MATLAB - MPC - 优化问题(Optimization Problem)

news2025/1/17 0:14:02

系列文章目录


前言

模型预测控制可在每个控制间隔内解决一个优化问题,具体来说就是二次规划(QP)。求解结果决定了被控对象在下一个控制间隔之前使用的操纵变量(MV)。

该 QP 问题具有以下特点:

  • 目标或 "成本 "函数 - 要最小化的控制器性能的非负标量。
  • 约束条件 - 解决方案必须满足的条件,如 MV 和被控对象输出变量的物理边界。
  • 决策 - 在满足约束条件的同时使成本函数最小化的 MV 调整。

下文将详细介绍这些功能。


一、标准代价函数

标准成本函数是四个项的总和,每个项都侧重于控制器性能的一个特定方面,如下所示:

$J(z k)=J_{y}(z k)+J_{u}(z k)+J_{\Delta u}(z k)+J_{e}(z k).$

这里,zk 是 QP 决策。如下所述,每个项都包含权重,可帮助您平衡相互竞争的目标。虽然 MPC 控制器提供了默认权重,但您通常需要对其进行调整,以适应您的应用。

1.1 输出参考跟踪


在大多数应用中,控制器必须将选定的被控对象输出保持在或接近指定的参考值。MPC 控制器使用以下标量性能指标进行输出参考跟踪:

$J_{y}(z k)=\sum_{​{j}=1}^{n_{y}}\ \sum_{​{i}=1}^p\left\{\frac{w_{​{i},{j}}^{y}}{s_{​{j}}^{y}}[r_{​{j}}(k+i\vert k)-y_{​{j}}(k+i\vert k)]\right\}^{​{2}}.$

此处

  • k - 当前控制间隔。
  • p - 预测范围(区间数)。
  • ny - 被控对象输出变量的个数。
  • zk - QP 决策,取值为  

                 $z_k^T=\left[u(k|k)^{T}\quad u(k+1|k)^{T}\ \ldots\ \ u(k+p-1|k)^{T}\quad\it\epsilon_{k}\right].$

  • yj(k+i|k) - 第 j 个被控对象在第 i 个预测水平步的输出预测值,单位为工程单位。
  • rj(k+i|k) - 第 j 个被控对象在第 i 个预测水平步的输出参考值,单位为工程单位。
  • s_{​{j}}^{y} - 第 j 个被控对象产量的比例因子,单位为工程单位。
  • w_{​{i},{j}}^{y} - 第 i 个预测水平步的第 j 个被控对象输出的调整权重(无量纲)。

值 ny、p、s_{​{j}}^{y}w_{​{i},{j}}^{y} 是恒定的控制器规格。控制器接收整个预测范围内的参考值 rj(k+i|k)。控制器使用状态观测器来预测被控对象的输出 yj(k+i|k),这些输出取决于受控变量调整 (zk)、测量干扰 (MD) 和状态估计值。在间隔 k 时,可获得控制器状态估计值和 MD 值。因此,Jy 仅是 zk 的函数。 

1.2 操纵变量跟踪


在某些应用中,例如当被控对象的输出多于操纵变量时,控制器必须将选定的操纵变量 (MV) 保持在或接近指定的目标值。MPC 控制器使用以下标量性能指标进行操纵变量跟踪: 

$J_{u}(z k)=\sum_{j=1}^{n_{u}}\sum_{i=0}^{p-1}\left\{\frac{w_{i,j}^{u}}{s_{j}^{u}}[u_{j}(k+i\vert k)-u_{j,l a r g e t}(k+i\vert k)]\right\}^{2}.$

此处

  • k - 当前控制间隔。
  • p - 预测范围(区间数)。
  • nu - 受控变量的数量。
  • zk - QP 决策,取值为
  • uj,target(k+i|k) - 第 j 个 MV 在第 i 个预测水平步的目标值,单位为工程单位。
  • s_{​{j}}^{u} - 第 j 个 MV 的比例因子,单位为工程单位。
  • w_{​{i},{j}}^{u} - 第 j 个 MV 在第 i 个预测水平步的调整权重(无量纲)。

数值 nu、p、s_{​{j}}^{u}w_{​{i},{j}}^{u} 是恒定的控制器规格。控制器接收整个范围内的 uj,target(k+i|k) 值。控制器利用状态观测器预测被控对象的输出。因此,Ju 只是 zk 的函数。

1.3 操纵变量移动抑制


大多数应用都喜欢小的 MV 调整(移动)。MPC 常量使用以下标量性能指标来抑制操纵变量移动:

$J_{\Delta u}(z_{k})=\sum_{j=1}^{n_{u}}\sum_{i=0}^{p-1}\left\{\frac{\displaystyle w_{i,j}^{\Delta u}}{\displaystyle s_{j}^{​{u}}}[u_{j}(k+i\vert k)-u_{j}(k+i-1\vert k)]\right\}^{2}.$

此处

  • k - 当前控制间隔。
  • p - 预测范围(区间数)。
  • ny - 被控对象输出变量的个数。
  • zk - QP 决策,取值为  

                 $z_k^T=\left[u(k|k)^{T}\quad u(k+1|k)^{T}\ \ldots\ \ u(k+p-1|k)^{T}\quad\it\epsilon_{k}\right].$

  • s_{​{j}}^{u} - 第 j 个 MV 的比例因子,单位为工程单位。
  • w_{i,j}^{\Delta u} - 第 j 个 MV 运动在第 i 个预测水平步的调整权重(无量纲)。

$n_{u},\,p_{,}\,\,s_{j}^{u},w_{i,j}^{\Delta u}$的值是控制器的常数。u(k-1|k) = u(k-1),是上一个控制区间的已知 MV。JΔu 仅是 zk 的函数。

此外,控制区间 m < p(或 MV 阻塞)会限制某些 MV 移动为零。

1.4 违反约束

在实践中,违反约束可能是不可避免的。软约束允许在这种情况下获得可行的 QP 解决方案。MPC 控制器采用一个无量纲、非负的松弛变量 εk,它量化了最坏情况下的约束违规。(见约束条件)相应的性能指标为

$J_{\varepsilon}(z k)=\rho_{\varepsilon}\varepsilon_{k}^{2}.$

这里

zk - QP 决策,取值为

$z_{k}^{T}=\bigl[u(k|k)^{T}\ \ \ u(k+1|k)^{T}\ \ \ldots\ \ u(k+p-1|k)^{T}\ \ \epsilon_{k}\bigr].$

εk - 控制区间 k 的松弛变量(无量纲)。

ρε - 违反约束条件的惩罚权重(无量纲)。

二、 替代成本函数

您可以选择使用以下替代标准成本函数的方法:

$J(z_{k})=\sum_{i=0}^{p-1}\left\{\left[e_{y}^{T}(k+i)Q e_{y}(k+i)\right]+\left[e_{u}^{T}(k+i)R_{u}e_{u}(k+i)\right]+\left[\Delta u^{T}(k+i)R_{\Delta u}\Delta u(k+i)\right]\right\}+\rho_{\epsilon}\varepsilon_{k}^{2}.$

这里,Q(ny-by-ny)、Ru 和 RΔu(nu-by-nu)是正半无穷权重矩阵,并且: 

$\begin{array}{c}{​{e_{y}(i+k)=S_{y}^{-1}[r(k+i+1|k)-y(k+i+1|k)]}}\\ {​{e_{u}(i+k)=S_{u}^{-1}[u_{t a r g e t}(k+i|k)-u(k+i|k)]}}\\ {​{\Delta u(k+i)=S_{u}^{-1}[u(k+i]k)-u(k+i-1|k)].}}\end{array}$

也是、

Sy - 被控对象输出可变比例系数的对角矩阵,单位为工程单位。

Su - 以工程单位表示的 MV 比例因子对角矩阵。

r(k+1|k) - 第 i 个预测水平步的 ny 个被控对象输出参考值,单位为工程单位。

y(k+1|k) - 第 i 个预测水平步的 ny 个被控对象的工厂产出,单位为工程单位。

zk - QP 决策,取值为

$z_{k}^{T}=\bigl[u(k|k)^{T}\ \ \ u(k+1|k)^{T}\ \ \ldots\ \ u(k+p-1|k)^{T}\ \ \epsilon_{k}\bigr].$

utarget(k+i|k) - u(k+i|k) 对应的 nu MV 目标值,单位为工程单位。

与标准成本函数一样,输出预测使用状态观测器。

替代成本函数允许非对角线加权,但要求每个预测水平步的权重相同。

如果满足以下条件,替代成本函数和标准成本函数是相同的:

  • 标准成本函数采用的权重 w , 和 w 相对于指数 i = 1:p 是常数。
  • 矩阵 Q、Ru 和 RΔu 是对角线,对角元素是这些权重的平方。

三、约束条件


某些约束条件是隐含的。例如,控制范围 m < p(或 MV 阻塞)会强制某些 MV 增量为零,而用于被控对象输出预测的状态观测器是一组隐式相等约束。您可以配置的显式约束如下所述。

3.1 被控对象输出、MV 和 MV 增量的界限

最常见的 MPC 约束是边界,如下所示。

$\frac{y j,m i n(i)}{s_{j}^{y}}-\epsilon_{k}V_{j,m i n}^{y}(i)\leq\frac{y j(k+i| k)}{s_{j}^{y}}\leq\frac{y j,m a x(i)}{s_{j}^{y}}+\epsilon_{k}V_{j,m a x}^{y}(i),\qquad i=1:p,\qquad j=1:n_{y}$

$\frac{u j,m i n(i)}{s_{j}^{u}}-\epsilon k V_{j,m i n}^{u}(i)\leq\frac{u j(k+i-1|k)}{s_{j}^{u}}\leq\frac{u j,m a x(i)}{s_{j}^{u}}+\epsilon k V_{j,m a x}^{u}(i),\quad i=1:p,\quad\quad j=1:n u\quad$

$\frac{\Delta u_{j,m i n}(i)}{s_{j}^{u}}-\epsilon k V_{j,m i n}^{\Delta u}(i)\leq\frac{\Delta u_{j}(k+i-1|k)}{s_{j}^{u}}\leq\frac{\Delta u_{j,m a x}(i)}{s_{j}^{u}}+\epsilon k V_{j,m a x}^{\Delta u}(i),\quad i=1:p,\quad\quad j=1:n u,$ 

这里的 V 参数(ECR 值)是无量纲控制器常数,类似于成本函数权重,但用于约束软化(参见约束软化)。此外还有

εk - 用于约束软化的标量 QP 松弛变量(无量纲)。

syj - 第 j 个被控对象输出的比例因子,单位为工程单位。

suj - 第 j 个 MV 的比例因子,单位为工程单位。

yj,min(i)、yj,max(i) - 第 j 个被控对象在第 i 个预测水平步的产量下限和上限,单位为工程单位。

uj,min(i)、uj,max(i) - 第 j 个 MV 在第 i 个预测水平步的下限和上限,单位为工程单位。

Δuj,min(i)、Δuj,max(i) - 第 i 个预测水平步的第 j 个 MV 增量的下限和上限,单位为工程单位。

除松弛变量非负条件外,上述所有约束条件都是可选的,默认为非活动状态(即初始化为无限极限值)。要包含约束条件,必须在设计控制器时指定有限极限值。

四、QP 矩阵

本节介绍与优化问题中描述的模型预测控制优化问题相关的矩阵。

4.1 预测

假设输入干扰模型中描述的干扰模型为单位增益,即 d(k) = nd(k) 为白高斯噪声。可以将此问题表示为

${x\leftarrow \begin{bmatrix} x\\ x_d \end{bmatrix},A\leftarrow \begin{bmatrix} A & B_d\bar{C} \\ 0 & \bar{A} \end{bmatrix},B_u\leftarrow \begin{bmatrix}B_u\\ 0\end{bmatrix},B_v\leftarrow \begin{bmatrix}B_v\\ 0\end{bmatrix},B_d \leftarrow \begin{bmatrix}B_d\bar{D}\\ \bar{B}\end{bmatrix},C\leftarrow \begin{bmatrix} C & D_d\bar{C} \end{bmatrix}}$

那么,预测模型就是

$x(k+1)=A x(k)+B_{u}u(k)+B_{\nu}\nu(k)+B_{d}n_{d}(k)$

$y(k)=C x(k)+D_{\nu}\nu(k)+D_{d}n_{d}(k)$

接下来,考虑预测模型在时间 k=0 时的未来轨迹问题。对所有预测时刻 i 设置 nd(i)=0,得到 

$y(i|0)=C\left[A^{i}x(0)+\sum_{h=0}^{i-1}A^{i-1}\left(B_{u}\left({​{u(-1)+\sum_{j=0}^{h}}{\Delta u(j)}}\right)+B_{\nu}v(h)\right)\right]+D_{\nu}v(i)$

 该方程给出的解是

$\left[\begin{array}{l}{​{y(1)}}\\ {​{\cdots}}\\ {​{y(p)}}\end{array}\right]=S_{x}x(0)+S_{u1}u(-1)+S_{u}\left[\begin{array}{c}{​{\Delta u(0)}}\\ {​{\cdots}}\\ {​{\Delta u(p-1)}}\end{array}\right]+H_{v}\left[\begin{array}{l}{​{\nu(0)}}\\ {​{\cdots}}\\ {​{\nu(p)}}\end{array}\right]$

其中

$S_{x}=\left(\begin{array}{l}{​{C A}}\\ {​{C A^{2}}}\\ {​{\dots}}\\ {​{C A^{p}}}\end{array}\right)\left.\in\mathfrak{R}^{p n_{y}\times n_{x}},S_{u1}=\left[\begin{array}{l}{​{C B_{u}}}\\ {​{C B_{u}+C A B_{u}}}\\ {​{\dots}}\\ {​{\sum_{h=0}^{p-1}C A^{h}B_{u}}}\end{array}\right]\right.\in\mathfrak{R}^{p n_{y}\times n_{u}}$

S_{u}=\begin{bmatrix} {C B_{u}} & 0 & \cdots & 0 \\ {C B_{u}+C A B_{u}} & {C B_{u}} & \cdots & 0 \\ \cdots&\cdots & \cdots&\cdots \\\sum_{h=0}^{p-1}C A^{h}B_{u} & \sum_{h=0}^{p-2}C A^{h}B_{u}&\cdots &{C B_{u}} \end{bmatrix}\in\mathfrak{R}^{p n_{y}\times n_{u}}

${H_{v}=\begin{bmatrix} {C B_{v}} & D_v & 0 & \cdots & 0 \\ {CA B_{v}} & {C B_{v}} &D_v& \cdots & 0 \\ \cdots&\cdots & \cdots&\cdots&\cdots \\\sum_{h=0}^{p-1}C A^{h}B_{v} & \sum_{h=0}^{p-2}C A^{h}B_{v}&\sum_{h=0}^{p-3}C A^{h}B_{v}&\cdots &{D_v} \end{bmatrix}\in\mathfrak{R}^{p n_{y}\times (p+1)n}}$

4.2 优化变量

设 m 为自由控制移动的次数,设 z= [z0; ...; zm-1]。那么 

$\left[\begin{array}{c}{​{\Delta u(0)}}\\ {​{\ldots}}\\ {​{\Delta u(p-1)}}\end{array}\right]=J M\left[\begin{array}{c}{​{z0}}\\ {​{z m-1}}\end{array}\right]$

其中,JM 取决于阻塞动作的选择。z0、......、zm-1 与松弛变量ɛ 一起构成了优化问题的自由优化变量。在系统只有一个操纵变量的情况下,z0、......、zm-1 是标量。

考虑下图中描述的阻塞动作。

阻塞移动: 移动 = [2 3 2] 的输入和输入增量

这个图形对应于选择 moves=[2 3 2],或者等价于 u(0)=u(1),u(2)=u(3)=u(4),u(5)=u(6),Δ u(0)=z0,Δ u(2)=z1,Δ u(5)=z2,Δ u(1)=Δ u(3)=Δ u(4)=Δ u(6)=0.

那么,相应的矩阵 JM 为

$J_M=\begin{array}{r}{\left[{\begin{array}{r r r}{I}&{0}&{0}\\ {0}&{0}&{0}\\ {0}&{I}&{0}\\ {0}&{0}&{0}\\ {0}&{0}&{0}\\ {0}&{0}&{I}\\ {0}&{0}&{0}\end{array}}\right]}\end{array}$

有关操纵变量阻塞的更多信息,请参阅操纵变量阻塞。

4.3 成本函数

标准形式。 要优化的函数是

$J(z,\varepsilon)=\left ({\begin{bmatrix}u(0)\\ \dots\\ u(p-1)\end{bmatrix} } - {\begin{bmatrix}u_{target}(0)\\ \dots\\ u_{target}(p-1)\end{bmatrix} }\right )^T W_u^2 \left ({\begin{bmatrix}u(0)\\ \dots\\ u(p-1)\end{bmatrix} } - {\begin{bmatrix}u_{target}(0)\\ \dots\\ u_{target}(p-1)\end{bmatrix} }\right ) + {\begin{bmatrix}\Delta u(0)\\ \dots\\ \Delta u(p-1)\end{bmatrix}^T { W}_{\Delta u}^{2} {\begin{bmatrix}\Delta u(0)\\ \dots\\ \Delta u(p-1)\end{bmatrix}} }$

${+ \left ({\begin{bmatrix}y(1)\\ \dots\\ y(p)\end{bmatrix} }-{\begin{bmatrix}r(1)\\ \dots\\ r(p)\end{bmatrix} } \right )^T{ W}_{y}^{2} \left ({\begin{bmatrix}y(1)\\ \dots\\ y(p)\end{bmatrix} }-{\begin{bmatrix}r(1)\\ \dots\\ r(p)\end{bmatrix} } \right ) + \rho_{\mathcal{E}}{\mathcal{E}}^{2}}$ 

其中

$W_{u}=\mathrm{diag}\!\left({w}_{0,1}^{u},{w}_{0,2}^{u},...,{w}_{0,n}^{u},...,{w}_{p-1,1}^{u}\!,{w}_{p-1,2}^{u}\!,{w}_{p-1,2}^{u}\!,\dots,{w}_{p-1,n}^{u}\!\right)$

$W\Delta u=\mathrm{diag}\biggl(w_{0,1}^{\Delta u},w_{0,2}^{\Delta u},...,w_{0,n_{u}}^{\Delta u},...,w_{p-1,1}^{\Delta u},w_{p}^{\Delta u},...,w_{p-1,n_{u}}^{\Delta u}\biggr)$ 

$W_{y}=\mathrm{diag}\!\left(w_{1,1}^{y},w_{1,2}^{y}\!\cdot\!...,w_{1,n_{y}}^{y},...,w_{p,1}^{y},w_{p,2}^{y}\!....,w_{p,n_{y}}^{y}\right)$ 

最后,在代入 u(k)、Δu(k)、y(k)之后,J(z) 可重写为

$J(z,\varepsilon)=\rho_{\mathcal{E}}\varepsilon^{2}+z^{T}K\Delta u z+ 2\left ( {\begin{bmatrix}r(1)\\ \dots\\ r(p)\end{bmatrix} }^T K_r + {\begin{bmatrix}v(0)\\ \dots\\ v(p)\end{bmatrix} }^T K_v + u(-1)^{T}K_u + {\begin{bmatrix}u_{target}(0)\\ \dots\\ u_{target}(p-1)\end{bmatrix} }^T K_{ut} + +\;x(0)^{T}K x\right )z+{C}_{y}W_{y} c {y}++{C}_{u}W_{u} c {u}$其中

$c_{y}=S_{X}x(0)+S_{u}1u(-1)+H_{v}\left[\begin{array}{l}{​{v(1)}}\\ {​{\cdots}}\\ {​{v(p)}}\end{array}\right]-\left[\begin{array}{l}{​{r(1)}}\\ {​{\cdots}}\\ {​{r(p)}}\end{array}\right]$ 

注意事项

您可能希望 QP 问题保持严格的凸性。如果 Hessian 矩阵 KΔU 的条件数大于 1012,请在每个对角项上添加 10*sqrt(eps)。只有当所有输入率都未受惩罚(WΔu=0)时,才能使用此解决方案(请参阅 mpc 对象的权重属性)。

替代成本函数。  如果使用 "替代成本函数 "中所示的替代成本函数,则等式 1 由以下公式代替:

$\begin{array}{l}{​{W_{u}={\mathrm{blkdiag}}(R_{u},\ldots,R_{u})}}\\ {​{W_{\Delta u}={\mathrm{blkdiag}}(R_{\Delta u,\ldots,R_{\Delta u})}}}\\ {​{W_{y}={\mathrm{blkdiag}}(Q,\ldots,Q)}}\end{array}$

在这种情况下,分块对角矩阵重复 p 次,例如,预测范围内每一步重复一次。

您也可以选择使用标准形式和替代形式的组合。更多信息,请参阅 mpc 对象的权重属性。

约束条件 接下来,考虑输入、输入增量和输出的限制以及约束条件 ɛ≥ 0。

 

注释

为减少计算量,控制器会自动消除无关的约束条件,如无限边界。因此,实时使用的约束集可能远小于本节建议的约束集。

与计算成本函数类似,可以将 u(k)、Δu(k)、y(k) 代入,得到

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1358171.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【数据库】CRUD常用函数UNION 和 UNION ALL

文章目录 一、CRUD二、函数2.1 字符函数 (Character Functions):2.2 数字函数 (Numeric Functions):2.3 日期函数 (Date Functions):2.4 流程控制函数:2.5 聚合函数: 三、UNION 和 UNION ALL3.1 UNION&#xff1a;3.2 UNION ALL3.3 注意事项 一、CRUD CRUD 是指数据库操作的四…

【RabbitMQ】1 消息中间件MQ概述

目录 什么是消息中间件为什么使用消息中间件流量削峰应用解耦异步处理 主流消息中间件及选型选取原则RabbitMQRocketMQKafka如何选择 消息中间件应用场景电商秒杀案例拉勾B端C端数据同步案例支付宝购买电影票 什么是消息中间件 维基百科对消息中间件的解释&#xff1a;面向消息…

JVM之内存模型带参数

Spring Boot程序的JVM参数设置格式(Tomcat启动直接加在bin目录下catalina.sh文件里)&#xff1a; java ‐Xms2048M ‐Xmx2048M ‐Xmn1024M ‐Xss512K ‐XX:MetaspaceSize256M ‐XX:MaxMetaspaceSize256M ‐jar xxxxxx.jar-Xss&#xff1a;每个线程的栈大小 -Xms&#xff1a;设置…

Prototype原型模式(对象创建)

原型模式&#xff1a;Prototype 链接&#xff1a;原型模式实例代码 注解 模式定义 使用原型实例指定创建对象的种类&#xff0c;然后通过拷贝这些原型来创建新的对象。 ——《设计模式》GoF 目的 在软件系统中&#xff0c;经常面临这“某些结构复杂的对象”的创建工作&am…

3D Gaussian Splatting复现

最近3D Gaussian Splatting很火&#xff0c;网上有很多复现过程&#xff0c;大部分都是在Windows上的。Linux上配置环境会方便简单一点&#xff0c;这里记录一下我在Linux上复现的过程。 Windows下的环境配置和编译&#xff0c;建议看这个up主的视频配置&#xff0c;讲解的很细…

led台灯哪些牌子性价比高?那些性价比高的LED护眼台灯推荐

台灯作为家居用品在日常生活中使用频繁。用户可以根据个人需求和喜好&#xff0c;在市场上找到合适的款式。然而&#xff0c;由于台灯种类繁多&#xff0c;甚至连相关标准都存在差异&#xff0c;这使得一些缺乏经验的购物小白感到困扰。那么&#xff0c;led台灯哪些牌子性价比高…

python入门,list列表详解

目录 1.list的定义 2.index查找某元素的下标 3.修改 ​编辑 4.插入 ​编辑 5.追加元素 1.append,追加到尾部 2.extend,追加一批元素 ​编辑 6.删除元素 1.del 列表[下标] 2.列表.pop(下标) 3.列表.remove(元素) 7.清空列表 8.统计某一元素在列表内的数量 9.计算…

app广告变现——广告预加载机制,提升用户体验

通过广告预加载&#xff0c;开发者可以避免在向用户显示广告时出现延迟。 应用在程序启动时需要请求网络&#xff0c;加载资源会需要等待时间&#xff0c;如果在等待过程中没有及时给用户展现画面或反馈&#xff0c;用户很可能会因为等待时间过长而推出应用。广告预加载在此时…

美团后端Java实习一面面经

说一下AOP&#xff1f; 面向切面编程&#xff0c;通过预编译方式和运行期动态代理实现程序功能的统一维护的技术。可以减少程序中相同代码的编写&#xff0c;简化开发&#xff0c;使得接口更加专注于业务 相关概念 Aspect&#xff08;切面&#xff09;&#xff1a; Aspect 声…

【ES6语法学习】解构赋值

文章目录 引言一、什么是解构赋值1.1什么是解构赋值1.2 数组的解构赋值1.2.1 基本用法1.2.2 默认值1.2.3 剩余参数 1.3 对象的解构赋值1.3.1 基本用法1.3.2 默认值1.3.2 剩余参数 1.4 字符串的解构赋值1.5 函数参数的解构赋值 二、解构赋值的优势和应用场景2.1 代码简化和可读性…

并发程序设计--D2D3exec函数族和守护进程

exec 函数族 背景&#xff1a;fork创建进程之后&#xff0c;子进程和父进程执行相同的代码&#xff0c;但是在实际开发当中&#xff0c;我们希望父子进程执行不同的代码。 作用&#xff1a;执行指定的程序 #include <unistd.h> int execl(const char *path, const cha…

echarts中dataZoom拖拽不起效果

vue3项目中&#xff0c;echarts使用dataZoom进行区域拖动&#xff0c;拖动下图红色框&#xff0c;数据展示无变化拖动功能失效。 原因 vue3中使用了ref或者reactive等初始化图表的变量 //定义 let myChart ref<any>(null); //使用 myChart.value echarts.init(chartR…

京东年度数据报告-2023全年度净水器十大热门品牌销量榜单

近年来&#xff0c;随着科技的不断发展和应用&#xff0c;净水器的技术得到持续创新和提高&#xff0c;产品品质和使用效果不断优化&#xff0c;这也进一步提升了净水器的市场竞争力&#xff0c;2023年&#xff0c;净水器市场的销售成绩呈现增长。 根据鲸参谋平台的数据显示&a…

了解单元测试

一&#xff0c;测试分类 1.1 E2E测试&#xff08;end to end端到端测试&#xff09; 属于黑盒测试。 主要通过测试框架&#xff0c;站在用户测试人员的角度&#xff0c;模拟用户的操作进行页面功能的验证&#xff0c;不管内部实现机制&#xff0c;完全模拟浏览器的行为。&am…

接口自动化—pytest命令行操作

学习目标&#xff1a; 1、pytest的不同的运行方法 2、pytest常见的命令行参数 3、如何添加自定义的pytest命令行参数 学习内容&#xff1a; 1、pytest的不同的运行方法 1.1主要有三种情况的运行方式&#xff1a; 1.1.1没有使用pytest框架&#xff0c;但是要运行包含test…

微信多功能投票小程序源码系统:送礼物+在线充值+票数汇总+创建活动+完整的代码安装包 附带完整的搭建教程

微信已成为人们日常生活中不可或缺的一部分。因此&#xff0c;微信小程序也受到了广大用户的欢迎。在这个背景下&#xff0c;多功能投票小程序应运而生&#xff0c;为各种活动提供了方便快捷的投票方式。本文将介绍一款微信多功能投票小程序源码系统&#xff0c;该系统具有送礼…

Python | Iter/genartor | 一文了解迭代器、生成器的含义\区别\优缺点

前提 一种技术的出现&#xff0c;需要考虑&#xff1a; 为了实现什么样的需求&#xff1b;遇到了什么样的问题&#xff1b;采用了什么样的方案&#xff1b;最终接近或达到了预期的效果。 概念 提前理解几个概念&#xff1a; 迭代 我们经常听到产品迭代、技术迭代、功能迭代…

Apache Doris (六十一): Spark Doris Connector - (1)-源码编译

🏡 个人主页:IT贫道_大数据OLAP体系技术栈,Apache Doris,Clickhouse 技术-CSDN博客 🚩 私聊博主:加入大数据技术讨论群聊,获取更多大数据资料。 🔔 博主个人B栈地址:豹哥教你学编程的个人空间-豹哥教你学编程个人主页-哔哩哔哩视频 目录 1. Spark Doris Connector…

开发者必备的 Github 加速工具(截至2024年01月)

开始闲聊前&#xff0c;我要感谢大神小青龍总结的博文&#xff1a;作为程序员不得不知道的几款Github加速神器&#xff0c;给我们介绍了常用&#xff08;较为合规&#x1f604;&#xff09;的加速方法。毕竟 github 是开发者绕不过的宝库。 背景 我用 Github 将近12年&#x…

drf知识--11

补充 # 研究simple-jwt提供的Token类&#xff1a; 1、RefreshToken:生成refresh token的类 2、AccessToken:生成refresh token的类 3、Token&#xff1a;他们俩的父类 4、str(RefreshToken的对象)---得到字符串 refresh token&#xff0c;Token类写了 …