🍁🍁🍁图像分割实战-系列教程 总目录
有任何问题欢迎在下面留言
本篇文章的代码运行界面均在Pycharm中进行
本篇文章配套的代码资源已经上传
unet医学细胞分割实战1
unet医学细胞分割实战2
unet医学细胞分割实战3
unet医学细胞分割实战4
unet医学细胞分割实战5
unet医学细胞分割实战6
10、val.py解读
在结束训练后,已经保存了模型,现在可以对模型进行验证,运行过程需要指定参数:
"""
需要指定参数:--name dsb2018_96_NestedUNet_woDS
"""
10.1 main函数解析
def main():
args = parse_args()
with open('models/%s/config.yml' % args.name, 'r') as f:
config = yaml.load(f, Loader=yaml.FullLoader)
print('-'*20)
for key in config.keys():
print('%s: %s' % (key, str(config[key])))
print('-'*20)
在train.py中已经把所有参数都通过配置文件保存,这里直接读配置文件就行了
cudnn.benchmark = True
# create model
print("=> creating model %s" % config['arch'])
model = archs.__dict__[config['arch']](config['num_classes'],
config['input_channels'],
config['deep_supervision'])
model = model.cuda()
- 启用 CUDA 深度神经网络(cuDNN)的自动调优器
- 模型初始化
- 模型进入cuda
# Data loading code
img_ids = glob(os.path.join('inputs', config['dataset'], 'images', '*' + config['img_ext']))
img_ids = [os.path.splitext(os.path.basename(p))[0] for p in img_ids]
_, val_img_ids = train_test_split(img_ids, test_size=0.2, random_state=41)
model.load_state_dict(torch.load('models/%s/model.pth' %
config['name']))
model.eval()
读取数据,分出验证集,取出验证集
加载本地预训练模型,开启推理模式
val_transform = Compose([
transforms.Resize(config['input_h'], config['input_w']),
transforms.Normalize(),
])
val_dataset = Dataset(
img_ids=val_img_ids,
img_dir=os.path.join('inputs', config['dataset'], 'images'),
mask_dir=os.path.join('inputs', config['dataset'], 'masks'),
img_ext=config['img_ext'],
mask_ext=config['mask_ext'],
num_classes=config['num_classes'],
transform=val_transform)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=config['batch_size'],
shuffle=False,
num_workers=config['num_workers'],
drop_last=False)
avg_meter = AverageMeter()
数据增强,制作验证集Dataloader
for c in range(config['num_classes']):
os.makedirs(os.path.join('outputs', config['name'], str(c)), exist_ok=True)
with torch.no_grad():
for input, target, meta in tqdm(val_loader, total=len(val_loader)):
input = input.cuda()
target = target.cuda()
# compute output
if config['deep_supervision']:
output = model(input)[-1]
else:
output = model(input)
iou = iou_score(output, target)
avg_meter.update(iou, input.size(0))
output = torch.sigmoid(output).cpu().numpy()
for i in range(len(output)):
for c in range(config['num_classes']):
cv2.imwrite(os.path.join('outputs', config['name'], str(c), meta['img_id'][i] + '.jpg'),
(output[i, c] * 255).astype('uint8'))
print('IoU: %.4f' % avg_meter.avg)
plot_examples(input, target, model,num_examples=3)
torch.cuda.empty_cache()
- 创建验证集文件夹,取出对应分类种类各自建立文件夹,按照分类种类得到输出的图像
- 避免梯度计算,按照Dataloader取数据
- 然后基本和train.py差不多,是否在每个位置上加上监督,计算iou、计算损失、把最后预测的数据用OpenCV生成图像
10.3 验证结果展示
def plot_examples(datax, datay, model,num_examples=6):
fig, ax = plt.subplots(nrows=num_examples, ncols=3, figsize=(18,4*num_examples))
m = datax.shape[0]
for row_num in range(num_examples):
image_indx = np.random.randint(m)
image_arr = model(datax[image_indx:image_indx+1]).squeeze(0).detach().cpu().numpy()
ax[row_num][0].imshow(np.transpose(datax[image_indx].cpu().numpy(), (1,2,0))[:,:,0])
ax[row_num][0].set_title("Orignal Image")
ax[row_num][1].imshow(np.squeeze((image_arr > 0.40)[0,:,:].astype(int)))
ax[row_num][1].set_title("Segmented Image localization")
ax[row_num][2].imshow(np.transpose(datay[image_indx].cpu().numpy(), (1,2,0))[:,:,0])
ax[row_num][2].set_title("Target image")
plt.show()
- 图像分别为原始图像、分割图像、标签图像,为一行,样本数为行数
- 遍历样本数
- 每个遍历,分别读取原始图像,从模型中生成图像,读取标签图像
- 分别设置对应的标题
最终输出结果显示:
以上就是此次医学细胞分割项目的全部内容了
unet医学细胞分割实战1
unet医学细胞分割实战2
unet医学细胞分割实战3
unet医学细胞分割实战4
unet医学细胞分割实战5
unet医学细胞分割实战6