Transforer逐模块讲解

news2024/11/27 15:34:24

本文将按照transformer的结构图依次对各个模块进行讲解:

可以看一下模型的大致结构:主要有encode和decode两大部分组成,数据经过词embedding以及位置embedding得到encode的时输入数据

输入部分

  1. embedding就是从原始数据中提取出单词或位置;

输入矩阵:

位置编码采用如下公式

  • 好处有使 PE 能够适应比训练集里面所有句子更长的句子,假设训练集里面最长的句子是有 20 个单词,突然来了一个长度为 21 的句子,则使用公式计算的方法可以计算出第 21 位的 Embedding。
  • 可以让模型容易地计算出相对位置,对于固定长度的间距 k,PE(pos+k) 可以用 PE(pos) 计算得到。因为 Sin(A+B) = Sin(A)Cos(B) + Cos(A)Sin(B), Cos(A+B) = Cos(A)Cos(B) - Sin(A)Sin(B)。

encode里有6个encode块,每一个块里包含了一个自注意层、残差以及归一化、前向传播层、残差及归一化构成

attention结构

计算公式

我们可以理解为搜索引擎:q就是你要搜索的关键字,k就是各个词条的标题,而v就是词条的全文,最后得到attention的就是与你想要搜索的关键字的相关程度,注意力分数是query和key的相似度,注意力权重是分数的softmax结果。

多头机制

并行堆叠attention,主要目的是为了增强模型对输入序列的表示能力和建模能力。多头自注意力允许模型同时关注输入序列中的不同位置和不同关系,从而提高了模型对序列中的长距离依赖关系和语义关系的建模能力。

Add & Norm

Add & Norm 层由 Add 和 Norm 两部分组成。Add 类似ResNet提出的残差连接,以解决深层网络训练不稳定的问题。Norm为归一化层,即Layer Normalization,通常用于 RNN 结构。

Feed Forward

Feed Forward 层比较简单,由两个全连接层构成,第一层的激活函数为 ReLu,第二层不使用激活函数,对应的公式如下。

(max(0,XW1+b1))W2+b2

对于输入X,Feed Forward 最终得到的输出矩阵的维度与输入X一致

解码模块

与encode最主要的区别就是多了一个带mask的多头注意力,在训练的过程中采用了teacher forcing(即将正确的序列也送入),但是为了不让模型提前知道将要预测的句子,采用了掩码

三种attention

文章一开始解释了Self-Attention和Multi-Head Attention。通过对Transformer模型的深入解读,可以看到,模型一共使用了三种Multi-Head Attention:

1)Encoder Block中使用的Attention。第一个Encoder Block的Query、Key和Value来自训练数据经过两层Embedding转化,之后的Encoder Block的Query、Key和Value来自上一个Encoder Block的输出。

2)Decoder Block中的第一个Attention。与Encoder Block中的Attention类似,只不过增加了Mask,在预测第 ii个输出时,要将第i+1i+1 之后的单词掩盖住。第一个Decoder Block的Query、Key和Value来自训练数据经过两层Embedding转化,之后的Decoder Block的Query、Key和Value来自上一个Decoder Block的输出。

  1. Decoder Block中的第二个Attention。这是一个 Encoder-Decoder Attention,它建立起了 Encoder 和 Decoder 之间的联系,Query来自第2种 Decoder Attention的输出,Key和Value 来自 Encoder 的输出。

总结:

1)通常情况下,embedding嵌入向量被训练为捕捉单词之间的语义和语法关系;

2)tokenize操作就是把句子切分成单词和标点符号即可,同时对其进行序列转化;

 参考博文:

自注意力:

Attention 注意力机制 | 鲁老师

transformer:

Transformer | 鲁老师gggT

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1357157.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

matlab如何标定相机内外参和畸变参数

关于内外参矩阵和畸变矩阵可以学习 https://blog.csdn.net/qq_30815237/article/details/87530011?spm1001.2014.3001.5506 在APP中找到 camera Calibrator 点击 Add Images,导入拍照图片。标定20张左右就够了,然后角度变一下,但不需要变太…

微信小程序+前后端开发学习材料

目录结构 全局文件 1.app.json 文件 用来对微信小程序进行全局配置,决定页面文件的路径、窗口表现、设置网络超时时间、设置多 tab 等。文件内容为一个 JSON 对象。 1.1 page用于指定小程序由哪些页面组成,每一项都对应一个页面的 路径(含文…

计算机基础面试题 |10.精选计算机基础面试题

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云…

UE相关杂项笔记

1.PAK包解析 UE4如何反向查找Pak里面包含哪些文件 - 哔哩哔哩 CMD控制台命令输入 D:"Epic Games"\UE_5.1\Engine\Binaries\Win64\UnrealPak.exe 包路径 -list *文件夹带空格时 添加“ ”包裹住文件夹名 解包工具路径 UE引擎安装路径\UE_5.1\Engine\Binarie…

sql:定时执行存储过程(嵌套存储过程、使用游标)

BEGINDeclare FormNo nvarchar(20) --单号Declare Type nvarchar(50) --类型Declare PickedQty float -Declare OutQty float Declare 生产量 floatDeclare 已装箱数量 float Declare 已入库数量 floatDeclare 损耗数量 float Declare 退货品出库数量 intdeclare k c…

Mac上修复Gitee报错 Oauth: Access token is expired

一. 背景: 最近在gitee上拉了两次项目,两次使用的邮箱密码不一致(换绑邮箱),第一次在idea中拉取后端项目,第二次在webstorm中拉取前端项目,出现该异常,记录下解决方案 二. 错误回显…

burpsuite模块介绍之项目选项

使用该模块中的功能实现对token的爆破 靶场搭建:phpstudy的安装与靶场搭建 - junlin623 - 博客园 (cnblogs.com) 实现 1)先抓个包 2)设置宏 要实现我们爆破的时候请求的token也跟靶场一样一次一换从而实现爆破,那就需要用到项目选项中的宏(预编译功能)

用 Python 抓取 bilibili 弹幕并分析!

01 实现思路 首先,利用哔哩哔哩的弹幕接口,把数据保存到本地。接着,对数据进行分词。最后,做了评论的可视化。 02 弹幕数据 平常我们在看视频时,弹幕是出现在视频上的。实际上在网页中,弹幕是被隐藏在源代码…

windows+django+nginx部署静态资源文件

平台:windows python:3.10.0 django:4.0.8 nginx:1.24.0 背景 开发阶段采用前后端分离模式,现在要将项目部署到工控机上,把前端项目编译出来的静态文件放到后端项目中进行一体化部署,且不修改…

opencv006 绘制直线、矩形、⚪、椭圆

绘制图形是opencv经常使用的操作之一,库中提供了很多有用的接口,今天来学习一下吧! (里面的函数和参数还是有点繁琐的) 最终结果显示 函数介绍 直线 line(img, pt1, pt2, color, thickness, lineType, shift) img: 在…

Python从入门到网络爬虫(内置函数详解)

前言 Python 内置了许多的函数和类型,比如print(),input()等,我们可以直接在程序中使用它们,非常方便,并且它们是Python解释器的底层实现的,所以效率是比一般的自定义函数更有效率。目前共有71个内置函数&…

Java编程中的IO模型详解:BIO,NIO,AIO的区别与实际应用场景分析

IO模型 IO模型就是说用什么样的通道进行数据的发送和接收,Java 共支持3种网络编程IO 模式:BIO,NIO,AIO BIO(Blocking lO) 同步阻塞模型, 一个客户端连接对应一个处理线程 代码示例: package com.tuling.bio; import java.io.…

回归预测 | Matlab实现基于GA-Elman遗传算法优化神经网络多输入单输出回归预测

回归预测 | Matlab实现基于GA-Elman遗传算法优化神经网络多输入单输出回归预测 目录 回归预测 | Matlab实现基于GA-Elman遗传算法优化神经网络多输入单输出回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现基于GA-Elman遗传算法优化神经网络多输入单输…

内核死锁检测--lockdep(linux3.16)

之前看网上说linux内核自带了死锁检测工具。现在试试使用效果怎么样。感觉确实能够检测到,后面有时间在研究原理把。 死锁检测lockdep实现原理-CSDN博客//这个文章讲了一些检测原理 需要开启如下选项(选项应该是开多了,用最后三个就行&#x…

Linux之IP地址、主机名、域名解析

一、IP地址 可以通过ifconfig命令查看本机的ip地址,如果无法使用ifconfig命令,可以安装 安装:yum -y install net-tools ens33:主网卡,里面的inet就是ip地址 lo:本地回环网卡,127.0.0.1&…

工具网站DefiLlama全攻略:从零学习链上数据使用与发现

DefiLlama 是一个 DeFi(去中心化金融)信息聚合器,其主要功能是提供各种 DeFi 平台的准确、全面数据。DefiLlama 致力于在不受广告或赞助内容影响的情况下为用户提供这些数据,以确保信息内容的透明度和公正性,该平台聚合来自多个区块链的数据,让用户能够全面了解 DeFi 格局…

【React系列】高阶组件

本文来自#React系列教程:https://mp.weixin.qq.com/mp/appmsgalbum?__bizMzg5MDAzNzkwNA&actiongetalbum&album_id1566025152667107329) 一. 高阶组件 1.1. 认识高阶组件 什么是高阶组件呢?相信很多同学都听说过,也用过 高阶函数&…

windows 10 安装wsl ubuntu

1.首先管理员模式打卡powershell,执行 dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all /norestart dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all /norestart 2.执行 wsl --update wsl --…

在k8s集群中部署多nginx-ingress

关于ingress的介绍,前面已经详细讲过了,参考ingress-nginx详解和部署方案。本案例ingress的部署使用deploymentLB的方式。 参考链接: 多个ingress部署 文章目录 1. 下载ingress的文件2. 文件资源分析3. 部署ingress3.1 部署第一套ingress3.1…

Centos7静态网络配置

在vmware中打开, 点击虚拟网络编辑器,修改以下配置 网关IP最后一位固定为2,这个160根据下图中vmnet8的ip地址来的 打开网络控制面板>打开vmnet8查看 接着打开linux,有桌面版的使用桌面版更加方便 箭头这么乱,但是你…