正定矩阵在格密码中的应用(知识铺垫)

news2024/11/29 5:51:25

目录

一. 写在前面

二. 最小值点

三. 二次型结构

四. 正定与非正定讨论

4.1 对参数a的要求

4.2 对参数c的要求

4.3 对参数b的要求

五. 最小值,最大值与奇异值

5.1 正定型(positive definite)

5.2 负定型(negative definite)

5.3 奇异型

六. 鞍点(saddle point)

七. 矩阵二次型

7.1 介绍

7.2 举例

例题1

例题2

例题3

八. 正定矩阵与格密码


一. 写在前面

格密码中有时要求格基矩阵是正定的,本文章将从方程和矩阵角度来解释正定性,辅助格密码的理解。

推荐可以先看下这篇文章:

格密码与线性代数-CSDN博客

对称矩阵一定有实数特征值(real eigenvalue),本文章尝试在不计算矩阵特征值的情况下,快速判断矩阵特征值是否全为正数,其中涉及三个矩阵的基本概念:矩阵的主元(pivot),行列式,特征值。

二. 最小值点

在微分方程中,如果特征值为负数,那么以下函数单调递减:

e^{\lambda t}

在密码学或计算机领域的优化问题(optimization)经常需要判断N维情况下的最小值,数学知识告诉我们这与二阶导(second derivative test)相关,举两个例子:

尝试求这两个二维函数F(x,y),f(x,y)的最小值。

首先可计算:

F(0,0)=7,\quad f(0,0)=0

很明显,最小值肯定要求一阶导数为0,也就是所谓的关注linear term,发现(0,0)该点符合要求,如下:

也就是(0,0)为这两个函数的极值点(stationary point)。

第一个平面z=F(x,y)与水平面z=7相切;

第二个平面z=f(x,y)与水平面z=0相切;

一阶导分析完毕来看下在(0,0)位置的二阶导,如下:

这两个二维函数的二阶导值一样,说明两个函数的性质相同。实际上F(x,y)的最高次幂为-x^3,所以其最小值为-\infty,接下来我们把重心放在f(x,y)。

三. 二次型结构

以上讨论中f(x,y)的形式为二次型:

f=ax^2+2bxy+cy^2

易得在(0,0)处,该类函数的一阶微分:

\frac{\partial f}{\partial x}=\frac{\partial f}{\partial y}=0

也就是该类二次型,原点一定是其极值点。

如果极小值点(local minimum)也是最小值点(global minimum),那么可得此类平面的图形像一个碗,碗的底部就是原点,如下图:

如果极值点不在原点处,而在其他任意点处,比如在x=\alpha,y=\beta,其二阶导如下:

除了原点外,如果函数严格为正数,那么称之为正定(positive definite)。

四. 正定与非正定讨论

对于单变量的函数来讲,二阶大于0,函数拥有最小值,如下:

\frac{\partial^2 F}{\partial x^2}>0

反之,则函数有最大值。

对于二维函数来讲,函数拥有三个二阶导函数:

F_{xx}\quad F_{xy}=F_{yx}\quad F_{yy}

期待利用这三个数来判断函数拥有最小值还是最大值。

目标:什么情况下,二次型f(x,y)=ax^2+2bxy+cy^2为正定的?

4.1 对参数a的要求

当x=1,y=0时,可得:

ax^2+2bxy+cy^2=a

正定性要求a为正数,利用导数的观点解释则是:

\frac{\partial^2 F}{\partial x^2}>0

也就是该曲面沿着x轴向上弯曲。

4.2 对参数c的要求

当x=0时,沿着y轴方向可得:

f(0,y)=cy^2

很明显正定性要求c>0

举两个简单例子,大家可以快速判断下:

例1

f(x,y)=x^2-10xy+y^2

例2

f(x,y)=2x^2+4xy+y^2

解:

例1非正定,因为f(1,1)=-8

例2非正定,因为f(1,-1)=-1

4.3 对参数b的要求

将二次型结构转变为如下完全平方差形式:

观察右边第二项,要想函数正定,则必须:

c-\frac{b^2}{a}>0

也就是:

ac>b^2

五. 最小值,最大值与奇异值

5.1 正定型(positive definite)

根据以上讨论,要想二次型ax^2+2bxy+cy^2为正定,需要满足:

a>0,ac>b^2

如果要求某点处的最小值,那么:

\frac{\partial f}{\partial x}=\frac{\partial f}{\partial y}=0

并且要求:

\frac{\partial^2 F}{\partial x^2}>0\quad [\frac{\partial^2 F}{\partial x^2}][\frac{\partial^2 F}{\partial y^2}]>[\frac{\partial^2 F}{\partial x\partial y}]

5.2 负定型(negative definite)

负定型的要求与正定型刚好相反,如下:

a<0,ac>b^2

由此可求该函数的最大值

5.3 奇异型

当a,b,c满足:

ac=b^2

易得当a>0时,该函数为半正定(positive semi-definite)

当a<0时,该函数为半负定(negative semi-definite)

也就是当x=b,y=-a时,该函数可以取0。原始的平面z=f(x,y)像一个碗,奇异情况下像一个山谷,举例:

f=(x+y)^2

六. 鞍点(saddle point)

鞍点要求:

ac<b^2

举例两个函数:

来看一个图像:

这种二次型既可以取正数,也可以取负数,所以为非定型(indifinite)。从图形上看,此时的极值点既不是最小值,也不是最大值,该点则被称之为鞍点(saddle point)。

七. 矩阵二次型

7.1 介绍

总结以上我们发现,二阶导数其实可以形成一个对称矩阵。将ax^2cy^2放在对角线,将2bxy分成一半,放在剩下的两个位置上,由此二次型函数f(x,y)即可以表示成一个2行2列的矩阵,如下:

将此处的2维扩展到n维,便可以从矩阵的角度来理解函数的最大值与最小值。假定有n个变量x_1,\cdots,x_n,将其写成列向量x的形式,那么对任意对称矩阵A,矩阵向量相乘与二次型之间是互相等效的,如下:

x^TAx\quad f(x_1,\cdots,x_n)

更具体来讲,如下:

对角线的元素a_{11}\sim a_{nn}x_1^2\sim x_n^2相乘。对称形式a_{ij}=a_{ji}合并后再相乘可得2a_{ij}x_ix_j,即可以还原函数为:

f=a_{11}x_1^2+2a_{12}x_1x_2+\cdots+a_{nn}x_n^2

注意每一项都是二次型,当x=(0,0,\cdots,0)时,函数的一阶导函数一定为0.该函数的切面是水平的,也就是其极值点。、

借助此理论即可判断当向量x为0时,函数f=x^TAx存在最大值,最小值,还是鞍点。

7.2 举例

例题1

函数f=2x^2+4xy+y^2,其对应矩阵如下:

A=\begin{bmatrix} 2 &2 \\ 2& 1 \end{bmatrix}

很明显为鞍点

例题2

函数f=2xy,其对应矩阵:

A=\begin{bmatrix} 0 &1 \\1& 0 \end{bmatrix}

很明显鞍点

例题3

给定函数如下:

f=2x_1^2-2x_1x_2+2x_2^2-2x_2x_3+2x_3^2

该函数拥有最小值,写成矩阵格式如下:

其实矩阵A可以看成二阶导的矩阵,也就是满足:

a_{ij}=\frac{\partial^2 F}{\partial x_i\partial x_j}

同理可得:

a_{ji}=\frac{\partial^2 F}{\partial x_j\partial x_i}

从这个角度也可以理解矩阵A为对称矩阵,很明显当原函数存在最小值时,矩阵A则为正定的。

八. 正定矩阵与格密码

正定矩阵与特征值有关,格基特征值的大小会影响格密码中光滑参数的大小,从而影响安全性。具体这方面的知识会陆续更新。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1356559.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

P10 RV1126推流项目——ffmpeg输出参数初始化

前言 从本章开始我们将要学习嵌入式音视频的学习了 &#xff0c;使用的瑞芯微的开发板 &#x1f3ac; 个人主页&#xff1a;ChenPi &#x1f43b;推荐专栏1: 《C_ChenPi的博客-CSDN博客》✨✨✨ &#x1f525; 推荐专栏2: 《Linux C应用编程&#xff08;概念类&#xff09;_C…

Kubernetes-网络

一. 前言 flannel两种容器跨主机通信的方案&#xff0c;其中UDP模式是IP in UDP&#xff0c;即三层报文封装在UDP数据包中通信&#xff1b;而vxlan模式则是MAC in UDP&#xff0c;即二层报文封装在UDP数据包中通信 flannel UDP模式和vxlan模式都对数据包做了封解包&#xff0c…

Ceph源码分析-使用VScode调试ceph-osd教程

本篇内容全部都是干货&#xff0c;请先收藏&#xff0c;以免后期找不到哦。 前言&#xff1a; 本文以ceph osd部分为例&#xff0c;为您演示通过第三方社区提供的vscode 编辑软件&#xff0c;对ceph osd进行进行图形化单步调试以及配置操作。 Step1. 下载安装windows的vscode…

FinGPT——金融领域开源大模型

文章目录 背景论文摘要相关工作大型语言模型&#xff08;LLMs&#xff09;和ChatGPT金融领域的LLMs为什么需要开源的金融LLMs&#xff1f; 以数据为中心的方法用于FinLLMs金融数据和独特特性应对处理金融数据的挑战 FINGPT 概述&#xff1a;FINLLM 的开源框架数据来源面向金融N…

C++多态性——(4)纯虚函数与抽象类

归纳编程学习的感悟&#xff0c; 记录奋斗路上的点滴&#xff0c; 希望能帮到一样刻苦的你&#xff01; 如有不足欢迎指正&#xff01; 共同学习交流&#xff01; &#x1f30e;欢迎各位→点赞 &#x1f44d; 收藏⭐ 留言​&#x1f4dd; 我们不能选择命运&#xff0c;但我们可…

微服务注册中心之Eureka

微服务注册中心之Eureka eureka 搭建集群 版本说明 Spring Boot 2.1.7.RELEASE spring-cloud-starter-netflix-eureka-server Finchley.SR2 spring-boot-starter-security 2.1.7.RELEASE pom.xml 文件 <?xml version"1.0" encoding"UTF-8"?> &l…

2023-2024 年广东省职业院校技能大赛高职组 “软件测试”赛项竞赛规程

2023-2024 年广东省职业院校技能大赛&#xff08;高职组&#xff09; “软件测试”赛项竞赛规程 一、赛项信息 赛项名称&#xff1a;软件测试 赛项编号&#xff1a;GZ034 赛项组别&#xff1a;高职组 二、竞赛目标 软件是新一代信息技术的灵魂&#xff0c;是数字经济发展的基础…

若依项目(ruoy-vue)多模块依赖情况简要分析

主pom文件关键点分析 properties标签声明变量信息&#xff1a;版本号、编码类型、java版本spring-boot依赖形式&#xff1a;spring-boot-dependencies、pom、importdependencies中添加本项目内部模块&#xff0c;同时在modules中声明模块packaging打包选择pom设置打包maven-co…

Linux 进程(八) 进程的退出码

main 函数的返回值叫做进程的退出码。当进程成功退出的时候&#xff0c;我们一般用0来表示。进程失败的时候一般用非零来表示。我们使用不同的数字来表示进程退出时不同的失败原因。 我们查看系统的有多少退出码以及其含义时需要用到strerror() 他的头文件和用法如下。 通过一…

智能客服系统适用行业:提升客户服务效率与满意度的解决方案

作为一家企业管理者的你&#xff0c;是否在疑惑您的企业需不需要一套智能客服系统&#xff1f;您的企业需要什么样的智能客服系统&#xff1f;再做决定之前&#xff0c;我们结合行业看看哪些行业需要智能客服系统&#xff1f;他们为什么需要智能客服系统&#xff1f;智能客服系…

conda安装transformers包

使用 conda 自 Transformers 4.0.0 版始&#xff0c;我们有了一个 conda 频道&#xff1a; huggingface。 &#x1f917; Transformers 可以通过 conda 依此安装&#xff1a; conda install -c huggingface transformers安装起来就很通畅 查看安装的transformer的版本号 co…

【算法每日一练]-动态规划(保姆级教程 篇14) #三倍经验 #散步 #异或和 #抽奖概率

目录 今日知识点&#xff1a; 金字塔的正反dp两种方案&#xff0c;转移方程取决于dp的具体含义 取模实现循环走m步回到原点的方案 在统计上升子序列的时候使用最小结尾元素进行标记&#xff0c;一举两得 将亏本的概率转换各种情况的方案&#xff0c;然后统计亏本的情况的方…

2下载Spring,第一个Spring程序+引用Log4j2

https://www.yuque.com/dujubin/ltckqu/kipzgd#&#xff0c;注意的是&#xff0c;现在&#xff08;202401&#xff09;SpringFramework从release搬到了snapshot下&#xff0c;在这下面找到6.0.2下载. 下载后解压到文件夹&#xff0c;整个框架包含非常多jar包。 然后就可以在p…

机器人动力学一些笔记

动力学方程中&#xff0c;Q和q的关系(Q是sita) Q其实是一个向量&#xff0c;q(Q1&#xff0c;Q2&#xff0c;Q3&#xff0c;Q4&#xff0c;Q5&#xff0c;Q6)&#xff08;假如6个关节&#xff09; https://zhuanlan.zhihu.com/p/25789930 举个浅显易懂的例子&#xff0c;你在房…

详细解读QLC SSD无效编程问题-1

此前小编关于QLC SSD有过多篇文章&#xff0c;具体参考如下&#xff1a; 为什么QLC NAND才是ZNS SSD最大的赢家&#xff1f; HDD与QLC SSD深度对比&#xff1a;功耗与存储密度的终极较量 QLC SSD在数据中心的发展前景如何&#xff1f; 多维度深入剖析QLC SSD硬件延迟的来源 …

CNN——VGG

1.VGG简介 论文下载地址&#xff1a;https://arxiv.org/pdf/1409.1556.pdf VGGNet 是由牛津大学视觉几何小组&#xff08;Visual Geometry Group, VGG&#xff09;提出的一种深层卷积网络结构&#xff0c;他们以 7.32% 的错误率赢得了 2014 年 ILSVRC 分类任务的亚军&#xff…

MindSpore Serving与TGI框架 の 对比

一、MindSpore Serving MindSpore Serving是一款轻量级、高性能的服务工具&#xff0c;帮助用户在生产环境中高效部署在线推理服务。 使用MindSpore完成模型训练>导出MindSpore模型&#xff0c;即可使用MindSpore Serving创建该模型的推理服务。 MindSpore Serving包含以…

C# 2中的一些小特性

一、局部类型 在C#当中有这样一个关键字partial 用来声明类&#xff0c;结构&#xff0c;接口分为多个部分来声明。使用场景可以一部分类中写实例方法&#xff0c;一部分写属性&#xff0c;我在实际工作测试中就是将属性与实际方法是分开的。相互之间的成员互相通用。 举个例子…

【普中开发板】基于51单片机的篮球计分器液晶LCD1602显示( proteus仿真+程序+设计报告+讲解视频)

基于普中开发板51单片机的篮球计分器液晶LCD1602显示 1.主要功能&#xff1a;讲解视频&#xff1a;2.仿真3. 程序代码4. 设计报告5. 设计资料内容清单&&下载链接资料下载链接&#xff08;可点击&#xff09;&#xff1a; 基于51单片机的篮球计分器液晶LCD1602显示 ( pr…

【水浸传感器】软硬件一体水浸监测整套方案远程监测解决各种环境漏水问题

一、痛点分析 在工业生产中&#xff0c;水浸传感器可以安装在数据中心、半导体厂房、输油管道、车间仓库、变电室等易发生水浸的区域。一旦检测到漏水情况&#xff0c;立即发出信号反馈。然而&#xff0c;水浸传感器分散在各个地点&#xff0c;导致管理不集中、不便捷&#xf…