国科大图像处理2023速通期末——汇总2017-2019

news2024/11/26 3:35:17

国科大2023.12.28图像处理0854期末重点
图像处理 王伟强 作业 课件 资料

一、填空

  1. 一个阴极射线管它的输入与输出满足 s = r 2 s=r^{2} s=r2,这将使得显示系统产生比希望的效果更暗的图像,此时伽马校正通常在信号进入显示器前被进行预处理,令p与q表示伽马校正的输入与输出,则p与q之间的映射关系式表示为: q = p 1 2 q=p^{\frac{1}{2}} q=p21
  2. 卷积是一种图像处理领域最有影响力的计算之一,对于一幅输入图像f(x,y), 我们可以通过卷积运算产生一幅新的图像g(x,y),若g(x,y)=0.1f(x+1,y)+0.2f(x-1y)+0.3f(x,y)+0.2f(x,y-1)+0.2f(x,y+1)这里x表示行标,y表示图像中像素位置的列坐标,请用一个3X3的矩阵来表示这个卷积核
  3. 我们处理一幅图像可以在空域中通过线性滤波运算进行处理,也可以在频域内对它进行处理达到同样的效果。该事实的理论基础就是基于傅立叶变换的卷积定理,若我们用f(x,y),g(x,y)表示图像与线性滤波核,它们对应的傅立叶变换分别用F(u,v),G(u,v)表示则该定理可形式化描述为f(x,y)∗g(x,y)⟷F(u,v)×G(u,v)
  4. 拉普拉斯波器的频域表示的函数形式为 H ( u , v ) = − 4 π 2 ( u 2 + v 2 ) H(u,v)=-4\pi ^{2}(u^{2}+v^{2}) H(u,v)=4π2(u2+v2)
  5. 假设我们有一个在0-1区间的均匀分布随机数发生器w,若已知一个满足瑞利分布的随机变量累加分布函数CDF是 F z ( z ) = { 1 − e x p ( − ( z − a ) 2 b ) , z ≥ a 0 , z < a F_{z}(z)=\begin{cases} 1-\frac{exp(-(z-a)^{2}}{b}),z\ge a\\ 0,z<a \end{cases} Fz(z)={1bexp((za)2),za0,z<a,则基于w的瑞利分布的随机数发生器z的方程为 z = a + − b l n ( 1 − w ) z=a+\sqrt{-bln(1-w)} z=a+bln(1w)
  6. 若高斯低通滤波器在频域中的表示为 H ( u , v ) = e − D 2 ( u , v ) 2 D 0 2 H(u,v)=e^{-\frac{D^{2}(u,v)}{2D_{0}^{2}}} H(u,v)=e2D02D2(u,v)则对应的高斯高通滤波器在频域中的表示为 H h ( u , v ) = 1 − e − D 2 ( u , v ) 2 D 0 2 H_{h}(u,v)=1-e^{-\frac{D^{2}(u,v)}{2D_{0}^{2}}} Hh(u,v)=1e2D02D2(u,v)
  7. Weiner 滤波的计算方法为 F ( u , v ) = [ 1 H ( u , v ) ⋅ ∣ H ( u , v ) ∣ 2 ∣ H ( u , v ) ∣ 2 + S η ( x , y ) S f ( x , y ) ] G ( u , v ) ) F(u,v)=[\frac{1}{H(u,v)}·\frac{|H(u,v)|^{2}}{|H(u,v)|^{2}+\frac{S_{\eta }(x,y)}{S_{f}(x,y)}}]G(u,v)) F(u,v)=[H(u,v)1H(u,v)2+Sf(x,y)Sη(x,y)H(u,v)2]G(u,v))其中 S η ( x , y ) S_{\eta }(x,y) Sη(x,y)代表噪声功率谱密度,H(u,v)代表退化函数
  8. YCbCr中的Y代表明度,Cb与Cr代表蓝色与红色的浓度偏移,HSV中的H代表色调,s代表饱和度

二、选择

  1. 采用对比度拉伸是实现灰度图像的增强的一种重要思路,而分段线性变换函数是一种常被采用的技术。针对某一段输入灰度范围,若你想扩大输出灰度的动态范围,所构造的那一段线性映射函数的斜率k应满足:(A)
    A.k>1
    B.k=1
    C.k<1
    D.取任何值都可以

  2. 若一幅图像中存在椒盐噪声,下面哪种滤波器可选择来去除它们:(D)
    A.算术均值滤波器
    B.反调和滤波器
    C.拉普拉斯滤波器
    D.中值滤波器

  3. 通过卷积运算对图像进行各种目的的滤波是图像处理的重要内容。对于离散的两个一维信号[3,5,6],g=[1,-1],对应的卷积结果是(A)
    A.[3,2,1,-6]
    B.[2.1]
    C.[-3,-2-1,6]
    D.[-2,-1]

  4. 高斯低通滤波器 H ( u , v ) = e − D 2 ( u , v ) 2 D 0 2 H(u,v)=e^{-\frac{D^{2}(u,v)}{2D_{0}^{2}}} H(u,v)=e2D02D2(u,v)中存在一个参数 D 0 D_{0} D0,对于一幅中年妇女面部特写图像,若发现采用 D 0 = 100 D_{0}=100 D0=100时,去除该妇女眼部的皱纹不彻底,则应该:(A)
    A.适当减小 D 0 D_{0} D0
    B.适当加大 D 0 D_{0} D0
    C.保持 D 0 D_{0} D0不变
    D.前面选项都不对

  5. 对于一个具有正交性质的完美重建滤波器组,若它的滤波器之间具有如下的关系:(B)
    g 1 ( n ) = ( − 1 ) n g 0 ( 2 K − 1 − n ) , h 1 ( n ) = g 1 ( 2 K − 1 − n ) , i = 0 , 1 g_{1}(n)=(-1)^{n}g_{0}(2K-1-n),h_{1}(n)=g_{1}(2K-1-n),i=0,1 g1(n)=(1)ng0(2K1n)h1(n)=g1(2K1n),i=0,1

    A. ( − 1 ) n h 0 ( 2 K − 1 − n ) (-1)^{n}h_{0}(2K-1-n) (1)nh0(2K1n)
    B. ( − 1 ) n + 1 h 0 ( 2 K − 1 − n ) (-1)^{n+1}h_{0}(2K-1-n) (1)n+1h0(2K1n)
    C. ( − 1 ) n h 0 ( n ) (-1)^{n}h_{0}(n) (1)nh0(n)
    D. ( − 1 ) n + 1 h 0 ( n ) (-1)^{n+1}h_{0}(n) (1)n+1h0(n)

  6. 信息论是信息压缩的理论基础,而互信息是信息论中一个非常重要的概念,信源z与信道输出v之间互信息I(z,v)的意义为©
    A.信源z与信道输出v间的平均信息量
    B.观察单一信道输出符号时接收到的平均信息
    C.观测到输出v后信源符号的平均信息量
    D信道可靠传输信息的最大传送率

三、判断

  1. 对一幅数字图像进行一次直方图均衡处理后,通常不会产生非常绝对平的直方图。即便我们对处理后的图像再进行一次直方图处理,理论上也不会产生任何效果。(√)
  2. 拉普拉斯滤波器与统计排序滤波器均不是一种卷积运算。(×)
  3. 卷积运算具有交换性与结合性。(√)
  4. 低通高阶巴特沃斯滤波器存在振铃效应,而低通高斯滤波器不存在振铃效应。(√)
  5. 我们可以用阶数Q<0的逆谐波均值滤波器来去除盐噪声。(√)
  6. 给定一幅图像,若我们能准确估计噪声的均值与方差,则可以知道噪声的能量(所有像素位置的噪声强度的平方和)。(√)
  7. 在图像编码中,涉及信源编码与信道编码,两者都是为了实现信息的压缩表示。(×)
  8. 对于一个事件,它发生的概率越小,它的熵越大。(√)
  9. 若一幅图像中含有一些噪声点或干扰性微小结构,可采用形态处理中的开操作作为一种处理段来去除它。(√)

四、简答

1. 简述什么是线性移不变系统

答:线性移不变性系统(Linear Shift-Invariant System,简称LSI系统)是一种特殊的系统,它对输入图像的处理满足线性和移不变性两个条件。

  • 线性:系统对输入图像的处理是线性的,即如果输入图像是两个图像的线性组合,那么输出图像也是这两个图像经过系统处理后的输出的相同线性组合。数学上表示为,如果 f 1 ( x , y ) f_{1}(x,y) f1(x,y) f 2 ( x , y ) f_{2}(x,y) f2(x,y)是两个输入图像,α和β是任意常数,那么系统的输出满足: S ( α f 1 + β f 2 ) = α S ( f 1 ) + β S ( f 2 ) S(αf_{1}+βf_{2})=αS(f_{1})+βS(f_{2}) S(αf1+βf2)=αS(f1)+βS(f2)
  • 移不变性:系统对输入图像的处理是移不变的,即如果输入图像在空间域内平移,那么输出图像也会相应地平移,而不会改变其它特性。数学上表示为,如果f(x,y)是输入图像, ( x 0 , y 0 ) (x_{0},y_{0}) (x0y0)是平移量,那么系统的输出满足: H [ f ( x , y ) ] = g ( x , y ) , H [ f ( x − x 0 , y − y 0 ) ] = g ( x − x 0 , y − y 0 ) H[f(x,y)]=g(x,y),H[f(x-x_{0},y-y_{0})]=g(x-x_{0},y-y_{0}) H[f(x,y)]=g(x,y)H[f(xx0,yy0)]=g(xx0,yy0)

线性移不变性系统的一个重要特性是,它们可以通过卷积运算来描述。对于任何LSI系统,都存在一个称为系统冲激响应的函数 h ( x , y ) h(x,y) h(x,y),使得系统对任何输入图像 f ( x , y ) f(x,y) f(x,y) 的输出 g ( x , y ) g(x,y) g(x,y)可以表示为 f ( x , y ) f(x,y) f(x,y) h ( x , y ) h(x,y) h(x,y)的卷积: g ( x , y ) = f ( x , y ) ∗ h ( x , y ) g(x,y)=f(x,y)\ast h(x,y) g(x,y)=f(x,y)h(x,y)

2. 观察如下所示图像。右边的图像这样得到:

(a)在原始图像左边乘以 ( − 1 ) x + y (-1)^{x+y} (1)x+y
(b) 计算离散傅里叶变换(DFT);
© 对变换取复共轭;
(d) 计算傅里叶反变换;
(e) 结果的实部再乘以 ( − 1 ) x + y (-1)^{x+y} (1)x+y
(用数学方法解释为什么会产生右图的效果)。DIP旋转了180度

假设原图像为 f 1 ( x , y ) f_{1}(x,y) f1(x,y)

  • 经过a操作变为 ( − 1 ) x + y f 1 ( x , y ) (-1)^{x+y}f_{1}(x,y) (1)x+yf1(x,y)
  • 经过b操作离散傅里叶变换变为 F ( u , v ) = 1 M N ∑ u = 0 M − 1 ∑ v = 0 N − 1 ( − 1 ) x + y f ( x , y ) e − j 2 π ( u x M + u y N ) F(u,v)=\frac{1}{MN}\sum_{u=0}^{M-1}\sum_{v=0}^{N-1}{(-1)^{x+y}f(x,y)e^{-j2\pi\left(\frac{ux}{M}+\frac{uy}{N}\right)}} F(u,v)=MN1u=0M1v=0N1(1)x+yf(x,y)ej2π(Mux+Nuy)
  • 通过c操作,根据傅里叶变换性值
  • F ∗ ( u , v ) = 1 M N ∑ u = 0 M − 1 ∑ v = 0 N − 1 ( − 1 ) x + y f ( x , y ) e j 2 π ( u x M + u y N ) F^\ast (u,v)=\frac{1}{MN}\sum_{u=0}^{M-1}\sum_{v=0}^{N-1}{(-1)^{x+y}f(x,y)e^{j2\pi\left(\frac{ux}{M}+\frac{uy}{N}\right)}} F(u,v)=MN1u=0M1v=0N1(1)x+yf(x,y)ej2π(Mux+Nuy)
  • 通过d操作得傅里叶反变换变为
  • I D F T ( F ∗ ( u , v ) ) = 1 M N ∑ u = 0 M − 1 ∑ v = 0 N − 1 [ 1 M N ∑ u = 0 M − 1 ∑ v = 0 N − 1 ( − 1 ) x + y f ( x , y ) e j 2 π ( u x M + u y N ) ] e j 2 π ( u x M + u y N ) IDFT(F^\ast (u,v))=\frac{1}{MN}\sum_{u=0}^{M-1}\sum_{v=0}^{N-1}[\frac{1}{MN}\sum_{u=0}^{M-1}\sum_{v=0}^{N-1}{(-1)^{x+y}f(x,y)e^{j2\pi\left(\frac{ux}{M}+\frac{uy}{N}\right)}}]e^{j2\pi\left(\frac{ux}{M}+\frac{uy}{N}\right)} IDFT(F(u,v))=MN1u=0M1v=0N1[MN1u=0M1v=0N1(1)x+yf(x,y)ej2π(Mux+Nuy)]ej2π(Mux+Nuy)实部为 ( − 1 ) x + y f ( − x , − y ) (-1)^{x+y}f(-x,-y) (1)x+yf(x,y)
  • e操作后变为 ( − 1 ) x + y ( − 1 ) x + y f ( − x , − y ) = f ( − x , − y ) (-1)^{x+y}(-1)^{x+y}f(-x,-y)=f(-x,-y) (1)x+y(1)x+yf(x,y)=f(x,y)
    效果原图像旋转180°

3. 描述如何构建高斯金字塔与拉普拉斯金字塔

  • 高斯金字塔建立:

    1. 生成初始图像(最底层): 将原始图像 f ( x , y ) f(x,y) f(x,y)作为金字塔的第一层。
    2. 进行下采样: 对当前层的图像进行高斯滤波,然后进行下采样,即去除一些行和列,以生成下一层的图像。下采样可以使用像素平均值或其他插值技术。下采样的目的是减小图像的尺寸。
    3. 重复步骤2: 重复进行高斯滤波和下采样,直到达到金字塔的顶层。每一层的图像尺寸都比前一层的尺寸小。
  • 拉普拉斯金字塔建立:

    1. 生成高斯金字塔: 使用上述方法生成高斯金字塔。
    2. 构建拉普拉斯金字塔: 拉普拉斯金字塔的每一层都是由对应的高斯金字塔层与该层的上一层进行差分得到的。即,拉普拉斯金字塔的每一层是由高斯金字塔的对应层减去该层的上一层。对于每一层i,拉普拉斯金字塔的图像 L i L_{i} Li可以用以下公式表示: L i = G i − e x p a n e d ( G i + 1 ) L_{i}=G_{i}-expaned(G_{i+1}) Li=Giexpaned(Gi+1)
      其中, G i G_{i} Gi是高斯金字塔的第 i 层,expaned是上采样操作。这样,我们得到的拉普拉斯金字塔的第一层是高斯金字塔的最顶层,最后一层是高斯金字塔的最底层

4. 每一个小波的尺度函数都遵循Mallat提出的多分辨率分析的4个基本要求,请描述这4个基本要求的内容

答:

  1. 尺度函数对它的整数平移对应的函数是正交的
    - 哈尔函数被称为是紧支撑的,意味着除了称为支撑域有限区间外,函数值都为0
    - 必须注意,当尺度函数的支撑域大于1时,整数平移函数间的正交性将变得更加难于被满足
  2. 低尺度尺度函数张成的子空间包含于高尺度尺度函数张成的子空间内
    V − ∞ ⊂ . . . ⊂ V − 1 ⊂ V − 0 ⊂ V 1 ⊂ . . . ⊂ V + ∞ V_{-∞} \subset ... \subset V_{-1}\subset V_{-0}\subset V_{1}\subset ...\subset V_{+∞} V...V1V0V1...V+
  3. 唯一包含在 V j V_{j} Vj所有中的函数是f(x)=0
    V − ∞ = 0 V_{-∞}=0 V=0
  4. 任何函数都可以以任意精度表示 V ∞ = L 2 ( R ) V_{∞}=L^{2}(R) V=L2(R)

5. 傅里叶变换的6个性质

  • 空域频移性 F [ f ( x − x 0 , y − y 0 ) ] = F ( u , v ) e − j 2 π ( u x 0 M + v y 0 N ) \mathscr{F}[f(x-x_{0},y-y_{0})]=F(u,v)e^{-j2\pi (\frac{ux_{0}}{M}+\frac{vy_{0}}{N})} F[f(xx0,yy0)]=F(u,v)ej2π(Mux0+Nvy0)
  • 时域频移性 F [ f ( x , y ) e − j 2 π ( u x 0 M + v y 0 N ) ] = F ( u − u 0 , v − v 0 ) \mathscr{F}[f(x,y)e^{-j2\pi (\frac{ux_{0}}{M}+\frac{vy_{0}}{N})}]=F(u-u_{0},v-v_{0}) F[f(x,y)ej2π(Mux0+Nvy0)]=F(uu0,vv0)
    - F [ f ( x , y ) ( − 1 ) x + y ] = F ( u − M 2 , v − N 2 ) \mathscr{F}[f(x,y)(-1)^{x+y}]=F(u-\frac{M}{2},v-\frac{N}{2}) F[f(x,y)(1)x+y]=F(u2M,v2N)
  • 平均和对称
    • 平均 F ( 0 , 0 ) = 1 M N ∑ u = 0 M − 1 ∑ v = 0 N − 1 f ( x , y ) F(0,0)=\frac{1}{MN}\sum_{u=0}^{M-1}\sum_{v=0}^{N-1}{f(x,y)} F(0,0)=MN1u=0M1v=0N1f(x,y)
    • 共轭 F ( u , v ) = F ∗ ( − u , − v ) F(u,v)=F^{\ast}(-u,-v) F(u,v)=F(u,v)
    • 对称 ∣ F ( u , v ) ∣ = ∣ F ( − u , − v ) ∣ |F(u,v)|=|F(-u,-v)| F(u,v)=F(u,v)
  • 可分离性 F ( u , v ) = F f ( x , y ) = ∑ y [ ∑ x f ( x , y ) e − j 2 π x u M ] e − j 2 π y v N = ∑ y F ( u , y ) e − j 2 π y v N F(u,v)=\mathscr{F}f(x,y)=\sum_{y}[\sum_{x}{f(x,y)e^{-j2\pi \frac{xu}{M}}}]e^{-j2\pi \frac{yv}{N}}=\sum_{y}F(u,y)e^{-j2\pi \frac{yv}{N}} F(u,v)=Ff(x,y)=y[xf(x,y)ej2πMxu]ej2πNyv=yF(u,y)ej2πNyv
  • 旋转性 x = r c o s θ , y = r s i n θ , u = ω c o s φ , v = ω s i n φ x=rcosθ ,y=rsinθ , u=\omega cos\varphi , v=\omega sin\varphi x=rcosθy=rsinθ,u=ωcosφv=ωsinφ
    f ( r , θ + θ 0 ) ⇔ F ( ω , φ + θ 0 ) f(r,θ+θ_{0})\Leftrightarrow F(\omega,\varphi+θ_{0}) f(r,θ+θ0)F(ω,φ+θ0)
  • 周期性f(x,y)=f(x+M,y)=f(x,y+N)=f(x+M,y+N)
    F(u,v)=F(u+M,v)=F(u,v+N)=F(u+M,v+N)
  • 线性 F ( a f ( x , y ) + b g ( x , y ) ) = a F ( f ( x , y ) ) + b F ( g ( x , y ) ) \mathscr{F} (af(x,y)+bg(x,y))=a\mathscr{F} (f(x,y))+b\mathscr{F}(g(x,y)) F(af(x,y)+bg(x,y))=aF(f(x,y))+bF(g(x,y))
  • 微分性
    在这里插入图片描述

6. 请用集合的语言描述形态学中的腐蚀与膨胀,并用进一步用数学公式定义开运算与闭运算。

假设 A 是一个图像集合,并且 B 是一个称为结构元素的集合。

  • 腐蚀(Erosion):
    腐蚀操作可以看作是将结构元素 B 从图像 A 中滑动,只要 B 完全覆盖A 的某一部分,那么该部分就被保留,否则就被去除。
    数学表述为: A ⊖ B = { z ∣ ( B ) z ⊆ A } A⊖B=\left \{ z∣(B)_{z}\subseteq A \right \} AB={z(B)zA}
    ⊖ 表示腐蚀操作, ( B ) z (B)_{z} (B)z表示将结构元素 B 的原点放在 z 处。

  • 膨胀(Dilation):
    膨胀操作可以看作是将结构元素 B 从图像 A 中滑动,只要B 与 A 有交集,那么该部分就被保留。
    数学表述为: A ⊕ B = { z ∣ ( B ) z ⊆ A } A⊕B=\left \{ z∣(B)_{z}\subseteq A \right \} AB={z(B)zA}⊕ 表示膨胀操作

  • 开运算(Opening):
    开运算首先对图像进行腐蚀,然后再进行膨胀。这通常用于消除小的对象或噪声。
    数学表述为: A ∘ B = ( A ⊕ B ) ⊖ B A∘B=(A⊕B)⊖B AB=(AB)B

  • 闭运算(Closing):
    闭运算首先对图像进行膨胀,然后再进行腐蚀。这通常用于填充小的孔洞或连接不连续的对象。
    数学表述为: A ⋅ B = ( A ⊖ B ) ⊕ B A·B=(A⊖B)⊕B AB=(AB)B

7. 简述拉普拉斯算子、拉普拉斯算子的傅里叶变换?

五、计算

1.直方图均衡

一幅具有8个灰度级的图像的归一化直方图为[0.17 0.25 0.21 0.16 0.07 0.08 0.04 0.02],求直方图均衡后的灰度级和对应概率,并画出均衡后归一化直方图的示意图。

2. Z 变换证明

Z变换是一种信号分析的重要工具。它有许多重要的性质,请对如下性质进行证明:

  • (1)若x(n)的Z变换为X(z),则 ( − 1 ) n x ( n ) (-1)^{n}x(n) (1)nx(n)的Z变换为 X(-z)
  • (2)若x(n)的Z变换为X(z),则 x(-n)的Z变换为 X ( 1 z ) X(\frac{1}{z}) X(z1)
  • (3)若x(n)的Z变换为X(z),则下x(2n)的Z变换为 1 2 [ X ( z 1 2 ) + X ( − z 1 2 ) ] \frac{1}{2}[X(z^\frac{1}{2})+X(-z^\frac{1}{2})] 21[X(z21)+X(z21)]
    证明:已知x(n)的Z变换为: X ( Z ) = ∑ − ∞ ∞ x ( n ) z − n X(Z)=\sum_{-\infty}^{\infty}{x(n)z^{-n}} X(Z)=x(n)zn
    • ( − 1 ) n x ( n ) {(-1)}^nx(n) (1)nx(n)的Z变换为:
      ∑ − ∞ ∞ ( − 1 ) n x ( n ) z − n = ∑ − ∞ ∞ ( − 1 ) − n x ( n ) z − n = ∑ − ∞ ∞ x ( n ) ( − z ) − n = X ( − z ) \sum_{-\infty}^{\infty}{\left(-1\right)^{n}x\left(n\right)z^{-n}}=\sum_{-\infty}^{\infty}{\left(-1\right)^{-n}x\left(n\right)z^{-n}}=\sum_{-\infty}^{\infty}{x\left(n\right)\left(-z\right)^{-n}}=X\left(-z\right) (1)nx(n)zn=(1)nx(n)zn=x(n)(z)n=X(z)

    • x(-n)的Z变换为:
      ∑ − ∞ ∞ x ( − n ) z − ( − n ) = ∑ − ∞ ∞ x ( − n ) ( z − 1 ) − n = X ( z − 1 ) = X ( 1 Z ) \sum_{-\infty}^{\infty}{x\left(-n\right)z^{-(-n)}}=\sum_{-\infty}^{\infty}{x\left(-n\right)\left(z^{-1}\right)^{-n}}=X\left(z^{-1}\right)=X\left(\frac{1}{Z}\right) x(n)z(n)=x(n)(z1)n=X(z1)=X(Z1)
      x(2n)的Z变换为
      ∑ − ∞ ∞ x ( 2 n ) z − n \sum_{-\infty}^{\infty}{x\left(2n\right)z^{-n}} x(2n)zn
      k = 2 n k=2n k=2n
      ∑ − ∞ ∞ x ( 2 n ) z − n = ∑ − ∞ ∞ x ( k ) z − k 2 \sum_{-\infty}^{\infty}{x\left(2n\right)z^{-n}}=\sum_{-\infty}^{\infty}{x\left(k\right)z^{-\frac{k}{2}}} x(2n)zn=x(k)z2k
      X ( z 1 2 ) = ∑ − ∞ ∞ x ( k ) z − k 2 X(z^{\frac{1}{2}})=\sum_{-\infty}^{\infty}{x\left(k\right)z^{-\frac{k}{2}}} X(z21)=x(k)z2k
      X ( z − 1 2 ) = ∑ − ∞ ∞ x ( k ) ( − 1 ) k z − k 2 X(z^{-\frac{1}{2}})=\sum_{-\infty}^{\infty}{x\left(k\right)(-1)^{k}z^{-\frac{k}{2}}} X(z21)=x(k)(1)kz2k相加得
      1 2 [ X ( z 1 2 ) + X ( − z 1 2 ) ] = ∑ − ∞ ∞ x ( k ) z − k 2 + ∑ − ∞ ∞ x ( k ) ( − 1 ) k z − k 2 = ∑ − ∞ ∞ x ( 2 n ) z − n \frac{1}{2}[X(z^\frac{1}{2})+X(-z^\frac{1}{2})]\\ =\sum_{-\infty}^{\infty}{x\left(k\right)z^{-\frac{k}{2}}}+\sum_{-\infty}^{\infty}{x\left(k\right)(-1)^{k}z^{-\frac{k}{2}}}\\=\sum_{-\infty}^{\infty}{x\left(2n\right)z^{-n}} 21[X(z21)+X(z21)]=x(k)z2k+x(k)(1)kz2k=x(2n)zn

3. 拉普拉斯旋转不变性证明

形式化描述什么是拉普拉斯算子,并证明拉普拉斯算子具有旋转不变性质
(二维平面内的旋转变换计算公式为 x ′ = x c o s θ − y s i n θ , y = x s i n θ + y c o s θ x'=xcosθ-ysinθ,y=xsinθ+ycosθ x=xcosθysinθy=xsinθ+ycosθ)
证明:
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

4.推导出随机数生成方程

假设我们有一个[0,1]上的均匀分布随机数发生器U(0,1), 请基于它构造指数分布的随机数发生器,推导出随机数生成方程。
若我们有一个标准正态分布的随机数发生器N(0,1),请推导出对数正态分布的随机数生成方程。
解: (1) 设U(0,1)可生成随机数 w ∈ [ 0 , 1 ] w\in [0,1] w[0,1],用它生成具有指数分布的随机数z,则其分布具有形式 F ( z ) = 1 − e − a z , z ≥ 0 F(z)=1-e^{-az},z\ge 0 F(z)=1eazz0
令F(z)=w,解得: z = − 1 a l n [ 1 − U ( 0 , 1 ) ] z=-\frac{1}{a}ln[1-U(0,1)] z=a1ln[1U(0,1)]
(2) 设N(0,1)可生成随机数 w ∈ [ 0 , 1 ] w\in [0,1] w[0,1],用它生成具有正态分布的随机数z,则其分布具有形式 F ( z ) = ∫ 0 z 1 2 π b F(z)=\int_{0}^{z}\frac{1}{\sqrt{2\pi b}} F(z)=0z2πb 1 e − [ l n ( v ) − a ] 2 2 b 2 d v e^{-\frac{[ln(v)-a]^{2}}{2b^{2}}}dv e2b2[ln(v)a]2dv
令F(z)=w,解得: z = e b w + a z=e^{bw+a} z=ebw+a
z = e b N ( 0 , 1 ) + a z=e^{bN(0,1)+a} z=ebN(0,1)+a

5. 快速小波变换分解与重建

在分析信号时小波分解与重建是一个重要的工具,离散 haar 小波是一种重要而简单J1/5 n=0.1的小波,它的尺度与小波向量分别为

  • (1)现在假设我们有一个长度为8的信号f[1,-3,3,1,2,0,-2,1],利用快速哈尔小波变换进行三层的分解,计算各层的滤波器输出。
  • (2)若利用哈尔小波对某个信号进行三层的分解的滤波器输出
    W = [ W φ ( 1 , 0 ) , W φ ( 1 , 0 ) , W φ ( 2 , 0 ) , W φ ( 2 , 1 ) , W φ ( 3 , 0 ) , W φ ( 3 , 1 ) , W φ ( 3 , 2 ) , W φ ( 3 , 3 ) ] = [ 1 , 1 , − 1 , − 1 , 1 , 0 , 1 , 0 ] W=[W_{\varphi }(1,0),W_{\varphi }(1,0),W_{\varphi }(2,0),W_{\varphi }(2,1),W_{\varphi }(3,0),W_{\varphi }(3,1),W_{\varphi }(3,2),W_{\varphi }(3,3)]=[ 1,1,-1,-1,1,0,1,0] W=[Wφ(1,0),Wφ(1,0),Wφ(2,0),Wφ(2,1),Wφ(3,0),Wφ(3,1),Wφ(3,2),Wφ(3,3)]=[1,1,1,1,1,0,1,0],请计算重建原来的信号。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1349858.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

上海亚商投顾:三大指数红盘收官!沪指今年累计跌3.7%

上海亚商投顾前言&#xff1a;无惧大盘涨跌&#xff0c;解密龙虎榜资金&#xff0c;跟踪一线游资和机构资金动向&#xff0c;识别短期热点和强势个股。 一.市场情绪 A股12月29日迎来2023年收官之战&#xff0c;三大股指延续反弹走势&#xff0c;最终集体红盘报收。纵观全年&am…

CMake入门教程【基础篇】CMake+vs2022+nmake构建项目

文章目录 1.vs编译器下载安装2.运行nmake测试3.CMake下载安装4.运行CMake测试5.使用CMakeNMake构建项目代码目录代码实现 6.运行项目 1.vs编译器下载安装 下载地址 :https://visualstudio.microsoft.com/zh-hans/vs/ 点击截图处下载 勾选红框的内容即可 安装 2.运行nmak…

echarts手动触发气泡的显示和隐藏

点击echarts图表后将点击的那个进行突出显示 <template><div id"demo"> </div><el-button type"primary" click"set">设置</el-button><el-button type"primary" click"cancel">取消&…

数据结构与算法教程,数据结构C语言版教程!(第二部分、线性表详解:数据结构线性表10分钟入门)四

第二部分、线性表详解&#xff1a;数据结构线性表10分钟入门 线性表&#xff0c;数据结构中最简单的一种存储结构&#xff0c;专门用于存储逻辑关系为"一对一"的数据。 线性表&#xff0c;基于数据在实际物理空间中的存储状态&#xff0c;又可细分为顺序表&#xff…

嵌入式视频播放器(mplayer)

1.文件准备&#xff1a; MPlayer-1.0rc2.tar.bz2 libmad-0.15.1b.tar.gz 直接Git到本地 git clone https://gitee.com/zxz_FINE/mplayer_tarball.git 2.文件夹准备&#xff1a; src存放解压后的源码文件&#xff0c;target_Mplayer存放编译安装的目标文件 mkdir src targe…

自动驾驶论文

文章目录 一、Convolutional Social Pooling for Vehicle Trajectory Prediction二、QCNet&#xff1a;Query-Centric Trajectory Prediction三、VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation 一、Convolutional Social Pooling for Vehicl…

Ts自封装WebSocket心跳重连

WebSocket是一种在单个TCP连接上进行全双工通信的协议&#xff0c;允许客户端和服务器之间进行双向实时通信。 所谓心跳机制&#xff0c;就是在长时间不使用WebSocket连接的情况下&#xff0c;通过服务器与客户端之间按照一定时间间隔进行少量数据的通信来达到确认连接稳定的手…

【快速全面掌握 WAMPServer】12.WAMPServer 故障排除经验大总结

网管小贾 / sysadm.cc 众所周知&#xff0c;搞开发需要先搭建相应的编程和调试环境。 对于 PHPer 来说&#xff0c;很多像我一样的新手小白们入门的时候&#xff0c;通常会选择一些集成开发环境包&#xff0c;其中就有 WampServer 。 集成环境包被许多人所诟病&#xff0c;说…

防火墙-访问控制、安全审计、网络设备防护检查表

防火墙标准检查表 项目管理、开发全文档获取&#xff1a;软件项目开发全套文档下载_软件项目技术实现文档-CSDN博客 1、访问控制类检查 2、安全审计类检查 3、网络设备防护类检查 防火墙标准检查表 分类 测评项 预期结果 访问控制 应在网络边界部署访问控制设备&#xf…

QT的信号与槽

QT的信号与槽 文章目录 QT的信号与槽前言一、QT 打印"hello QT"的dome二、信号和槽机制&#xff1f;二、信号与槽的用法1、QT5的方式1. 无参的信号与槽的dome2.带参的信号与槽dome 2、QT4的方式3、C11的语法 Lambda表达式1、函数对象参数2、操作符重载函数参数3、可修…

爬虫实战-微博评论爬取

简介 最近在做NLP方面的研究&#xff0c;以前一直在做CV方面。最近由于chatgpt&#xff0c;所以对NLP就非常感兴趣。索性就开始研究起来了。 其实我们都知道&#xff0c;无论是CV方向还是NLP方向的模型实现&#xff0c;都是离不开数据的。哪怕是再先进的代码&#xff0c;都是…

红队攻防实战之DC2

吾愿效法古圣先贤&#xff0c;使成千上万的巧儿都能在21世纪的中华盛世里&#xff0c;丰衣足食&#xff0c;怡然自得 0x01 信息收集: 1.1 端口探测 使用nmap工具 可以发现开放了80端口&#xff0c;网页服务器但是可以看出做了域名解析&#xff0c;所以需要在本地完成本地域名…

车载毫米波雷达及芯片新趋势研究3--自动驾驶、国产替代与外延场景需求快速增长打开市场空间

3.1 多传感器融合路线优势将不断扩大&#xff0c;引发更多毫米波雷达及芯片需求  纯视觉自动驾驶路线是通过以光学摄像头为传感器结合大量算法训练以模拟人类视觉驾驶为逻辑的自动驾驶方案。 纯视觉方案“轻硬件、重软件”&#xff0c;由其采用的摄像头成本较低&#xff0c;…

大数据Doris(四十五):物化视图选择最优

文章目录 物化视图选择最优 物化视图选择最优 下面详细解释一下第一步最优物化视图是被如何选择出来的。 这里分为两个步骤: 对候选集合进行一个过滤。只要是查询的结果能从物化视图数据计算(取部分行,部分列,或部分行列的聚合)出都可以留在候选集中,过滤完成后候选集合…

vmware安装openEuler 22.03 LTS操作系统

vmware安装openEuler 22.03 LTS操作系统 1、下载openEuler操作系统镜像文件2、安装openEuler操作系统3、配置openEuler操作系统3.1、配置静态IP地址 和 dns3.2、查看磁盘分区3.3、查看系统版本 1、下载openEuler操作系统镜像文件 官网下载链接 链接: https://www.openeuler.or…

2024年PMP考试新考纲-PMBOK第七版-【模型、方法和工件】真题解析(4)

今天是2024年1月2日&#xff0c;2024年年的第一个工作日&#xff0c;祝大家愉快、进步&#xff01;我们继续来看第七版PMBOK第四部分【模型、方法和工件】这个章节相关的真题。 这几天有几个小伙伴问华研荟&#xff0c;是不是一定要先看PMP的教材&#xff08;这里的教材指的是…

洛谷 P1160 队列安排

题目描述 一个学校里老师要将班上 N 个同学排成一列&#xff0c;同学被编号为 1∼N&#xff0c;他采取如下的方法&#xff1a; 先将 11 号同学安排进队列&#xff0c;这时队列中只有他一个人&#xff1b; 2∼N 号同学依次入列&#xff0c;编号为 i 的同学入列方式为&#xff…

基于Flutter构建小型新闻App

目录 1. 概述 1.1 功能概述 1.2 技术准备 1.3 源码地址 2. App首页 2.1 pubspec依赖 2.2 热门首页组件 2.2.1 DefaultTabController 2.2.2 Swiper 2.3 新闻API数据访问 2.4 热门首页效果图 3. 新闻分类 3.1 GestureDetector 3.2 新闻分类效果图 4. 收藏功能 4…

【快速全面掌握 WAMPServer】11.安装 PHP 扩展踩过的坑

网管小贾 / sysadm.cc 我们在调试程序代码时&#xff0c;总会遇到一些 PHP 项目需要某些扩展组件。 而在 WAMPServer 下通常的 PHP 扩展的安装也不算有多麻烦。 具体关于 PHP 扩展的区分&#xff08;比如安全线程或非安全线程&#xff09;&#xff0c;以及怎么安装小伙伴们可…

多任务并行处理相关面试题

我自己面试时被问过两次多任务并行相关的问题&#xff1a; 假设现在有10个任务&#xff0c;要求同时处理&#xff0c;并且必须所有任务全部完成才返回结果 这个面试题的难点是&#xff1a; 既然要同时处理&#xff0c;那么肯定要用多线程。怎么设计多线程同时处理任务呢&…