STM32CubeMX教程14 ADC - 多通道DMA转换

news2025/1/11 23:46:15

目录

1、准备材料

2、实验目标

3、实验流程

3.0、前提知识

3.1、CubeMX相关配置

3.1.1、时钟树配置

3.1.2、外设参数配置

3.1.3、外设中断配置

3.2、生成代码

3.2.1、外设初始化调用流程

3.2.2、外设中断调用流程

3.2.3、添加其他必要代码

4、常用函数

5、烧录验证

5.1、实验具体流程

5.2、实验现象

6、注释详解


1、准备材料

开发板(正点原子stm32f407探索者开发板V2.4)

STM32CubeMX软件(Version 6.10.0)

野火DAP仿真器

keil µVision5 IDE(MDK-Arm)

CH340G Windows系统驱动程序(CH341SER.EXE)

XCOM V2.6串口助手

三个滑动变阻器

2、实验目标

使用STM32CubeMX软件配置STM32F407开发板的ADC实现ADC多通道DMA采集,具体为使用ADC_IN5/6/7三个通道进行DMA连续ADC转换

3、实验流程

3.0、前提知识

“STM32CubeMX教程13 ADC - 单通道转换”实验中提到过,规则通道只有一个16位的数据寄存器,因此规则通道同时只能转换一个ADC通道,而且每次转化完一个ADC通道就需要及时从数据寄存器中取出转化的数据,否则会被后面转化完毕的通道数据覆盖

这个时间非常短,一般不采用像单通道转化中使用的中断中提取处理每个单通道的数据的方法,而是采用DMA连续转化的方法,将多通道转化完毕之后,在DMA的数据存储中将采集到的所有通道的数据一起处理

ADC是利用片上的模数转换器将外部的模拟量转化为数字量存储到内存中,因此数据方向应该为从外设到内存,而且只有这一种方向,因此可知ADC的DMA方向也只有外设到内存一种

从之前的“STM32CubeMX DMA 直接内存读取”实验中我们可知ADC1的DMA通道有DMA2_Stream0 CH0和DMA2_Stream4 CH0两个通道

ADC的DMA请求模式一般选择循环模式,在多通道ADC采集时,配合使能扫描转化模式,这样就可以连续转化多通道而不停止

由于ADC采集后的数据一般需要存储在内存中,因此在选择地址递增时,ADC外设地址不增加,内存地址选择递增

使用HAL_ADC_Start_DMA以DMA方式启动ADC采集需要指定存储的内存首地址,从函数的定义可知其为uint32_t*类型,因此在DMA配置时我们需要选择的数据宽度为字Word

3.1、CubeMX相关配置

请阅读“STM32CubeMX教程1 工程建立”实验3.4.1小节配置RCC和SYS

3.1.1、时钟树配置

系统时钟树配置均设置为STM32F407总线能达到的最高时钟频率,具体如下图所示

3.1.2、外设参数配置

本实验需要需要初始化USART1作为输出信息渠道,具体配置步骤请阅读“STM32CubeMX教程9 USART/UART 异步通信”

设置TIM3通用定时器溢出时间100ms,外部触发事件选择更新事件,参数详解请阅读“STM32CubeMX教程6 TIM 通用定时器 - 生成PWM波”实验,具体配置如下图所示

在Pinout & Configuration页面左边功能分类栏目Analog中单击其中ADC1,勾选IN5/6/7三个通道,在下方的参数设置中以上个实验为模板修改部分参数

①使能连续转换模式,因此现在需要转换5/6/7三个通道,因此使能该模式之后,在规则通道转换为其中一个通道后就会接收转换下一个通道

②使能DMA连续转换请求,该参数的使能需要在配置完DMA请求之后才可选,配合参数①可以实现连续不间断的对三个通道数据进行采集

③结束转换选择EOC flag at the end of all conversions,该参数表示当转换完毕一组ADC中的所有通道之后再产生EOC标志,进入中断

④规则通道转换数量现在为3,对应三个不同的通道,通道转换顺序及每个通道的采样时间由Rank及其下参数决定

具体参数配置如下图所示

单击Configuration中的DMA Settings选项卡对ADC1的DMA请求进行设置,单击ADD按键增加DMA请求,这里可选的只有一个ADC1

选择想要使用的DMA Stream,并设置优先级,将DMA请求模式设置为循环模式,外设地址不增加,内存地址递增,数据宽度选择字Word

为何如此配置? 请阅读本实验“3.0、前提知识”,如下图所示为ADC1的DMA请求具体设置

3.1.3、外设中断配置

在Pinout & Configuration页面左边System Core/NVIC中勾选DMA2 Stream0 全局中断,然后选择合适的中断优先级即可

注意这里没有勾选ADC1/2/3的全局中断,因为外设DMA中断使用的回调函数和外设本身中断的回调函数一般是同一个回调函数(为什么?请阅读本实验3.2.2小节),如果同时开始两者中断可能会导致重复进入中断函数

但是有些外设使用DMA时必须开启自身的中断,不同外设情况不一样

建议在外设使用DMA时,尽量不开启外设全局中断,必须开启的可以禁用外设主要事件源产生的硬件中断(注释1)

上述步骤如下图所示

3.2、生成代码

请阅读 “STM32CubeMX教程1 工程建立”实验3.4.3小节配置Project Manager

单击页面右上角GENERATE CODE生成工程

3.2.1、外设初始化调用流程

首先在生成的工程主函数main()中调用MX_DMA_Init()函数对ADC1用到的DMA时钟及其流的中断进行了配置

然后调用MX_ADC1_Init()函数对ADC1的基本参数、通道和通道参数进行了配置,并调用了HAL_ADC_Init()使用配置的参数初始化了ADC1

在初始化函数HAL_ADC_Init()中又调用了HAL_ADC_MspInit()函数,在该函数中使能了ADC1/GPIOA的时钟,对ADC1_IN5/6/7的输入引脚做了复用设置,然后对ADC1的DMA参数配置并进行了初始化

具体的ADC DMA初始化调用流程如下图所示

3.2.2、外设中断调用流程

CubeMX中勾选DMA2_Stream0的全局中断后,会在stm32f4xx_it.c中增加DMA的中断服务函数DMA2_Stream0_IRQHandler()

在中断服务函数DMA2_Stream0_IRQHandler()中调用了HAL库的DMA全局中断处理函数,该函数中根据各种标志判断DMA传输完成/失败/一半完成等事件,然后根据不同的事件调用不同的回调函数,这里DMA传输完成之后调用了hdma->->XferCpltCal1back()

上述过程如下图所示

这个函数指针在以DMA方式启动ADC采集时被指向DMA传输完成回调ADC_DMAConvCplt()函数

在该DMA传输完成回调ADC_DMAConvCplt()函数中最终调用了ADC采集完成回调HAL_ADC_ConvCpltCallback()函数,该函数上一个实验我们重新实现过

上述过程如下图所示

之前所有的外设回调函数都是直接调用了HAL库提前准备好的虚函数,比如ADC的采集完成回调函数HAL_ADC_ConvCpltCallback(),用户直接实现该虚函数即可

但是DMA不是一个外设,而是数据传输手段,大多数外设都可以使用,因此DMA的各种事件回调函数不是一个真正的函数,而是一个函数指针

当我们以DMA传输的方式启动某个外设的时候,就会将该外设对应事件的中断服务函数地址赋值给对应事件DMA中断回调函数指针

3.2.3、添加其他必要代码

在主函数中以DMA的方式启动ADC采集传输,然后启动ADC1的触发源TIM3定时器,具体代码如下图所示

在adc.c中重新实现DMA传输完成回调函数,在该函数中取出ADC转换完成的三通道采集值,然后处理并通过串口输出,具体代码如下图所示

一些定义及函数源代码如下

/*main.c中的全局变量定义*/
uint32_t DataBuffer[BATCH_DATA_LEN];

/*main.h中的变量外扩及宏定义*/
#define BATCH_DATA_LEN 3
extern uint32_t DataBuffer[BATCH_DATA_LEN];

/*DMA转换完成中断回调*/
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc)
{
    /*定时器DMA启动多通道转换*/
    uint32_t val=0,Volt=0;
    for(uint8_t i=0;i<BATCH_DATA_LEN;i++)
    {
        val=DataBuffer[i];
        Volt=(3300*val)>>12;
        printf("ADC_IN%d, val:%d, Volt:%d\r\n",i+5,val,Volt);
    }
    printf("\r\n");
}

4、常用函数

/*以DMA方式启动ADC采集*/
HAL_StatusTypeDef HAL_ADC_Start_DMA(ADC_HandleTypeDef *hadc, uint32_t *pData, uint32_t Length)

/*结束以DMA方式启动的ADC采集*/
HAL_StatusTypeDef HAL_ADC_Stop_DMA(ADC_HandleTypeDef *hadc)

5、烧录验证

5.1、实验具体流程

“USART1配置 -> TIM3定时器及触发源配置 -> ADC1多通道及参数配置 -> ADC1的DMA传输参数配置 -> DMA2 Stream0全局中断配置 -> 重新实现DMA传输完成回调函数HAL_ADC_ConvCpltCallback() -> 主函数中启动触发源定时器及以DMA方式启动ADC采集”

5.2、实验现象

烧录程序,单片机上电之后,串口不断的输出三个通道的ADC采集值,笔者将三个滑动变阻器按照通道5、通道6和通道7的顺序,分别从一端缓慢拧到另一端,可以从串口输出的数据看到,通道5/6/7三个通道采集到的ADC数据从最大4095慢慢变到最小值0

6、注释详解

注释1:详细内容请阅读STM32Cube高效开发教程(基础篇)14.5.1小节内容

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1349674.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

PE解释器之PE文件结构

PE文件是由许许多多的结构体组成的&#xff0c;程序在运行时就会通过这些结构快速定位到PE文件的各种资源&#xff0c;其结构大致如图所示&#xff0c;从上到下依次是Dos头、Nt头、节表、节区和调试信息(可选)。其中Dos头、Nt头和节表在本文中统称为PE文件头(因为SizeOfHeaders…

虚幻UE 材质-PDO像素深度偏移量

2024年的第一天&#xff01;&#xff01;&#xff01;大家新年快乐&#xff01;&#xff01;&#xff01; 可能是长大了才知道 当你过得一般 你的亲朋好友对你真正态度只可能是没有表露出来的冷嘲热讽了 希望大家新的一年平安、幸福、 永远活力满满地追求自己所想做的、爱做的&…

影视后期:PR 调色处理,灰片还原,校色偏色素材

灰片还原 确定拍摄灰片的相机型号品牌官网下载专用log文件LUT-浏览-导入slog3分析亮部波形-增加画面对比分析矢量示波器-提高整体饱和 校正LUT可以将前期拍摄的log色彩模式的视频转换为成709色彩模式&#xff0c;即将灰度视频转换为正常效果(灰片还原) 各个相机有对应的校正L…

跟着cherno手搓游戏引擎【3】事件系统和预编译头文件

不多说了直接上代码&#xff0c;课程中的架构讲的比较宽泛&#xff0c;而且有些方法写完之后并未测试。所以先把代码写完。理解其原理&#xff0c;未来使用时候会再此完善此博客。 文件架构&#xff1a; Event.h:核心基类 #pragma once #include"../Core.h" #inclu…

javaScript中的常用事件

文章目录 javaScript中什么是事件&#xff1f;基本原理javaScript中的时间使用1&#xff0c;窗口事件1.1、onblur1.2、onfocus1.3、onload1.4、onresize 2&#xff0c;表单事件2.1、onchange2.2、**oninput**2.3、oninvalid2.4、onselect2.5、onsubmit 3&#xff0c;键盘事件3.…

最优化总结

最优化 引入问题例1 运输问题例2 生产计划问题例3 指派问题例4 数据拟合问题 线性规划向量和矩阵范数拟合线性拟合非线性拟合 无约束最优化问题的基本思想实验plot函数meshgrid函数linprog函数 引入问题 例1 运输问题 例2 生产计划问题 例3 指派问题 例4 数据拟合问题 线性规划…

BGP路由知识点

目录 1.BGP的工作原理&#xff1a; 2.BGP路由的一般格式&#xff1a; 3.三种不同的自治系统AS 4.BGP的路由选择 5.BGP的四种报文 BGP&#xff08;Border Gateway Protocol&#xff09;是一种用于自治系统&#xff08;AS&#xff09;之间的路由选择协议。它是互联网中最常用…

如何确保云中高可用?聊聊F5分布式云DNS负载均衡

在当今以应用为中心的动态化市场中&#xff0c;企业面临着越来越大的压力&#xff0c;不仅需要提供客户所期望的信息、服务和体验&#xff0c;而且要做到快速、可靠和安全。DNS是网络基础设施的重要组成部分&#xff0c;拥有一个可用的、智能的、安全和可扩展的DNS基础设施是至…

面试高频算法专题:数组的双指针思想及应用(算法村第三关白银挑战)

所谓的双指针其实就是两个变量&#xff0c;不一定真的是指针。 快慢指针&#xff1a;一起向前走对撞指针、相向指针&#xff1a;从两头向中间走背向指针&#xff1a;从中间向两头走 移除值为val的元素 题目描述 27. 移除元素 - 力扣&#xff08;LeetCode&#xff09; 给你…

IoT 物联网常用协议

物联网协议是指在物联网环境中用于设备间通信和数据传输的协议。根据不同的作用&#xff0c;物联网协议可分为传输协议、通信协议和行业协议。 传输协议&#xff1a;一般负责子网内设备间的组网及通信。例如 Wi-Fi、Ethernet、NFC、 Zigbee、Bluetooth、GPRS、3G/4G/5G等。这些…

ArkTS - @Prop、@Link

一、作用 Prop 装饰器 和Link装饰器都是父组件向子组件传递参数&#xff0c;子组件接收父组件参数的时候用的&#xff0c;变量前边需要加上Prop或者Link装饰器即可。&#xff08;跟前端vue中父组件向子组件传递参数类似&#xff09; // 子组件 Component struct SonCom {Prop…

python实现Ethernet/IP协议的客户端(二)

Ethernet/IP是一种工业自动化领域中常用的网络通信协议&#xff0c;它是基于标准以太网技术的应用层协议。作为工业领域的通信协议之一&#xff0c;Ethernet/IP 提供了一种在工业自动化设备之间实现通信和数据交换的标准化方法。python要实现Ethernet/IP的客户端&#xff0c;可…

影视后期: PR调色处理,调色工具面板介绍

写在前面 整理一些影视后期的相关笔记博文为 Pr 调色处理&#xff0c;涉及调色工具面板简单认知包括 lumetri 颜色和范围面板理解不足小伙伴帮忙指正 元旦快乐哦 _ 名词解释 饱和度 是指色彩的鲜艳程度&#xff0c;也被称为色彩的纯度。具体来说&#xff0c;它表示色相中灰色…

python实现平滑线性滤波器——数字图像处理

原理&#xff1a; 平滑线性滤波器是一种在图像处理中广泛使用的工具&#xff0c;主要用于降低图像噪声或模糊细节。这些滤波器的核心原理基于对图像中每个像素及其邻域像素的线性组合。 邻域平均&#xff1a; 平滑线性滤波器通过对目标像素及其周围邻域像素的强度值取平均来工…

Linux驱动学习—ioctl接口

1、unlock_ioctl和ioctl有什么区别&#xff1f; kernel 2.6.36 中已经完全删除了struct file_operations 中的ioctl 函数指针&#xff0c;取而代之的是unlocked_ioctl 。ioctl是老的内核版本中的驱动API&#xff0c;unlock_ioctl是当下常用的驱动API。unlocked_ioctl 实际上取…

易舟云财务软件使用教程【文章目录】

易舟云财务软件使用教程【文章目录】 1、财务软件导论2、易舟云财务软件3、财务软件原理4、账套5、会计凭证6、资金日记账7、发票8、员工工资9、固定资产10、期末处理(结转与结账)11、会计账簿12、财务报表13、财务软件设置 1、财务软件导论 财务软件导论 2、易舟云财务软件 …

STM32与TB6612电机驱动器的基础入门教程

TB6612是一款常用的双路直流电机驱动芯片&#xff0c;适用于小型机器人以及其他需要控制电机方向和转速的应用。在STM32微控制器的配合下&#xff0c;可以实现对TB6612电机驱动器的控制&#xff0c;进而实现电机的控制。本文将带领读者一步步了解如何搭建基于STM32与TB6612的电…

Android 13 - Media框架(29)- MediaCodec(四)

上一节我们了解了如何通过 onInputBufferAvailable 和 getInputBuffer 获取到 input buffer index&#xff0c;接下来我们一起学习上层如何拿到buffer并且向下写数据的。 1、获取 input Buffer 获取 MediaCodec 中的 buffer 有两种方式&#xff0c;一种是调用 getInputBuffers…

Linux:/proc/sys/vm/目录各文件详解

目录 前言一、/proc/sys/vm/目录各文件二、相关功能的API函数 前言 /proc/sys/vm/ 目录是 Linux 系统中的一个特殊目录&#xff0c;它包含了与虚拟内存子系统相关的系统内核参数。这些参数可以用来配置系统的虚拟内存管理策略&#xff0c;包括内存分配、页面置换、内存压缩、NU…

【软件工程】航行敏捷之路:深度解析Scrum框架的精髓

&#x1f34e;个人博客&#xff1a;个人主页 &#x1f3c6;个人专栏&#xff1a; 软件工程 ⛳️ 功不唐捐&#xff0c;玉汝于成 目录 前言 正文 Scrum&#xff08;敏捷开发框架之一&#xff09; 详细介绍和解释&#xff1a; 优缺点&#xff1a; 优点&#xff1a; 缺点&…