加深对【二分答案】这类问题的个人理解。 原公众号链接&#xff1a;分治第二讲&…

pygame学习(二)——绘制线条、圆、矩形等图案

导语 pygame是一个跨平台Python库(pygame news)&#xff0c;专门用来开发游戏。pygame主要为开发、设计2D电子游戏而生&#xff0c;提供图像模块&#xff08;image&#xff09;、声音模块&#xff08;mixer&#xff09;、输入/输出&#xff08;鼠标、键盘、显示屏&#xff09;模…

stable diffusion 基础教程-提示词之光的用法

基图 prompt: masterpiece,best quality,1girl,solo,looking at viewer,brown hair,hair between eyes,bangs,very long hair,red eyes,blush,bare shoulders,(white sundress),full body,Negative prompt: EasyNegative,badhandv4,nsfw,lowres,bad anatomy,bad hands,text…

Linux第14步_安装FTP服务器

安装“vim编辑器”后&#xff0c;我们紧接着“安装FTP服务器”。 1、在安装前&#xff0c;要检查虚拟机可以上网&#xff0c;否则可能会导致安装失败。 2、在虚拟机界面右击鼠标&#xff0c;弹出下面的对话框 3、点击“打开终端(E)”&#xff0c;得到下面的界面 &#xff1a;…

YOLOv7独家原创改进:新颖的Shape IoU结合 Inner-IoU,基于辅助边框的IoU损失的同时关注边界框本身的形状和尺度,小目标实现高效涨点

💡💡💡本文改进:一种新的Shape IoU方法结合 Inner-IoU,基于辅助边框的IoU损失的同时,更加关注边界框本身的形状和尺度来计算损失 💡💡💡对小目标检测涨点明显,在VisDrone2019、PASCAL VOC均有涨点 💡💡💡本文改进:一种新的Shape IoU方法,该方法可以通过…

使用“反向代理服务器”的优点是什么?

反向代理服务器是一种网络架构模式&#xff0c;通常位于客户端和实际服务器之间&#xff0c;用于处理客户端请求并转发到实际服务器。以下是使用反向代理服务器的优点&#xff1a; 1.安全性&#xff1a;反向代理服务器可以提供额外的安全层。通过在反向代理服务器上配置防火墙和…

Linux-故障排查

实验要求 samba仅允许192.168.1.0/24、192.168.10/24进行访问 开一台虚拟机 快照恢复到未联网安装 关闭防火墙 安全linux 编辑ens33网卡 vim /etc/sysconfig/network-scripts/ifcfg-ens33 将ens33网卡复制一份命名为ens37 cp /etc/sysconfig/network-scripts/ifcfg-ens33 /etc…

Unity 点击对话系统(含Demo)

点击对话系统 可实现点击物体后自动移动到物体附近&#xff0c;然后弹出对话框进行对话。 基于Unity 简单角色对话UI脚本的编写&#xff08;新版UI组件&#xff09;和Unity 关于点击不同物品移动并触发不同事件的结合体&#xff0c;有兴趣可以看一下之前文章。 下边代码为U…

MATLAB - MPC - 优化问题(Optimization Problem)

系列文章目录 前言 模型预测控制可在每个控制间隔内解决一个优化问题&#xff0c;具体来说就是二次规划(QP)。求解结果决定了被控对象在下一个控制间隔之前使用的操纵变量&#xff08;MV&#xff09;。 该 QP 问题具有以下特点&#xff1a; 目标或 "成本 "函数 - …

【数据库】CRUD常用函数UNION 和 UNION ALL

文章目录 一、CRUD二、函数2.1 字符函数 (Character Functions):2.2 数字函数 (Numeric Functions):2.3 日期函数 (Date Functions):2.4 流程控制函数:2.5 聚合函数: 三、UNION 和 UNION ALL3.1 UNION&#xff1a;3.2 UNION ALL3.3 注意事项 一、CRUD CRUD 是指数据库操作的四…

【RabbitMQ】1 消息中间件MQ概述

目录 什么是消息中间件为什么使用消息中间件流量削峰应用解耦异步处理 主流消息中间件及选型选取原则RabbitMQRocketMQKafka如何选择 消息中间件应用场景电商秒杀案例拉勾B端C端数据同步案例支付宝购买电影票 什么是消息中间件 维基百科对消息中间件的解释&#xff1a;面向消息…

JVM之内存模型带参数

Spring Boot程序的JVM参数设置格式(Tomcat启动直接加在bin目录下catalina.sh文件里)&#xff1a; java ‐Xms2048M ‐Xmx2048M ‐Xmn1024M ‐Xss512K ‐XX:MetaspaceSize256M ‐XX:MaxMetaspaceSize256M ‐jar xxxxxx.jar-Xss&#xff1a;每个线程的栈大小 -Xms&#xff1a;设置…

Prototype原型模式(对象创建)

原型模式&#xff1a;Prototype 链接&#xff1a;原型模式实例代码 注解 模式定义 使用原型实例指定创建对象的种类&#xff0c;然后通过拷贝这些原型来创建新的对象。 ——《设计模式》GoF 目的 在软件系统中&#xff0c;经常面临这“某些结构复杂的对象”的创建工作&am…

3D Gaussian Splatting复现

最近3D Gaussian Splatting很火&#xff0c;网上有很多复现过程&#xff0c;大部分都是在Windows上的。Linux上配置环境会方便简单一点&#xff0c;这里记录一下我在Linux上复现的过程。 Windows下的环境配置和编译&#xff0c;建议看这个up主的视频配置&#xff0c;讲解的很细…

led台灯哪些牌子性价比高?那些性价比高的LED护眼台灯推荐

台灯作为家居用品在日常生活中使用频繁。用户可以根据个人需求和喜好&#xff0c;在市场上找到合适的款式。然而&#xff0c;由于台灯种类繁多&#xff0c;甚至连相关标准都存在差异&#xff0c;这使得一些缺乏经验的购物小白感到困扰。那么&#xff0c;led台灯哪些牌子性价比高…

python入门,list列表详解

目录 1.list的定义 2.index查找某元素的下标 3.修改 ​编辑 4.插入 ​编辑 5.追加元素 1.append,追加到尾部 2.extend,追加一批元素 ​编辑 6.删除元素 1.del 列表[下标] 2.列表.pop(下标) 3.列表.remove(元素) 7.清空列表 8.统计某一元素在列表内的数量 9.计算…

app广告变现——广告预加载机制,提升用户体验

通过广告预加载&#xff0c;开发者可以避免在向用户显示广告时出现延迟。 应用在程序启动时需要请求网络&#xff0c;加载资源会需要等待时间&#xff0c;如果在等待过程中没有及时给用户展现画面或反馈&#xff0c;用户很可能会因为等待时间过长而推出应用。广告预加载在此时…