互联网加竞赛 Yolov安全帽佩戴检测 危险区域进入检测 - 深度学习 opencv

news2024/9/24 0:27:55

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 Yolov安全帽佩戴检测 危险区域进入检测

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

建筑工人头部伤害是造成建筑伤亡事故的重要原因。佩戴安全帽是防止建筑工人发生脑部外伤事故的有效措施,而在实际工作中工人未佩戴安全帽的不安全行为时有发生。因此,对施工现场建筑工人佩戴安全帽自动实时检测进行探究,将为深入认知和主动预防安全事故提供新的视角。然而,传统的施工现场具有安全管理水平低下、管理范围小、主要依靠安全管理人员的主观监测并且时效性差、不能全程监控等一系列问题。
本项目基于yolov5实现了安全帽和危险区域检测。

2 效果演示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 Yolov5框架

我们选择当下YOLO最新的卷积神经网络YOLOv5来进行火焰识别检测。6月9日,Ultralytics公司开源了YOLOv5,离上一次YOLOv4发布不到50天。而且这一次的YOLOv5是完全基于PyTorch实现的!在我们还对YOLOv4的各种高端操作、丰富的实验对比惊叹不已时,YOLOv5又带来了更强实时目标检测技术。按照官方给出的数目,现版本的YOLOv5每个图像的推理时间最快0.007秒,即每秒140帧(FPS),但YOLOv5的权重文件大小只有YOLOv4的1/9。

目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region
proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种
one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。YOLO
一共发布了五个版本,其中 YOLOv1 奠定了整个系列的基础,后面的系列就是在第一版基础上的改进,为的是提升性能。

YOLOv5有4个版本性能如图所示:
在这里插入图片描述

网络架构图

在这里插入图片描述

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

输入端

在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;

Mosaic数据增强
:Mosaic数据增强的作者也是来自YOLOv5团队的成员,通过随机缩放、随机裁剪、随机排布的方式进行拼接,对小目标的检测效果很不错
在这里插入图片描述

基准网络

融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;

Neck网络

在目标检测领域,为了更好的提取融合特征,通常在Backbone和输出层,会插入一些层,这个部分称为Neck。Yolov5中添加了FPN+PAN结构,相当于目标检测网络的颈部,也是非常关键的。

在这里插入图片描述
在这里插入图片描述

FPN+PAN的结构
在这里插入图片描述
这样结合操作,FPN层自顶向下传达强语义特征(High-Level特征),而特征金字塔则自底向上传达强定位特征(Low-
Level特征),两两联手,从不同的主干层对不同的检测层进行特征聚合。

FPN+PAN借鉴的是18年CVPR的PANet,当时主要应用于图像分割领域,但Alexey将其拆分应用到Yolov4中,进一步提高特征提取的能力。

Head输出层

输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

对于Head部分,可以看到三个紫色箭头处的特征图是40×40、20×20、10×10。以及最后Prediction中用于预测的3个特征图:

  ①==>40×40×255
    

    ②==>20×20×255
    
    ③==>10×10×255


​    

在这里插入图片描述

  • 相关代码

      class Detect(nn.Module):
      stride = None  # strides computed during build
      onnx_dynamic = False  # ONNX export parameter
    
      def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
          super().__init__()
          self.nc = nc  # number of classes
          self.no = nc + 5  # number of outputs per anchor
          self.nl = len(anchors)  # number of detection layers
          self.na = len(anchors[0]) // 2  # number of anchors
          self.grid = [torch.zeros(1)] * self.nl  # init grid
          self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
          self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
          self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
          self.inplace = inplace  # use in-place ops (e.g. slice assignment)
    
      def forward(self, x):
          z = []  # inference output
          for i in range(self.nl):
              x[i] = self.m[i](x[i])  # conv
              bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
              x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
    
              if not self.training:  # inference
                  if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                      self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
          
                  y = x[i].sigmoid()
                  if self.inplace:
                      y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                      y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                  else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                      xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                      wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                      y = torch.cat((xy, wh, y[..., 4:]), -1)
                  z.append(y.view(bs, -1, self.no))
          
        return x if self.training else (torch.cat(z, 1), x)
    
      def _make_grid(self, nx=20, ny=20, i=0):
          d = self.anchors[i].device
          if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
              yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
          else:
              yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
          grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
          anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
              .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
          return grid, anchor_grid
    

4 数据处理和训练

4.1 安全帽检测

这里只是判断 【人没有带安全帽】、【人有带安全帽】、【人体】 3个类别 ,基于 data/coco128.yaml 文件,创建自己的数据集配置文件
custom_data.yaml。
创建自己的数据集配置文件

    # 训练集和验证集的 labels 和 image 文件的位置
​    train: ./score/images/train
​    val: ./score/images/val
​    

    # number of classes
    nc: 3
    
    # class names
    names: ['person', 'head', 'helmet']



创建每个图片对应的标签文件
使用 data/gen_data/gen_head_helmet.py 来将 VOC 的数据集转换成 YOLOv5 训练需要用到的格式。
使用标注工具类似于 Labelbox 、CVAT 、精灵标注助手 标注之后,需要生成每个图片对应的 .txt 文件,其规范如下:

  • 每一行都是一个目标
  • 类别序号是零索引开始的(从0开始)
  • 每一行的坐标 class x_center y_center width height 格式
  • 框坐标必须采用归一化的 xywh格式(从0到1)。如果您的框以像素为单位,则将x_center和width除以图像宽度,将y_center和height除以图像高度。

代码如下:

import numpy as np
​    def convert(size, box):"""
​        将标注的 xml 文件生成的【左上角x,左上角y,右下角x,右下角y】标注转换为yolov5训练的坐标
​        :param size: 图片的尺寸: [w,h]
​        :param box: anchor box 的坐标 [左上角x,左上角y,右下角x,右下角y,]
​        :return: 转换后的 [x,y,w,h]
​        """
​    

        x1 = int(box[0])
        y1 = int(box[1])
        x2 = int(box[2])
        y2 = int(box[3])
    
        dw = np.float32(1. / int(size[0]))
        dh = np.float32(1. / int(size[1]))
    
        w = x2 - x1
        h = y2 - y1
        x = x1 + (w / 2)
        y = y1 + (h / 2)
    
        x = x * dw
        w = w * dw
        y = y * dh
        h = h * dh
        return [x, y, w, h]



生成的 .txt 例子:


​ 1 0.1830000086920336 0.1396396430209279 0.13400000636465847 0.15915916301310062
​ 1 0.5240000248886645 0.29129129834473133 0.0800000037997961 0.16816817224025726
​ 1 0.6060000287834555 0.29579580295830965 0.08400000398978591 0.1771771814674139
​ 1 0.6760000321082771 0.25375375989824533 0.10000000474974513 0.21321321837604046
​ 0 0.39300001866649836 0.2552552614361048 0.17800000845454633 0.2822822891175747
​ 0 0.7200000341981649 0.5570570705458522 0.25200001196935773 0.4294294398277998
​ 0 0.7720000366680324 0.2567567629739642 0.1520000072196126 0.23123123683035374

选择模型
在文件夹 ./models 下选择一个你需要的模型然后复制一份出来,将文件开头的 nc = 修改为数据集的分类数,下面是借鉴
./models/yolov5s.yaml来修改的

# parameters
​    nc: 3  # number of classes     <============ 修改这里为数据集的分类数
​    depth_multiple: 0.33  # model depth multiple
​    width_multiple: 0.50  # layer channel multiple# anchors
    anchors:
      - [10,13, 16,30, 33,23]  # P3/8
      - [30,61, 62,45, 59,119]  # P4/16
      - [116,90, 156,198, 373,326]  # P5/32
    
    # YOLOv5 backbone
    backbone:
      # [from, number, module, args]
      [[-1, 1, Focus, [64, 3]],  # 0-P1/2
       [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
       [-1, 3, BottleneckCSP, [128]],
       [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
       [-1, 9, BottleneckCSP, [256]],
       [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
       [-1, 9, BottleneckCSP, [512]],
       [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
       [-1, 1, SPP, [1024, [5, 9, 13]]],
       [-1, 3, BottleneckCSP, [1024, False]],  # 9
      ]
    
    # YOLOv5 head
    head:
      [[-1, 1, Conv, [512, 1, 1]],
       [-1, 1, nn.Upsample, [None, 2, 'nearest']],
       [[-1, 6], 1, Concat, [1]],  # cat backbone P4
       [-1, 3, BottleneckCSP, [512, False]],  # 13
    
       [-1, 1, Conv, [256, 1, 1]],
       [-1, 1, nn.Upsample, [None, 2, 'nearest']],
       [[-1, 4], 1, Concat, [1]],  # cat backbone P3
       [-1, 3, BottleneckCSP, [256, False]],  # 17
    
       [-1, 1, Conv, [256, 3, 2]],
       [[-1, 14], 1, Concat, [1]],  # cat head P4
       [-1, 3, BottleneckCSP, [512, False]],  # 20
    
       [-1, 1, Conv, [512, 3, 2]],
       [[-1, 10], 1, Concat, [1]],  # cat head P5
       [-1, 3, BottleneckCSP, [1024, False]],  # 23
    
       [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
      ]

开始训练
这里选择了 yolov5s 模型进行训练,权重也是基于 yolov5s.pt 来训练

    
    python train.py --img 640 \
                    --batch 16 --epochs 10 --data ./data/custom_data.yaml \
                    --cfg ./models/custom_yolov5.yaml --weights ./weights/yolov5s.pt

4.2 检测危险区域内是否有人

危险区域标注方式

使用的是 精灵标注助手 标注,生成了对应图片的 json 文件

执行侦测

    python area_detect.py --source ./area_dangerous --weights ./weights/helmet_head_person_s.pt

效果
危险区域会使用 红色框 标出来,同时,危险区域里面的人体也会被框出来,危险区域外的人体不会被框选出来。
在这里插入图片描述

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1353365.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ISCTF 2023 miscweb wp

web 圣杯战争!!! 题目: PHP <?php highlight_file(__FILE__); error_reporting(0); class artifact{ public $excalibuer; public $arrow; public function __toString(){ echo "为Saber选择了对的武器!<br>"; return $this…

阿里云性能测评ESSD Entry云盘、SSD云盘、ESSD和高效云盘

阿里云服务器系统盘或数据盘支持多种云盘类型&#xff0c;如高效云盘、ESSD Entry云盘、SSD云盘、ESSD云盘、ESSD PL-X云盘及ESSD AutoPL云盘等&#xff0c;阿里云百科aliyunbaike.com详细介绍不同云盘说明及单盘容量、最大/最小IOPS、最大/最小吞吐量、单路随机写平均时延等性…

Python中的垃圾回收机制是什么

一、写在前面&#xff1a; 我们都知道Python一种面向对象的脚本语言&#xff0c;对象是Python中非常重要的一个概念。在Python中数字是对象&#xff0c;字符串是对象&#xff0c;任何事物都是对象&#xff0c;而它们的核心就是一个结构体--PyObject。 typedef struct_object{i…

data.TensorDataset解析

data.TensorDataset 是 PyTorch 中的一个类&#xff0c;用于创建一个包含多个张量的数据集。这个类的主要作用是将输入的张量组合成一个数据集&#xff0c;使得在训练过程中可以方便地进行数据加载和迭代。 具体来说&#xff0c;TensorDataset 接受一系列的张量作为输入参数&a…

正负样本分配策略simOTA

simOTA是YOLOX中提出的 正负样本分配策略&#xff08;OTA, SimOTA&#xff0c;TAS&#xff09; OTA源于2021年cvpr的论文&#xff0c;使训练和验证的标签有着更好的对应关系。 yolov5没有用到&#xff0c;只有一种loss&#xff1a; from utils.loss import ComputeLoss comput…

图像识别快速实现

文本的跑通了&#xff0c;接下来玩玩图片场景 1. 引入模型 再另起类test_qdrant_img.py&#xff0c;转化图片用到的模型和文本不太一样&#xff0c;我们这里使用ResNet-50模型 import unittest from qdrant_client.http.models import Distance, VectorParams from qdrant_cl…

im6ull学习总结(三-2)文字显示中文字符

承接上篇文章 中文字符的点阵显示 使用点阵字库时&#xff0c;中文字符的显示原理跟 ASCII 字符是一样的。要注意的地方在于中文的编码&#xff1a;在 C 源文件中它的编码方式是 GB2312 还是 UTF-8&#xff1f;编译出的可执行程序&#xff0c;其中的汉字编码方式是 GB2312 还…

Java 第23章 反射 本章作业

文章目录 反射修改私有成员变量反射和File 反射修改私有成员变量 public class Homework01 {public static void main(String[] args) throws IllegalAccessException, InstantiationException, NoSuchFieldException, NoSuchMethodException, InvocationTargetException {/***…

c盘扩容时,d盘无法删除卷问题

C盘扩容时&#xff0c;磁盘管理中D盘右键无法删除卷的原因 首先&#xff0c;D盘下文件夹为空&#xff0c;但是显示可用空间不是100%&#xff0c;经过排查&#xff0c;发现是虚拟内存设置在了D盘导致无法删除卷&#xff0c;这里只需要将虚拟内存放到其他盘&#xff0c;如E盘即可…

bootstrap5实现的在线商城网站Parlo

一、需求分析 在线商城网站是指基于互联网技术搭建的电子商务平台&#xff0c;通过网站提供商品和服务的展示、销售和交易功能。它的主要作用包括以下几个方面&#xff1a; 商品展示和销售&#xff1a;在线商城网站是商家展示商品的平台&#xff0c;可以通过图片、文字、视频等…

阿里巴巴开源异构数据源离线/全量/增量同步工具 - DataX

&#x1f604; 19年之后由于某些原因断更了三年&#xff0c;23年重新扬帆起航&#xff0c;推出更多优质博文&#xff0c;希望大家多多支持&#xff5e; &#x1f337; 古之立大事者&#xff0c;不惟有超世之才&#xff0c;亦必有坚忍不拔之志 &#x1f390; 个人CSND主页——Mi…

web component - 使用HTML Templates和Shadow DOM构建现代UI组件

Web Component是一种用于构建可重用的UI组件的技术。它使用标准化的浏览器API&#xff0c;包括Custom Elements、Shadow DOM和HTML Templates来实现组件化开发方式。这些API都是现代浏览器原生支持的&#xff0c;因此不需要引入第三方库或框架即可使用。 在这篇博客中&#xf…

如何学习TS?

文章目录 一. 8种内置基础类型.ts二. void、never、any、unknown类型void类型never类型any类型unknown类型总结&#xff1a;void和any在项目中是比较常见的&#xff0c;never和unknown不常用。 三. 数组和函数类型定义.ts四. 元组与交叉类型使用元组数组一般有同类型的值组成&a…

页面间动画之放大缩小视图

目录 1、Exchange类型的共享元素转场 2、Static类型的共享元素转场 3、场景示例 在不同页面间&#xff0c;有使用相同的元素&#xff08;例如同一幅图&#xff09;的场景&#xff0c;可以使用共享元素转场动画衔接。为了突出不同页面间相同元素的关联性&#xff0c;可为它们…

管理文件传输的工具CopyQueue mac功能特点

CopyQueue for mac是用于管理文件传输的工具&#xff0c;可以有效地复制多个文件&#xff0c;并且比OS X的速度更快&#xff0c;暂停和恢复文件传输&#xff0c;日程任务和更多&#xff0c;使用和管理起来都非常的简单方便。如果你要复制很多文件&#xff0c;CopyQueue更快更高…

pytest conftest定义一个fixtrue获取测试环境地址

方便全局切换地址 pytest.fixture() def config():data {测试环境: {A环境: 127.0.0.1,B环境: 127.0.0.2,C环境: 127.0.0.3,D环境: 127.0.0.4},}return data.get(测试环境, {}).get(A环境)import pytestdef test_case001(config):url http://str(config):8080/api/user/logi…

从零开始了解大数据(七):总结

系列文章目录 从零开始了解大数据(一)&#xff1a;数据分析入门篇-CSDN博客 从零开始了解大数据(二)&#xff1a;Hadoop篇-CSDN博客 从零开始了解大数据(三)&#xff1a;HDFS分布式文件系统篇-CSDN博客 从零开始了解大数据(四)&#xff1a;MapReduce篇-CSDN博客 从零开始了解大…

基于rk3568 Android H265推流SRS低延迟网页播放方案

在音视频领域&#xff0c;融合推流&#xff0c;低码流&#xff0c;低延迟&#xff0c;浏览器H5化是一个降低成本&#xff0c;提升用户体验的重要手段。同时适配现有直播的生态也是一个必要条件。 在满足上述要求的情况下&#xff0c;我做了以下实践&#xff0c;取得了良好的效果…

每天五分钟计算机视觉:揭秘迁移学习

本文重点 随着人工智能的迅速发展,深度学习已经成为了许多领域的关键技术。然而,深度学习模型的训练需要大量的标注数据,这在很多情况下是不现实的。迁移学习作为一种有效的方法,可以在已有的数据和模型上进行训练,然后将其应用于新的任务。这种方法大大降低了对新任务的…

opencv期末练习题(2)附带解析

图像插值与缩放 %matplotlib inline import cv2 import matplotlib.pyplot as plt def imshow(img,grayFalse,bgr_modeFalse):if gray:img cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)plt.imshow(img,cmap"gray")else:if not bgr_mode:img cv2.cvtColor(img,cv2.COLOR_B…