Paddle3D 2 雷达点云CenterPoint模型训练

news2024/11/15 17:25:20

2 Paddle3D 雷达点云CenterPoint模型训练–包含KITTI格式数据地址

2.0 数据集 百度DAIR-V2X开源路侧数据转kitti格式。

2.0.1 DAIR-V2X-I\velodyne中pcd格式的数据转为bin格式

参考源码:雷达点云数据.pcd格式转.bin格式

def pcd2bin():
    import numpy as np
    import open3d as o3d
    from tqdm import tqdm
    import os

    pcdPath = r'E:\DAIR-V2X-I\velodyne'
    binPath = r'E:\DAIR-V2X-I\kitti\training\velodyne'

    files = os.listdir(pcdPath)
    files = [f for f in files if f[-4:]=='.pcd']

    for ic in tqdm(range(len(files)), desc='进度 '):
        f = files[ic]
        pcdname = os.path.join(pcdPath, f)
        binname = os.path.join(binPath, f[:-4] + '.bin')

        # 读取PCD文件
        # pcd = o3d.io.read_point_cloud("./data/002140.ply")
        pcd = o3d.io.read_point_cloud(pcdname)
        # print('==============pcd\n', pcd)
        # print('==============pcd.points\n', pcd.points)

        points = np.asarray(pcd.points)
        # print('==============points\n', points)
        # print(type(points))
        # print(points.shape)
        # 添加全0列
        point0 = np.zeros((points.shape[0], 1))
        points = np.column_stack((points,point0))
        # print(points.shape)

        # 查看点云图像
        # o3d.visualization.draw_geometries([pcd])
        # 将PCD格式保存为BIN格式,使用.tofile实现;
        # 理论上o3d.io.write_point_cloud也可以实现,但是运行的时候,没有报错,但也并没有保存文件
        points.tofile(binname)
        o3d.io.write_point_cloud(os.path.join(binPath, f[:-4]+'.bin'), pcd)  

        # if ic == 1:
        #     break

可视化查看bin文件

def visBinData():
    """
    可视化的形式查看点云数据的Bin文件
    :return:
    """
    import numpy as np
    from tqdm import tqdm
    import mayavi.mlab
    import os

    binPath = r'D:\lidar3D\data\Lidar0\bin'
    # binPath = r'./data'
    files = os.listdir(binPath)
    files = [f for f in files if f[-4:] == '.bin']

    for ic in tqdm(range(len(files)), desc='进度 '):
        f = files[ic]
        binname = os.path.join(binPath, f)
        pointcloud = np.fromfile(binname, dtype=np.float32, count=-1).reshape([-1,4])
        x = pointcloud[:, 0]
        y = pointcloud[:, 1]
        z = pointcloud[:, 2]
        r = pointcloud[:, 3]
        d = np.sqrt(x ** 2 + y ** 2)  # Map Distance from sensor

        degr = np.degrees(np.arctan(z / d))

        vals = 'height'
        if vals == "height":
            col = z
        else:
            col = d

        fig = mayavi.mlab.figure(bgcolor=(0, 0, 0), size=(640, 500))
        mayavi.mlab.points3d(x, y, z,
                             col,  # Values used for Color
                             mode="point",
                             colormap='spectral',  # 'bone', 'copper', 'gnuplot'
                             # color=(0, 1, 0),   # Used a fixed (r,g,b) instead
                             figure=fig,
                             )

        mayavi.mlab.show()
        break
def visBinData():
    import open3d as o3d
    import numpy as np
    import os

    # 替换为你的 bin 文件路径
    bin_file_path = r'E:\DAIR-V2X-I\kitti_s\training\velodyne'
    files = os.listdir(bin_file_path)
    for f in files[:]:

        # 读取 bin 文件
        bin_file = os.path.join(bin_file_path, f)
        print(bin_file)
        points_np = np.fromfile(bin_file, dtype=np.float32)
        print(points_np.shape)
        points_np = points_np.reshape(-1, 4)
        print(points_np.shape)

        # 创建 Open3D 点云对象
        pcd = o3d.geometry.PointCloud()
        pcd.points = o3d.utility.Vector3dVector(points_np[:, :3])

        # 可视化点云
        o3d.visualization.draw_geometries([pcd])

打印查看bin文件中的数据

def readbinfiles():
    import numpy as np

    print('\n' + '*' * 10 + 'myData' + '*' * 10)
    path = r'D:\lidar3D\data\mydatas1\kitti_my\training\velodyne\000003.bin'
    # b1 = np.fromfile(path, dtype=np.float)
    b2 = np.fromfile(path, dtype=np.float32, count=-1).reshape([-1, 4])
    print(type(b2))
    print(b2.shape)
    print(b2)
2.0.2 先对应training中的所有数据准备好
————————training
______________calib
______________image_2
______________Label_2
______________velodyne
【1】velodyne

这里是所有的.bin格式的点云文件

【2】iamge_2

这里是velodyne中的点云文件对应的图片文件。从原文件里面相同名称的图片复制过来就可以了,这里原图片文件是.jpg的格式,kitti里面查找.png的格式好像是写死的,为避免麻烦,可以先把图片直接重命名为.png的格式。()

def jpg2png():
    import os
    path = r'E:\DAIR-V2X-I\example71\training\image_2'
    files = os.listdir(path)
    for f in files:
        fsrc = os.path.join(path, f)
        fdes = os.path.join(path, f[:-4]+'.png')
        os.rename(fsrc, fdes)
【3】calib

两种方式,一种方式是忽略DAIR-V2X数据中的标定,直接复制kitti中calib/000000.txt

    if calibFlag:
        '''copy kitti-mini/training/calib/00000.txt cotent to my calib'''
        calibPath = r'E:\DAIR-V2X-I\training\calib'
        binPath = r'E:\DAIR-V2X-I\training\velodyne'
        kitti_miniCalibPath = r'D:\lidar3D\data\kitti_mini\training\calib/000000.txt'

        with open(kitti_miniCalibPath, "r") as calib_file:
            content = calib_file.read()
        for f in os.listdir(binPath):
            with open(os.path.join(calibPath, f[:-4]+".txt"),  "w") as wf:
                wf.write(content)

另外一种方式是提取single-infrastructure-side\calib中的标定信息写进calib/xxxxxx.txt文件。因为DAIR-V2X只有一台相机,写到p0: ,R0_rect 和 Tr_velo_to_cam 也从中读取。由于Tr_velo_to_cam 是固定的,所以写死在了代码里面

    if calibFlag1:
        V2XVelodynePath = r'E:\DAIR-V2X-I\training\velodyne'
        files = os.listdir(V2XVelodynePath)
        files = [f[:-4]+'.txt' for f in files]
        for f in files:
            content=[]
            cameintriPath = r'E:\DAIR-V2X-I\single-infrastructure-side\calib\camera_intrinsic'
            with open(os.path.join(cameintriPath,f[:-4]+'.json'), "r") as rf1:
                data = json.load(rf1)
                p0 = 'P0:'
                for d in data["P"]:
                    p0 += ' {}'.format(d)
                R0_rect = 'R0_rect:'
                for r in data["R"]:
                    R0_rect += ' {}'.format(r)
            content.append(p0+'\n')
            content.append('P1: 1 0 0 0 0 1 0 0 0 0 1 0\n')
            content.append('P2: 1 0 0 0 0 1 0 0 0 0 1 0\n')
            content.append('P3: 1 0 0 0 0 1 0 0 0 0 1 0\n')
            content.append('R0_rect: 1 0 0 0 1 0 0 0 1\n')

            # vir2camePath = os.path.join(V2XCalibPath, cliblist[1])
            # with open(os.path.join(vir2camePath,f[:-4]+'.json'), "r") as rf1:
            #     data = json.load(rf1)
            #     R = data["rotation"]
            #     t = data["translation"]

            Tr_velo_to_cam = 'Tr_velo_to_cam: -0.032055018882740139 -0.9974518923884874 0.020551248965447915 -2.190444561668236 -0.2240930139414797 0.002986041494130043 -0.8756800120708629 5.6360862566491909 0.9737455440255373 -0.041678350017788 -0.2023375046787095 1.4163664770754852\n'
            content.append(Tr_velo_to_cam)
            content.append('Tr_imu_to_velo: 1 0 0 0 0 1 0 0 0 0 1 0')

            fcalibname = os.path.join(mykittiCalibPath, f)
            # content[-1] = content[-1].replace('\n', '')
            with open(fcalibname, 'w', encoding='utf-8') as wf:
                wf.writelines(content)
【4】Label_2

方法{{{见 《 2.1.3中——【4】问题记录3 —— 重新生成label_2文件过程如下》章节}}}

点云的标签文件single-infrastructure-side\label\virtuallidar*.json转为txt文件存储,这里3Class,故只取类型([“Car”, “Cyclist”, “Pedestrian”])([‘Cyclist’, ‘Car’, ‘Truck’])。

这里将每个标签(目标)记作temp, temp [0:16] 共计16列,含义分别为:

类别[0]+是否截断[1]+是否遮挡[2]+观察角度[3]+图像左上右下[4:8]+高宽长[8:11]+相机坐标系xyz[11:14]+方向角[14]+置信度[15]

注意:测试数据集才有最后一列的置信度。

json转txt代码如下,因为只训练点云数据,所以与图片相关的值这里用0代替。

如下代码是直接取json文件中的数据,尺寸取雷达坐标系下的,位置取相机坐标系下的。

    if label_2Flag:
        # 1 创建文件夹 label_2
        label_2Path = r'E:\DAIR-V2X-I\kitti_s\training\label_22_kitti3clsNewXYZ'
        judgefolderExit_mkdir(label_2Path)

        V2XVelodynePath = r'E:\DAIR-V2X-I\kitti_s\training\velodyne'
        files = os.listdir(V2XVelodynePath)
        files = [f[:-4] + '.txt' for f in files]

        V2XLabelPathcamera = r'E:\DAIR-V2X-I\single-infrastructure-side\label\camera'
        V2XLabelPathlidar = r'E:\DAIR-V2X-I\single-infrastructure-side\label\virtuallidar'
        # 2 转化生成对应的.txt标签文件
        labelsList = {}
        labelsListnew = {}
        for f in files[:]:
            # print(f)
            with open(os.path.join(V2XLabelPathcamera, f[:-4] + '.json'), "r") as rf1:
                dataca = json.load(rf1)
            with open(os.path.join(V2XLabelPathlidar, f[:-4] + '.json'), "r") as rf1:
                datali = json.load(rf1)
            label_list = []
            if len(dataca) != len(datali):
                print('Error:  len(dataca) != len(datali)')
                continue
            for oi in range(len(dataca)):
                obj_ca = dataca[oi]
                obj_li = datali[oi]
                label_name = obj_ca["type"]
                label_nameli = obj_li["type"]
                if label_name != label_nameli:
                    print('Error: label_name != label_nameli')
                    continue
                # static labels
                if label_name in labelsList.keys():
                    labelsList[label_name] += 1
                else:
                    labelsList[label_name] = 1

                # updata label type
                # Car 、 Cyclist、
                if label_name == 'Trafficcone' or label_name == 'ScooterRider' or label_name == 'Barrowlist':
                    continue
                elif label_name == 'Motorcyclist':
                    label_name = 'Cyclist'
                elif label_name == 'Van':
                    label_name = 'Car'
                elif label_name == 'Bus':
                    label_name = 'Car'
                elif label_name == 'Truck':
                    label_name = 'Car'

                if label_name in labelsListnew.keys():
                    labelsListnew[label_name] += 1
                else:
                    labelsListnew[label_name] = 1


                scale = obj_li["3d_dimensions"]     # 尺寸取雷达坐标系下的
                pos = obj_ca["3d_location"]         # 位置取相机坐标系下的
                rot = obj_li["rotation"]
                alpha = obj_ca["alpha"]  # 观察角度[3]
                cabox = obj_ca["2d_box"] # 图像左上右下[4:8]
                occluded_state = obj_ca["occluded_state"] # 是否遮挡[2]
                truncated_state = obj_ca["truncated_state"] # 是否截断[1]

                tempFlag = True  # label_list.append(temp)
                if tempFlag == True:
                    # 2.1  temp 追加目标类型
                    # temp [0:16] 共计16列
                    # 类别[0]+是否截断[1]+是否遮挡[2]+观察角度[3]+图像左上右下[4:8]+高宽长[8:11]+
                    #         相机坐标系xyz[11:14]+方向角[14]+置信度[15]
                    # 注意:测试数据集才有最后一列的置信度
                    temp = label_name + ' '+ truncated_state +' '+ occluded_state +' 0 ' + \
                           cabox["xmin"] + ' ' + cabox["ymin"] + ' ' + cabox["xmax"] + ' ' + cabox["ymax"] + ' '

                    temp += (scale['h'].split('.')[0] + "." + scale['h'].split('.')[1][:2] + ' ')
                    temp += (scale['w'].split('.')[0] + "." + scale['w'].split('.')[1][:2] + ' ')
                    temp += (scale['l'].split('.')[0] + "." + scale['l'].split('.')[1][:2] + ' ')

                    # 2.2.1  pos_xyz
                    # temp += (pos['x'].split('.')[0] + "." + pos['x'].split('.')[1][:2] + ' ')
                    # temp += (pos['y'].split('.')[0] + "." + pos['y'].split('.')[1][:2] + ' ')
                    # temp += (pos['z'].split('.')[0] + "." + pos['z'].split('.')[1][:2] + ' ')

                    # 2.2 固定使用转换矩阵lidar_to_cam后
                    # 此处的矩阵目的将lidar转到cam下,再转换到rect下,同样追加到temp中(temp追加pos_xyz)
                    # trans_Mat: calib中的 Tr_velo_to_cam
                    trans_Mat = np.array(
                        [[-3.205501888274e-02, -9.974518923885e-01, 2.055124896545e-02, -2.190444561668e+00],
                         [-2.240930139415e-01, 2.986041494130e-03, -8.756800120709e-01, 5.636086256649e+00],
                         [9.737455440255e-01, -4.167835001779e-02, -2.023375046787e-01, 1.416366477075e+00],
                         [0, 0, 0, 1]])
                    # R0_rect: 三维单位矩阵
                    rect_Mat = np.array([[1, 0, 0, 0],
                                         [0, 1, 0, 0],
                                         [0, 0, 1, 0],
                                         [0, 0, 0, 1]])
                    ptx = str2float(pos["x"])
                    pty = str2float(pos["y"])
                    # print('pos["z"], scale["l"], type(scale["l"])\n', pos["z"], scale["l"], type(scale["l"]))
                    ptz = str2float(pos["z"]) - (0.5 * str2float(scale["l"]))
                    # lidar坐标系下的相机中心点
                    pt_in_lidar = np.array([[ptx],
                                            [pty],
                                            [ptz],
                                            [1.]])

                    pt_in_camera = np.matmul(trans_Mat, pt_in_lidar)
                    pt_in_rect = np.matmul(rect_Mat, pt_in_camera)

                    temp += str(pt_in_rect[0, 0]).split('.')[0] + "." + str(pt_in_rect[0, 0]).split('.')[1][0:2]
                    temp += " "
                    temp += str(pt_in_rect[1, 0]).split('.')[0] + "." + str(pt_in_rect[1, 0]).split('.')[1][0:2]
                    temp += " "
                    temp += str(pt_in_rect[2, 0]).split('.')[0] + "." + str(pt_in_rect[2, 0]).split('.')[1][0:2]
                    temp += " "

                    ## 2.3  temp 追加 rot_xyz(先将 rot 航向角 返回到0-360°之间)
                    rot = - str2float(rot) - (np.pi / 2)
                    if rot > np.pi:
                        rot = rot - 2 * np.pi
                    elif rot < -np.pi:
                        rot = rot + 2 * np.pi
                    temp += str(rot).split('.')[0] + "." + str(rot).split('.')[1][0:2] + "\n"
                    label_list.append(temp)

            label_list[-1] = label_list[-1].replace('\n', '')
            # print(label_list)
            with open(os.path.join(label_2Path, f[:-4]+'.txt'), "w") as wf:
                wf.writelines(label_list)

        print('labels Statics = ', labelsList)
        print('labels Statics = ', labelsListnew)

如下代码考虑重新计算了位置信息,固定使用转换矩阵lidar_to_cam。[“Car”, “Cyclist”, “Pedestrian”]

    if label_2Flag:
        # 1 创建文件夹 label_2
        label_2Path = r'E:\DAIR-V2X-I\kitti\training\Label_2'
        judgefolderExit_mkdir(label_2Path)

        V2XVelodynePath = r'E:\DAIR-V2X-I\kitti\training\velodyne'
        files = os.listdir(V2XVelodynePath)
        files = [f[:-4] + '.txt' for f in files]

        V2XLabelPathcamera = r'E:\DAIR-V2X-I\single-infrastructure-side\label\camera'
        V2XLabelPathlidar = r'E:\DAIR-V2X-I\single-infrastructure-side\label\virtuallidar'
        # 2 转化生成对应的.txt标签文件
        labelsList = {}
        labelsListnew = {}
        for f in files[:]:
            # print(f)
            with open(os.path.join(V2XLabelPathcamera, f[:-4] + '.json'), "r") as rf1:
                dataca = json.load(rf1)
            with open(os.path.join(V2XLabelPathlidar, f[:-4] + '.json'), "r") as rf1:
                datali = json.load(rf1)
            label_list = []
            if len(dataca) != len(datali):
                print('Error:  len(dataca) != len(datali)')
                continue
            for oi in range(len(dataca)):
                obj_ca = dataca[oi]
                obj_li = datali[oi]
                label_name = obj_ca["type"]
                label_nameli = obj_li["type"]
                if label_name != label_nameli:
                    print('Error: label_name != label_nameli')
                    continue
                # static labels
                if label_name in labelsList.keys():
                    labelsList[label_name] += 1
                else:
                    labelsList[label_name] = 1

                # updata label type
                # Car 、 Cyclist、
                if label_name == 'Trafficcone' or label_name == 'ScooterRider' or label_name == 'Barrowlist':
                    continue
                elif label_name == 'Motorcyclist':
                    label_name = 'Cyclist'
                elif label_name == 'Van':
                    label_name = 'Car'
                elif label_name == 'Bus':
                    label_name = 'Car'
                elif label_name == 'Truck':
                    label_name = 'Car'

                if label_name in labelsListnew.keys():
                    labelsListnew[label_name] += 1
                else:
                    labelsListnew[label_name] = 1


                scale = obj_li["3d_dimensions"]     # 尺寸取雷达坐标系下的
                pos = obj_ca["3d_location"]         # 位置取相机坐标系下的
                rot = obj_li["rotation"]

                tempFlag = False  # label_list.append(temp)
                if tempFlag == True:
                    # 2.1  temp 追加目标类型
                    # temp [0:16] 共计16列
                    # 类别[0]+是否截断[1]+是否遮挡[2]+观察角度[3]+图像左上右下[4:8]+高宽长[8:11]+
                    #         相机坐标系xyz[11:14]+方向角[14]+置信度[15]
                    # 注意:测试数据集才有最后一列的置信度
                    temp = label_name + ' 0 0 0 0 0 0 0 '
                    temp += (scale['h'].split('.')[0] + "." + scale['h'].split('.')[1][:2] + ' ')
                    temp += (scale['w'].split('.')[0] + "." + scale['w'].split('.')[1][:2] + ' ')
                    temp += (scale['l'].split('.')[0] + "." + scale['l'].split('.')[1][:2] + ' ')

                    # 2.2.1  pos_xyz
                    # temp += (pos['x'].split('.')[0] + "." + pos['x'].split('.')[1][:2] + ' ')
                    # temp += (pos['y'].split('.')[0] + "." + pos['y'].split('.')[1][:2] + ' ')
                    # temp += (pos['z'].split('.')[0] + "." + pos['z'].split('.')[1][:2] + ' ')

                    # 2.2 固定使用转换矩阵lidar_to_cam后
                    # 此处的矩阵目的将lidar转到cam下,再转换到rect下,同样追加到temp中(temp追加pos_xyz)
                    trans_Mat = np.array(
                        [[6.927964000000e-03, -9.999722000000e-01, -2.757829000000e-03, -2.457729000000e-02],
                         [-1.162982000000e-03, 2.749836000000e-03, -9.999955000000e-01, -6.127237000000e-02],
                         [9.999753000000e-01, 6.931141000000e-03, -1.143899000000e-03, -3.321029000000e-01],
                         [0, 0, 0, 1]])

                    rect_Mat = np.array([[9.999128000000e-01, 1.009263000000e-02, -8.511932000000e-03, 0],
                                         [-1.012729000000e-02, 9.999406000000e-01, -4.037671000000e-03, 0],
                                         [8.470675000000e-03, 4.123522000000e-03, 9.999556000000e-01, 0],
                                         [0, 0, 0, 1]])
                    ptx = str2float(pos["x"])
                    pty = str2float(pos["y"])
                    # print('pos["z"], scale["l"], type(scale["l"])\n', pos["z"], scale["l"], type(scale["l"]))
                    ptz = str2float(pos["z"]) - (0.5 * str2float(scale["l"]))
                    # lidar坐标系下的相机中心点
                    pt_in_lidar = np.array([[ptx],
                                            [pty],
                                            [ptz],
                                            [1.]])

                    pt_in_camera = np.matmul(trans_Mat, pt_in_lidar)
                    pt_in_rect = np.matmul(rect_Mat, pt_in_camera)

                    temp += str(pt_in_rect[0, 0]).split('.')[0] + "." + str(pt_in_rect[0, 0]).split('.')[1][0:2]
                    temp += " "
                    temp += str(pt_in_rect[1, 0]).split('.')[0] + "." + str(pt_in_rect[1, 0]).split('.')[1][0:2]
                    temp += " "
                    temp += str(pt_in_rect[2, 0]).split('.')[0] + "." + str(pt_in_rect[2, 0]).split('.')[1][0:2]
                    temp += " "

                    ## 2.3  temp 追加 rot_xyz(先将 rot 航向角 返回到0-360°之间)
                    rot = - str2float(rot) - (np.pi / 2)
                    if rot > np.pi:
                        rot = rot - 2 * np.pi
                    elif rot < -np.pi:
                        rot = rot + 2 * np.pi
                    temp += str(rot).split('.')[0] + "." + str(rot).split('.')[1][0:2] + "\n"
                    label_list.append(temp)

            # label_list[-1] = label_list[-1].replace('\n', '')
            # with open(os.path.join(label_2Path, f[:-4]+'.txt'), "w") as wf:
            #     wf.writelines(label_list)

        print('labels Statics = ', labelsList )
        print('labels Statics = ', labelsListnew )
2.0.3 kitti\testing中的数据类似training中数据

仅需移动部分数据作为test是数据即可

————————testing
______________calib
______________image_2
______________Label_2
______________velodyne
2.0.4 写kitti/ImageSets 中的txt文件

注意:如下代码中val.txt 与test.txt中的文件是一致的

def filesPath2txt():
    import os, random

    pathtrain = 'E:\DAIR-V2X-I\kitti_s/training/velodyne/'
    pathtest = 'E:\DAIR-V2X-I\kitti_s/testing/velodyne/'
    txtPath = 'E:\DAIR-V2X-I\kitti_s/ImageSets/'

    txt_path_train = os.path.join(txtPath, 'train.txt')
    txt_path_val = os.path.join(txtPath, 'val.txt')
    # txt_path_trainval = os.path.join(txtPath, 'trainval.txt')
    txt_path_test = os.path.join(txtPath, 'test.txt')
    # mkdirImageSets(txt_path_train, txt_path_val, txt_path_trainval, txt_path_test)

    files = os.listdir(pathtrain)
    filesList = [f[:-4] + '\n' for f in files]

    filestr = filesList
    filestr[-1] = filestr[-1].replace('\n', '')
    with open(txt_path_train, 'w', encoding='utf-8') as wf:
        wf.writelines(filestr)

    files = os.listdir(pathtest)
    filesList = [f[:-4] + '\n' for f in files]
    filesval = filesList  # random.sample(filesList, 700)
    filesval[-1] = filesval[-1].replace('\n', '')
    with open(txt_path_val, 'w', encoding='utf-8') as wf:
        wf.writelines(filesval)

    # filestest = random.sample(filesList, 400)
    # filestest[-1] = filestest[-1].replace('\n', '')
    with open(txt_path_test, 'w', encoding='utf-8') as wf:
        wf.writelines(filesval)

2.1 paddle3D训练

cd ./Paddle3D
2.1.1 数据
【1】数据

数据存放在Paddle3D/datasets目录下,结构如下:

datasets/
datasets/KITTI/
————datasets/KITTI/ImageSets
————datasets/KITTI/testing
————datasets/KITTI/training
【2】数据预处理

使用如下代码完成数据的预处理操作

python tools/create_det_gt_database.py --dataset_name kitti --dataset_root ./datasets/KITTI --save_dir ./datasets/KITTI

上述过程打印如下,运行结束会生成datasets/KITTI/kitti_train_gt_database目录。

root/anaconda3/envs/pip_paddle_env/lib/python3.8/site-packages/setuptools/sandbox.py:13: DeprecationWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html
  import pkg_resources
root/anaconda3/envs/pip_paddle_env/lib/python3.8/site-packages/pkg_resources/__init__.py:2871: DeprecationWarning: Deprecated call to `pkg_resources.declare_namespace('mpl_toolkits')`.
Implementing implicit namespace packages (as specified in PEP 420) is preferred to `pkg_resources.declare_namespace`. See https://setuptools.pypa.io/en/latest/references/keywords.html#keyword-namespace-packages
  declare_namespace(pkg)
root/anaconda3/envs/pip_paddle_env/lib/python3.8/site-packages/pkg_resources/__init__.py:2871: DeprecationWarning: Deprecated call to `pkg_resources.declare_namespace('google')`.
Implementing implicit namespace packages (as specified in PEP 420) is preferred to `pkg_resources.declare_namespace`. See https://setuptools.pypa.io/en/latest/references/keywords.html#keyword-namespace-packages
  declare_namespace(pkg)
ortools not installed, install it by "pip install ortools==9.1.9490" if you run BEVLaneDet model
2023-12-26 17:45:46,823 -     INFO - Begin to generate a database for the KITTI dataset.
2023-12-26 17:46:06,774 -     INFO - [##################################################] 100.00%
2023-12-26 17:46:07,012 -     INFO - The database generation has been done.
2.1.2 模型配置文件

为避免修改原模型配置文件,先复制一份并命名为centerpoint_pillars_016voxel_kitti_my.yml

cp ./configs/centerpoint/centerpoint_pillars_016voxel_kitti.yml ./configs/centerpoint/centerpoint_pillars_016voxel_kitti_my.yml

核对文件中的相关配置信息

train_dataset:
  type: KittiPCDataset
  dataset_root: datasets/KITTI
  ... ...
  class_names: ["Car", "Cyclist", "Pedestrian"]
2.1.3 训练流程及问题调试
【1】使用如下代码进行训练
# python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 tools/train.py --config configs/centerpoint/centerpoint_pillars_016voxel_kitti.yml --save_dir ./output_kitti --num_workers 4 --save_interval 5

python tools/train.py --config configs/centerpoint/centerpoint_pillars_016voxel_kitti_my.yml --save_dir ./output_kitti --save_interval 5 > 112.log

参数介绍

-m:使用python -m paddle.distributed.launch方法启动分布式训练任务。
参考:https://www.paddlepaddle.org.cn/documentation/docs/zh/api/paddle/distributed/launch_cn.html
> 112.log : 将其中的打印保存在112.log中
【2】问题记录1
【2-1】SystemError: (Fatal) Blocking queue is killed because the data reader raises an exception.
【2-2】KeyError: ‘DataLoader worker(1) caught KeyError with message:\nTraceback (most recent call last):\n File “/home/… …”… … self.sampler_per_class[cls_name].sampling(num_samples)\n KeyError: ‘Car’\n’

【2-1、2-2】解决方法

参考1:SystemError: (Fatal) Blocking queue is killed because the data reader raises an exception : 没找到源码中的相关位置。

参考2:SystemError: (Fatal) Blocking queue is killed (baidu.com)

利用“参考2”中提供的方法, 训练的时候,将num_worker设置为0。如下:

python tools/train.py --config configs/centerpoint/centerpoint_pillars_016voxel_kitti_my.yml --save_dir ./output_kitti --num_workers 0 --save_interval 5

将num_workers 设置为0训练的时候,报如下错误

/Paddle3D/paddle3d/transforms/sampling.py", line 172, in sampling
    sampling_annos = self.sampler_per_class[cls_name].sampling(num_samples)
KeyError: 'Car'

采用如下代码打印/Paddle3D/paddle3d/transforms/sampling.py", line 172中的信息,结果是{}。

print('self.sampler_per_class', self.sampler_per_class)
》》》》》》self.sampler_per_class {}

发现是配置文件中class_balanced_sampling参数是设置为False的原因。修改class_balanced_sampling为True如下

train_dataset:
  type: KittiPCDataset
  dataset_root: datasets/KITTI
  ... ...
  mode: train
  class_balanced_sampling: True
  class_names: ["Car", "Cyclist", "Pedestrian"]
【3】问题记录2
【3-1】ZeroDivisionError: float division by zero

详细报错包含如下

File "/home/mec/hulijuan/Paddle3D/paddle3d/datasets/kitti/kitti_det.py", line 89, in <listcomp>
    sampling_ratios = [balanced_frac / frac for frac in fracs]
ZeroDivisionError: float division by zero

上述问题打印 print(‘kitti_det.py’, cls_dist) 发现是自己数据集中没有"Pedestrian"类别,而class_names中包含该类别。解决办法是增加包含 "Pedestrian"类 的数据。

【4】问题记录3
【4-1】又报错问题同“【2】问题记录1 SystemError: … KeyError: …”,只能是大概上面的问题没有从根本上解决掉

首先看KeyError的问题。

在paddle3d/transforms/sampling.py/class SamplingDatabase(TransformABC):/def __ init __()中增加打印。如下

    def __init__(self,
                 min_num_points_in_box_per_class: Dict[str, int],
                 max_num_samples_per_class: Dict[str, int],
                 database_anno_path: str,
                 database_root: str,
                 class_names: List[str],
                 ignored_difficulty: List[int] = None):
        self.min_num_points_in_box_per_class = min_num_points_in_box_per_class
        self.max_num_samples_per_class = max_num_samples_per_class
        self.database_anno_path = database_anno_path
        with open(database_anno_path, "rb") as f:
            database_anno = pickle.load(f)
        print('sampling.py__line58~~~~~~~~~~~~~~~~~~~~58database_anno: ', database_anno)
        if not osp.exists(database_root):
            raise ValueError(
                f"Database root path {database_root} does not exist!!!")
        self.database_root = database_root
        self.class_names = class_names
        self.database_anno = self._filter_min_num_points_in_box(database_anno)

        self.ignored_difficulty = ignored_difficulty
        if ignored_difficulty is not None:
            self.database_anno = self._filter_ignored_difficulty(self.database_anno)

        self.sampler_per_class = dict()
        print('sampling.py__line70~~~~~~~~~~~~~~~70database_anno: ', self.database_anno)
        for cls_name, annos in self.database_anno.items():
            self.sampler_per_class[cls_name] = Sampler(cls_name, annos)

通过打印,可以看出sampling.py–line70的打印是空字典,而sampling.py–line58的打印部分如下:
在这里插入图片描述

上图可以看出,num_points_in_box 的值为 0。导致如下代码运行后,database_anno 变成了空字典

self.database_anno = self._filter_min_num_points_in_box(database_anno)

上述问题应该是针对点云文件生成标签文件的时候,方法错了。

重新生成label_2文件过程如下:
1  创建环境
conda create -n pcd2bin_env python=3.8
2  激活环境
conda activate pcd2bin_env
3  安装pypcd
3.1  参考:https://blog.csdn.net/weixin_44450684/article/details/92812746
如下流程:
git clone https://github.com/dimatura/pypcd
cd pypcd
git fetch origin pull/9/head:python3
git checkout python3
python3 setup.py install --user 
python3
from pypcd import pypcd
pc = pypcd.PointCloud.from_path('pointcloud.pcd')

利用开源程序重新生成label_2文件过程如下:
源码百度网盘地址:

执行程序:

2.2 数据集地址KITTI格式(DAIR-V2X-I(7058帧数据)):(长期有效)

大小:22G
链接:https://pan.baidu.com/s/1gG_S6Vtx4iWAfAVAfOxWWw 
提取码:p48l 
数据没有问题 但是label_2中的XYZ需要根据前述lanel_2的方法重新生成。需下载该数据集的标签文件single-infrastructure-side-json.zip

2.3 模型

2.3.1 模型评估

2.3.2 模型测试

2.3.3 导出模型

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1353132.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

阶段二-Day10-日期类

日期类结构: 1.java.util.Date是日期类 2.DateFormat是日期格式类、SimpleDateFormat是日期格式类的子类 Timezone代表时区 3.Calendar是日历类&#xff0c;GregorianCalendar是日历的子类 一. 常用类-Date 1.1 Date构造方法 Date(long date) 使用给定的毫秒时间价值构建…

阿里云服务器开放端口Oracle 1521方法教程

阿里云服务器ECS端口是在安全组设置的&#xff0c;Oracle数据库1521端口号开放是在安全组中添加规则来实现的&#xff0c;阿里云服务器网aliyunfuwuqi.com来详细说下阿里云服务器开放Oracle 1521端口方法教程&#xff1a; 阿里云服务器开放Oracle 1521端口 在阿里云服务器ECS…

虚幻UE 材质-进阶边界混合之距离场限制PDO范围

基础边界混合那篇文章&#xff1a;虚幻UE 材质-边界混合之PDO像素深度偏移量 可以通过抖动来进行混合&#xff0c;但是有问题的点在与抖动发生的位置只需要在两物体的交界处 所以本篇文章会通过距离场限制来限制抖动的位置&#xff0c;防止其他地方发生抖动影响画面。 文章目录…

MySQL主从复制案例实现

使用Sharding-JDBC实现读写分离&#xff1a; 1、导入maven坐标 2、 在配置文件中配置读写分离规则 3、在配置文件中配置允许bean定义覆盖配置项 1、导入maven坐标 <dependency><groupId>org.apache.shardingsphere</groupId><artifactId>sharding-jd…

openGauss学习笔记-184 openGauss 数据库运维-升级-升级验证

文章目录 openGauss学习笔记-184 openGauss 数据库运维-升级-升级验证184.1 验证项目的检查表184.2 升级版本查询184.2.1 验证步骤 184.3 检查升级数据库状态184.3.1 验证步骤 openGauss学习笔记-184 openGauss 数据库运维-升级-升级验证 本章介绍升级完成后的验证操作。给出验…

从科学角度分析,探索选择智能酒精壁炉的原因

酒精壁炉作为一种现代家居取暖方式&#xff0c;引人关注。从科学角度来看&#xff0c;为何选择酒精壁炉成为一个值得探讨的问题。酒精壁炉的燃料—乙醇&#xff0c;是一种简单化合物&#xff0c;其燃烧过程在化学上较为干净。当乙醇燃烧时&#xff0c;其主要产物是二氧化碳和水…

Day22 112路径总和 113路径总和II 106中后构造二叉树/中前构造二叉树 654最大二叉树

给定一个二叉树和一个目标和&#xff0c;判断该树中是否存在根节点到叶子节点的路径&#xff0c;这条路径上所有节点值相加等于目标和。 递归&#xff1a; 可以采用深度优先的递归方式&#xff0c;前中后序都可以&#xff08;因为中节点没有处理逻辑&#xff09;。首先确定参…

Go Lang Fiber介绍

利用GoLang Fiber进行高性能Web开发 在不断发展的Web开发世界中&#xff0c;选择合适的框架至关重要。速度、简洁性和强大的功能集是每个开发者都追求的品质。在使用Go构建Web应用时&#xff0c;“Fiber”作为一个强大且轻量级的框架在众多选择中脱颖而出。在这份全面的指南中…

一个list 里面存放实体类,根据多个字段进行分组,最后将结果都保存,返回一个map 集合,一层一层的map 集合

目录 1 需求2 实现 1 需求 现在从数据库查询出一个list 集合的数据&#xff0c;是一个实体类&#xff0c;现在需要根据多个字段进行分组&#xff0c;最后只是返回一个map 集合。 一层一层的 2 实现 如果你想在最后一层的列表数据上进行计算&#xff0c;并将计算结果保存并返…

day 57 算法训练|动态规划part17

参考&#xff1a;代码随想录 647. 回文子串 1. dp数组&#xff08;dp table&#xff09;以及下标的含义 是不是能找到一种递归关系&#xff0c;也就是判断一个子字符串&#xff08;字符串的下表范围[i,j]&#xff09;是否回文&#xff0c;依赖于&#xff0c;子字符串&#x…

速欣商务咨询:江西信用卡逾期问题解决专家,为您排忧解难

信用卡逾期问题常常令人困扰&#xff0c;对个人信用造成负面影响。江西速欣商务咨询以其专业服务团队&#xff0c;成为解决江西地区信用卡逾期问题的专家&#xff0c;为您提供全方位的解决方案&#xff0c;排忧解难。 深度诊断&#xff0c;制定个性化解决方案 速欣商务咨询通过…

ASP.NET Core基础之图片文件(一)-WebApi图片文件上传到文件夹

阅读本文你的收获&#xff1a; 了解WebApi项目保存上传图片的三种方式学习在WebApi项目中如何上传图片到指定文件夹中 在ASP.NET Core基础之图片文件(一)-WebApi访问静态图片文章中&#xff0c;学习了如何获取WebApi中的静态图片&#xff0c;本文继续分享如何上传图片。 那么…

基于花授粉算法优化的Elman神经网络数据预测 - 附代码

基于花授粉算法优化的Elman神经网络数据预测 - 附代码 文章目录 基于花授粉算法优化的Elman神经网络数据预测 - 附代码1.Elman 神经网络结构2.Elman 神经用络学习过程3.电力负荷预测概述3.1 模型建立 4.基于花授粉优化的Elman网络5.测试结果6.参考文献7.Matlab代码 摘要&#x…

李沐机器学习系列3---深度学习计算

1 层和块 1.1 定义块 用class表示层&#xff0c;并只需要实现构造函数和前向传播函数 class MLP(nn.Module):# 用模型参数声明层。这里&#xff0c;我们声明两个全连接的层def __init__(self):# 调用MLP的父类Module的构造函数来执行必要的初始化。# 这样&#xff0c;在类实…

C++面向对象语法总结(三)

目录 《C面向对象语法总结(一&#xff09;》《C面向对象语法总结(二&#xff09;》 二十一、多继承 C允许一个类可以有多个父类&#xff08;不建议使用&#xff0c;会增加程序设计复杂度&#xff09;在多继承中&#xff0c;会按照继承顺序将父类的成员变量放到子类成员变量的…

qt .pro工程转vs工程

1. 新建vs空项目或者Qt Console Application&#xff1b; 2. 扩展 -》Qt VS Tools -》Open Qt Project (.pro) 打开对应的pro文件即可将.pro工程转成vs工程&#xff1b; 注意&#xff1a; &#xff08;1&#xff09;转成的vs工程在pro文件同级目录下&#xff0c;双击打开vcx…

完善 Golang Gin 框架的静态中间件:Gin-Static

Gin 是 Golang 生态中目前最受用户欢迎和关注的 Web 框架&#xff0c;但是生态中的 Static 中间件使用起来却一直很不顺手。 所以&#xff0c;我顺手改了它&#xff0c;然后把这个改良版开源了。 写在前面 Gin-static 的改良版&#xff0c;我开源在了 soulteary/gin-static&a…

第二十五章 JDBC 和数据库连接池

一、JDBC 概述&#xff08;P821&#xff09; 1. 基本介绍 &#xff08;1&#xff09;JDBC 为访问不同的数据库提供了统一的接口&#xff0c;为使用者屏蔽了细节问题。 &#xff08;2&#xff09;Java 程序员使用 JDBC&#xff0c;可以连接任何提供了 JDBC 驱动程序的数据库系统…

【网络技术】【Kali Linux】Wireshark嗅探(六)地址解析协议(ARP)

一、实验目的 本次实验使用Wireshark流量分析工具进行网络嗅探&#xff0c;旨在了解地址解析协议&#xff08;ARP&#xff09;的工作原理。 二、ARP协议概述 地址解析协议&#xff08;Address Resolution Protocol, ARP&#xff09;位于网络层&#xff08;IP层&#xff09;&…

金和OA SAP_B1Config.aspx存在未授权访问漏洞

产品简介 金和网络是专业信息化服务商&#xff0c;为城市监管部门提供了互联网监管解决方案&#xff0c;为企事业单位提供组织协同OA系统升开发平台&#xff0c;电子政务一体化平台智慧电商平合等服务 漏洞概述 金和OA SAP_B1Config.aspx存在未授权访问漏洞&#xff0c;攻击…