设计模式—单例模式 / DCL失效问题 / 暴力破解单例 (反射/序列化)

news2024/11/27 21:48:37
单例模式
    • 杂谈
      • 前提
      • 饿汉模式:
      • 懒汉模式:
        • 线程不安全
        • 线程安全
      • 双重锁懒汉模式(Double Check Lock)
      • 静态内部类模式
      • 枚举单例

杂谈

和同学在聚会的时候聊起设计模式,聊完之后发现我对自己的设计模式的看法貌似存在误解,当我看到设计模式的外衣,我就误以为我已经发现了它的内在!
原因是聊到—单例模式的时候,我就觉得,这有啥好讲的,不就是%&&……&%,那么简单吗,结果同学问了我 DCL失效问题 是什么?静态内部类是线程安全的吗?为什么?…然后,就没有然后了…

发现一篇贼六的博客,引用了~(中间加上点自己的观点,也顺便排版了一下,强迫症标识有点受不了博主的排版),后续暴力破解单例为原创,可供大家参考。

原文链接:https://blog.csdn.net/mnb65482/article/details/80458571

前提

首先我们要先了解下单例的四大原则:

  1. 构造私有。
  2. 以静态方法或者枚举返回实例。
  3. 确保实例只有一个,尤其是多线程环境。
  4. 确保反序列换时不会重新构建对象。

我们常用的单例模式有:

饿汉模式、懒汉模式、双重锁懒汉模式、静态内部类模式、枚举模式,我们来逐一分析下这些模式的区别。

饿汉模式:
public class SingleTon{
 	private static SingleTon INSTANCE = new SingleTon();
 	private SingleTon(){}
	public static SingleTon getInstance(){ return INSTANCE; }
}
12345
public class SingleTon{  
    private SingleTon INSTANCE = null;  
    static {  
    INSTANCE = new SingleTon();  
    }  
    private SingleTon(){}  
    public static SingleTon getInstance() {  
    return this.INSTANCE ;  
    }  
}
12345678910

饿汉模式在类被初始化时就已经在内存中创建了对象,以空间换时间,故不存在线程安全问题。

懒汉模式:
线程不安全
public class SingleTon{
   private static SingleTon  INSTANCE = null;
   private SingleTon(){}
   public static SingleTon getInstance() {  
   if(INSTANCE == null){
      INSTANCE = new SingleTon(); 
    } 
    return INSTANCE}
}
12345678910
线程安全
public class SingleTon{  
    private static SingleTon INSTANCE = null;
    private SingleTon(){}  
    public static synchronized SingleTongetInstance() {  
    if (INSTANCE == null) {  
        INSTANCE  = new SingleTon();  
    }  
    return INSTANCE ;  
    }  
} 
12345678910

懒汉模式在方法被调用后才创建对象,以时间换空间,在多线程环境下存在风险

双重锁懒汉模式(Double Check Lock)
public class SingleTon{
  private static SingleTon  INSTANCE = null;
  private SingleTon(){}
  public static SingleTon getInstance(){if(INSTANCE == null){
   synchronized(SingleTon.class){
     if(INSTANCE == null){ 
        INSTANCE = new SingleTon();
       } 
     } 
        return INSTANCE; 
    } 
  }
}
12345678910111213

DCL模式的优点就是,只有在对象需要被使用时才创建,第一次判断 INSTANCE == null为了避免非必要加锁,当第一次加载时才对实例进行加锁再实例化。这样既可以节约内存空间,又可以保证线程安全。但是,由于jvm存在乱序执行功能,DCL也会出现线程不安全的情况。具体分析如下:

INSTANCE  = new SingleTon(); 
1

这个步骤,其实在jvm里面的执行分为三步:

  1. 在堆内存开辟内存空间。
  2. 在堆内存中实例化SingleTon里面的各个参数。
  3. 把对象指向堆内存空间。

由于jvm存在乱序执行功能,所以可能在2还没执行时就先执行了3(CPU 是根据时间片段抢时间执行的),如果此时再被切换到线程B上,由于执行了3,INSTANCE 已经非空了,会被直接拿出来用,这样的话,就会出现异常。这个就是著名的DCL失效问题。

不过在JDK1.5之后,官方也发现了这个问题,故而具体化了 volatile (解决指令重排序的问题) 即在JDK1.6及以后,只要定义为private volatile static SingleTon  INSTANCE = null;就可解决DCL失效问题。 volatile确保INSTANCE每次均在主内存中读取,这样虽然会牺牲一点效率,但也无伤大雅。

静态内部类模式
public class SingleTon{
  private SingleTon(){}
 
  private static class SingleTonHoler{
     private static SingleTon INSTANCE = new SingleTon();
 }
 
  public static SingleTon getInstance(){
    return SingleTonHoler.INSTANCE;
  }
}
1234567891011

静态内部类的优点是:外部类加载时并不需要立即加载内部类,内部类不被加载则不去初始化INSTANCE,故而不占内存。

即当SingleTon第一次被加载时,并不需要去加载 SingleTonHoler,只有当 getInstance()方法第一次被调用时,才会去初始化 INSTANCE ,第一次调用 getInstance() 方法会导致虚拟机加载 SingleTonHoler 类,这种方法不仅能确保线程安全,也能保证单例的唯一性,同时也延迟了单例的实例化。

那么,静态内部类又是如何实现线程安全的呢?首先,我们先了解下类的加载时机。
类加载时机:JAVA虚拟机在有且仅有的5种场景下会对类进行初始化。

  1. 遇到new、getstatic、setstatic或者invokestatic这4个字节码指令时,对应的java代码场景为:new一个关键字或者一个实例化对象时、读取或设置一个静态字段时(final修饰、已在编译期把结果放入常量池的除外)、调用一个类的静态方法时。

  2. 使用java.lang.reflect包的方法对类进行反射调用的时候,如果类没进行初始化,需要先调用其初始化方法进行初始化。

  3. 当初始化一个类时,如果其父类还未进行初始化,会先触发其父类的初始化。

  4. 当虚拟机启动时,用户需要指定一个要执行的主类(包含main()方法的类),虚拟机会先初始化这个类。

  5. 当使用JDK 1.7等动态语言支持时,如果一个java.lang.invoke.MethodHandle实例最后的解析结果REF_getStatic、REF_putStatic、REF_invokeStatic的方法句柄,并且这个方法句柄所对应的类没有进行过初始化,则需要先触发其初始化。

    这5种情况被称为是类的主动引用,注意,这里《虚拟机规范》中使用的限定词是"有且仅有",那么,除此之外的所有引用类都不会对类进行初始化,称为被动引用。静态内部类就属于被动引用的行列。

我们再回头看下 getInstance() 方法,调用的是 SingleTonHoler.INSTANCE,取的是SingleTonHole r里的 INSTANCE 对象,跟上面那个DCL方法不同的是,getInstance()方法并没有多次去new对象,故不管多少个线程去调用getInstance()方法,取的都是同一个INSTANCE对象,而不用去重新创建。

当getInstance()方法被调用时,SingleTonHoler才在SingleTon的运行时常量池里,把符号引用替换为直接引用,这时静态对象INSTANCE也真正被创建,然后再被getInstance()方法返回出去,这点同饿汉模式。那么INSTANCE在创建过程中又是如何保证线程安全的呢?在《深入理解JAVA虚拟机》中,有这么一句话:

虚拟机会保证一个类的()方法在多线程环境中被正确地加锁、同步,如果多个线程同时去初始化一个类,那么只会有一个线程去执行这个类的()方法,其他线程都需要阻塞等待,直到活动线程执行()方法完毕。

如果在一个类的()方法中有耗时很长的操作,就可能造成多个进程阻塞(需要注意的是,其他线程虽然会被阻塞,但如果执行()方法后,其他线程唤醒之后不会再次进入()方法。同一个加载器下,一个类型只会初始化一次。),在实际应用中,这种阻塞往往是很隐蔽的。

故而,可以看出INSTANCE在创建过程中是线程安全的,所以说静态内部类形式的单例可保证线程安全,也能保证单例的唯一性,同时也延迟了单例的实例化。

那么,是不是可以说静态内部类单例就是最完美的单例模式了呢?其实不然,静态内部类也有着一个致命的缺点,就是传参的问题,由于是静态内部类的形式去创建单例的,故外部无法传递参数进去,例如Context这种参数,所以,我们创建单例时,可以在静态内部类与DCL模式里自己斟酌。

枚举单例
public class SingleTon{

    public static SingleTon getInstance() {
        return Elvis.INSTANCE.getInstance();
    }

    private enum Elvis {
        INSTANCE;
        private SingleTon singleton;

        Elvis() {
            singleton = new SingleTon();
        }

        private SingleTon getInstance() {
            return singleton;
        }
    }
}
12345678910111213141516171819

外部的调用方法

SingleTon.getInstance
1

其实枚举的本质静态块创建了对象,而外部声明了对它的引用。

当一个Java类第一次被真正使用到的时候静态资源将会被初始化、Java类的加载和初始化过程都是线程安全的(因为虚拟机在加载枚举的类的时候,会使用ClassLoader的loadClass方法,而这个方法使用同步代码块保证了线程安全)。

枚举类实现单例模式是 effective java 作者极力推荐的单例实现模式,因为枚举类型是线程安全的,并且只会装载一次,设计者充分的利用了枚举的这个特性来实现单例模式,枚举的写法非常简单,而且枚举类型是所用单例实现中唯一一种不会被破坏的单例实现模式。

怎样破坏单例?反序列化会破坏单例!!!反射可以暴力破解单例!!!

普通的Java类的反序列化过程中,会通过反射调用类的默认构造函数来初始化对象。所以,即使单例中构造函数是私有的,也会被反射给破坏掉。由于反序列化后的对象是重新new出来的,所以这就破坏了单例。

一般单例模式可以在构造方法里面增加判断单例对象是否被创建,防止反射破解。

序列化就是说把内存中的状态通过转换成字节码的形式
从而转换一个IO流,写入到其他地方(可以是磁盘、网络IO)
内存中状态给永久保存下来了

反序列化
讲已经持久化的字节码内容,转换为IO流
通过IO流的读取,进而将读取的内容转换为Java对象
在转换过程中会重新创建对象new
12345678

核心可参考 ObjectInputStream.java

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
需要在单例里面重写readResolve方法,并且返回单例的对象就避免序列化破解单例了。
但是重写readResolve方法只不过是覆盖了反序列化处来的对象,本质还是创建了两次,之前反序列化出来的对象会被GC回收。

Java中有明确规定,

枚举的序列化和反序列化是有特殊定制的。
并且枚举是无法通过反射实现。

所以利用枚举能避免这个问题。

参考资料:
《深入理解JAVA虚拟机》
《Android源码设计模式解析与实战》
《java虚拟机规范》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1349168.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

00-开篇导读:学习分库分表开源框架的正确方法

1 前言 互联网高速发展带来海量的信息化数据,也带来更多的技术挑战。各种智能终端设备(比如摄像头或车载设备等)以每天千万级的数据量上报业务数据,电商、社交等互联网行业更不必说。这样量级的数据处理,已经远不是传…

IO进程线程 day1 IO基础+标准IO

1、使用fgets统计一个文件的行号 #include <stdio.h> #include<string.h> #include<stdlib.h> int main(int argc, const char *argv[]) {FILE *fpNULL;if((fpfopen("1.c","r"))NULL){return -1;}int count0;char buf;while(buf!EOF){b…

消息队列LiteQueue

文章目录 一、简介二、设计2.1 队列结构设计2.2 队列接口设计 三、实现3.1 队列锁的实现3.2 创建队列3.3 写入队列3.4 读出数据3.5 判断队列是否为空3.6 判断队列是否为满3.7 清空队列3.8 删除队列 四、测试参考 一、简介 收到消息时先把接收到的消息放到队列中。在任务中从队…

360高级java面试真题

今年IT寒冬&#xff0c;大厂都裁员或者准备裁员&#xff0c;作为开猿节流主要目标之一&#xff0c;我们更应该时刻保持竞争力。为了抱团取暖&#xff0c;林老师开通了《知识星球》&#xff0c;并邀请我阿里、快手、腾讯等的朋友加入&#xff0c;分享八股文、项目经验、管理经验…

问界M9激光雷达解说

什么是激光雷达 激光雷达(英文:Lidar),是一种通过发射激光束来测量目标位置、速度等特征量的雷达系统。其工作原理是将激光光束照射到目标物体上,然后通过测量激光光束从发射到反射回来的时间,来计算目标物体的距离、位置、速度等参数。激光雷达通常用于测量地形、地貌、…

关键字:throw关键字

在 Java 中&#xff0c;throw关键字用于抛出异常。当程序执行过程中发生意外情况&#xff0c;如错误的输入、资源不足、错误的逻辑等&#xff0c;导致程序无法正常执行下去时&#xff0c;可以使用throw关键字抛出异常。 以下是使用throw关键字的一些示例&#xff1a; 抛出异常…

事务失效的十种常见场景

学习事务失效场景 1 概述 事务的传播类型isolationTransactionnal注解属性 事务方法未被Spring管理方法使用final类型修饰非public修饰的方法同一个类中的方法相互调用方法的事务传播类型不支持事务异常被内部catch&#xff0c;程序生吞异常数据库不支持事务未配置开启事务错…

用python做猴子摘桃的题目,java猴子爬台阶算法

本篇文章给大家谈谈猴子爬山算法java完整代码&#xff0c;以及用python做猴子摘桃的题目&#xff0c;希望对各位有所帮助&#xff0c;不要忘了收藏本站喔。 """ 一天一只猴子想去从山脚爬到山顶&#xff0c;途中经过一个有N个台阶的阶梯&#xff0c;但是这猴子有…

Matlab技巧[绘画逻辑分析仪产生的数据]

绘画逻辑分析仪产生的数据 逻分上抓到了ADC数字信号,一共是10Bit,12MHZ的波形: 这里用并口协议已经解析出数据: 导出csv表格数据(这个数据为补码,所以要做数据转换): 现在要把这个数据绘制成波形,用Python和表格直接绘制速度太慢了,转了一圈发现MATLAB很好用,操作方法如下:…

Koordinator 助力云原生应用性能提升:小红书混部技术实践

作者&#xff1a;宋泽辉&#xff08;小红书&#xff09;、张佐玮&#xff08;阿里云&#xff09; 编者按&#xff1a; Koordinator 是一个开源项目&#xff0c;是基于阿里巴巴内部多年容器调度、混部实践经验孵化诞生&#xff0c;是行业首个生产可用、面向大规模场景的开源混…

科荣AIO UtilServlet存在任意文件读取漏洞

文章目录 产品简介漏洞概述指纹识别漏洞利用修复建议 产品简介 科荣AIO是一款企业管理软件&#xff0c;提供企业一体化管理解决方案。它整合了ERP&#xff08;如进销存、财务管理&#xff09;、OA&#xff08;办公自动化&#xff09;、CRM&#xff08;客户关系管理&#xff09…

MySQL 数值函数,字符串函数与多表查询

MySQL像其他语言一样,也提供了很多库函数,分为单行函数和分组函数(聚合函数),我们这里先简易介绍一些函数,熟悉就行,知道怎么使用即可. 数值函数 三角函数 指数与对数函数 进制间的转换函数 字符串函数 注:LPAD函数是右对齐,RPAD函数是左对齐 多表查询 注:如果为表起了别名,就…

微服务(11)

目录 51.pod的重启策略是什么&#xff1f; 52.描述一下pod的生命周期有哪些状态&#xff1f; 53.创建一个pod的流程是什么&#xff1f; 54.删除一个Pod会发生什么事情&#xff1f; 55.k8s的Service是什么&#xff1f; 51.pod的重启策略是什么&#xff1f; 可以通过命令kub…

47、激活函数 - sigmoid

今天在看一个比较常见的激活函数,叫作 sigmoid 激活函数,它的数学表达式为: 其中,x 为输入,画出图来看更直观一些。 Sigmoid 函数的图像看起来像一个 S 形曲线,我们先分析一下这个函数的特点。 Sigmoid 函数的输出范围在 (0, 1) 之间,并且不等于0或1。 Sigmoid 很明显是…

每日算法打卡:递归实现指数型枚举 day 1

文章目录 原题链接题目描述输入格式输出格式数据范围输入样例&#xff1a;输出样例&#xff1a; 题目分析 原题链接 92. 递归实现指数型枚举 题目难度&#xff1a;简单 题目描述 从 1 ∼ n 1 \sim n 1∼n 这 n 个整数中随机选取任意多个&#xff0c;输出所有可能的选择方案…

字节高级Java面试真题

今年IT寒冬&#xff0c;大厂都裁员或者准备裁员&#xff0c;作为开猿节流主要目标之一&#xff0c;我们更应该时刻保持竞争力。为了抱团取暖&#xff0c;林老师开通了《知识星球》&#xff0c;并邀请我阿里、快手、腾讯等的朋友加入&#xff0c;分享八股文、项目经验、管理经验…

240101-5步MacOS自带软件无损快速导出iPhone照片

硬件准备&#xff1a; iphone手机Mac电脑数据线 操作步骤&#xff1a; Step 1: 找到并打开MacOS自带的图像捕捉 Step 2: 通过数据线将iphone与电脑连接Step 3&#xff1a;iphone与电脑提示“是否授权“&#xff1f; >>> “是“Step 4&#xff1a;左上角选择自己的设…

C++程序编译

GCC编译器 文章目录 GCC编译器 源文件 为 Main.cpp 注意cpp文件 一定要用g命令 否则没办法执行 预处理&#xff08;Pre-Processing&#xff09;&#xff1a;首先会经过预处理器将程序中的预编译指令进行处理&#xff0c;然后把源文件中的注释这些没用的东西都给扬了。 g -E Mai…

数据结构期末复习(3)栈和队列

堆栈&#xff08;stack&#xff09; 堆栈&#xff08;stack&#xff09;是一种基于后进先出&#xff08;LIFO&#xff0c;Last In First Out&#xff09;原则的数据结构。它模拟了现实生活中的堆栈&#xff0c;类似于一摞盘子或一堆书。 堆栈有两个基本操作&#xff1a;入栈&a…

StratifiedKFold解释和代码实现

StratifiedKFold解释和代码实现 文章目录 一、StratifiedKFold是什么&#xff1f;二、 实验数据设置2.1 实验数据生成代码2.2 代码结果 三、实验代码3.1 实验代码3.2 实验结果3.3 结果解释3.4 数据打乱对这种交叉验证的影响。 四、总结 一、StratifiedKFold是什么&#xff1f; …