牛客网SQL训练5—SQL大厂面试真题

news2024/11/30 6:43:17

文章目录

  • 一、某音短视频
    • 1.各个视频的平均完播率
    • 2.平均播放进度大于60%的视频类别
    • 3.每类视频近一个月的转发量/率
    • 4.每个创作者每月的涨粉率及截止当前的总粉丝量
    • 5.国庆期间每类视频点赞量和转发量
    • 6.近一个月发布的视频中热度最高的top3视频
  • 二、用户增长场景(某度信息流)
    • 1.2021年11月每天的人均浏览文章时长
    • 2.每篇文章同一时刻最大在看人数
    • 3.2021年11月每天新用户的次日留存率
    • 4.统计活跃间隔对用户分级结果
    • 5.每天的日活数及新用户占比
    • 6.连续签到领金币
  • 三、电商场景(某东商城)
    • 1.计算商城中2021年每月的GMV
    • 2.统计2021年10月每个退货率不大于0.5的商品各项指标
    • 3.某店铺的各商品毛利率及店铺整体毛利率
    • 4.零食类商品中复购率top3高的商品
    • 5.10月的新户客单价和获客成本
    • 6.店铺901国庆期间的7日动销率和滞销率
  • 四、出行场景(某滴打车)
    • 1.2021年国庆在北京接单3次及以上的司机统计信息
    • 2.有取消订单记录的司机平均评分
    • 3.每个城市中评分最高的司机信息
    • 4.国庆期间近7日日均取消订单量
    • 5.工作日各时段叫车量、等待接单时间和调度时间
    • 6.各城市最大同时等车人数
  • 五、某宝店铺分析(电商模式)
    • 1.某宝店铺的SPU数量
    • 2.某宝店铺的实际销售额与客单价
    • 3.某宝店铺折扣率
    • 4.某宝店铺动销率与售罄率
    • 5.某宝店铺连续2天及以上购物的用户及其对应的天数
  • 六、牛客直播课分析(在线教育行业)
    • 1.牛客直播转换率
    • 2.牛客直播开始时各直播间在线人数
    • 3.牛客直播各科目平均观看时长
    • 4.牛客直播各科目出勤率
    • 5.牛客直播各科目同时在线人数
  • 七、某乎问答(内容行业)
    • 1.某乎问答11月份日人均回答量
    • 2.某乎问答高质量的回答中用户属于各级别的数量
    • 3.某乎问答单日回答问题数大于等于3个的所有用户
    • 4.某乎问答回答过教育类问题的用户里有多少用户回答
    • 5.某乎问答最大连续回答问题天数大于等于3天的用户


一、某音短视频

1.各个视频的平均完播率

题目:计算2021年里有播放记录的每个视频的完播率(结果保留三位小数),并按完播率降序排序

--输入:
DROP TABLE IF EXISTS tb_user_video_log, tb_video_info;
CREATE TABLE tb_user_video_log (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    uid INT NOT NULL COMMENT '用户ID',
    video_id INT NOT NULL COMMENT '视频ID',
    start_time datetime COMMENT '开始观看时间',
    end_time datetime COMMENT '结束观看时间',
    if_follow TINYINT COMMENT '是否关注',
    if_like TINYINT COMMENT '是否点赞',
    if_retweet TINYINT COMMENT '是否转发',
    comment_id INT COMMENT '评论ID'
) CHARACTER SET utf8 COLLATE utf8_bin;

CREATE TABLE tb_video_info (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    video_id INT UNIQUE NOT NULL COMMENT '视频ID',
    author INT NOT NULL COMMENT '创作者ID',
    tag VARCHAR(16) NOT NULL COMMENT '类别标签',
    duration INT NOT NULL COMMENT '视频时长(秒数)',
    release_time datetime NOT NULL COMMENT '发布时间'
)CHARACTER SET utf8 COLLATE utf8_bin;

INSERT INTO tb_user_video_log(uid, video_id, start_time, end_time, if_follow, if_like, if_retweet, comment_id) VALUES
  (101, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:30', 0, 1, 1, null),
  (102, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:24', 0, 0, 1, null),
  (103, 2001, '2021-10-01 11:00:00', '2021-10-01 11:00:34', 0, 1, 0, 1732526),
  (101, 2002, '2021-09-01 10:00:00', '2021-09-01 10:00:42', 1, 0, 1, null),
  (102, 2002, '2021-10-01 11:00:00', '2021-10-01 11:00:30', 1, 0, 1, null);

INSERT INTO tb_video_info(video_id, author, tag, duration, release_time) VALUES
  (2001, 901, '影视', 30, '2021-01-01 7:00:00'),
  (2002, 901, '美食', 60, '2021-01-01 7:00:00'),
  (2003, 902, '旅游', 90, '2021-01-01 7:00:00');

在这里插入图片描述

select
	a.video_id
	,round(avg(if(TIMESTAMPDIFF(second,a.start_time,a.end_time)>=b.duration,1,0)),3) as avg_comp_play_rate
from tb_user_video_log  a
join tb_video_info b
on a.video_id=b.video_id
where year(start_time)='2021'
group by a.video_id
order by avg_comp_play_rate desc

在这里插入图片描述

2.平均播放进度大于60%的视频类别

题目:计算各类视频的平均播放进度,将进度大于60%的类别输出。

--输入:
DROP TABLE IF EXISTS tb_user_video_log, tb_video_info;
CREATE TABLE tb_user_video_log (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    uid INT NOT NULL COMMENT '用户ID',
    video_id INT NOT NULL COMMENT '视频ID',
    start_time datetime COMMENT '开始观看时间',
    end_time datetime COMMENT '结束观看时间',
    if_follow TINYINT COMMENT '是否关注',
    if_like TINYINT COMMENT '是否点赞',
    if_retweet TINYINT COMMENT '是否转发',
    comment_id INT COMMENT '评论ID'
) CHARACTER SET utf8 COLLATE utf8_bin;

CREATE TABLE tb_video_info (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    video_id INT UNIQUE NOT NULL COMMENT '视频ID',
    author INT NOT NULL COMMENT '创作者ID',
    tag VARCHAR(16) NOT NULL COMMENT '类别标签',
    duration INT NOT NULL COMMENT '视频时长(秒数)',
    release_time datetime NOT NULL COMMENT '发布时间'
)CHARACTER SET utf8 COLLATE utf8_bin;

INSERT INTO tb_user_video_log(uid, video_id, start_time, end_time, if_follow, if_like, if_retweet, comment_id) VALUES
  (101, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:30', 0, 1, 1, null),
  (102, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:24', 0, 0, 1, null),
  (103, 2001, '2021-10-01 11:00:00', '2021-10-01 11:00:34', 0, 1, 0, 1732526),
  (101, 2002, '2021-09-01 10:00:00', '2021-09-01 10:00:42', 1, 0, 1, null),
  (102, 2002, '2021-10-01 11:00:00', '2021-10-01 11:00:30', 1, 0, 1, null);

INSERT INTO tb_video_info(video_id, author, tag, duration, release_time) VALUES
  (2001, 901, '影视', 30, '2021-01-01 7:00:00'),
  (2002, 901, '美食', 60, '2021-01-01 7:00:00'),
  (2003, 902, '旅游', 90, '2021-01-01 7:00:00');

在这里插入图片描述

select 
	aa.tag
	,concat(avg_play_progress,'%') as avg_play_progress
from(
			select 
				b.tag
				,round(avg(if(TIMESTAMPDIFF(second,a.start_time,a.end_time)>b.duration,100,TIMESTAMPDIFF(second,a.start_time,a.end_time)/b.duration*100)),2) as avg_play_progress
			from tb_user_video_log a
			join tb_video_info b
			on a.video_id=b.video_id
			group by b.tag
) aa
where aa.avg_play_progress>60
order by avg_play_progress desc

在这里插入图片描述

3.每类视频近一个月的转发量/率

题目:统计在有用户互动的最近一个月(按包含当天在内的近30天算,比如10月31日的近30天为10.2~10.31之间的数据)中,每类视频的转发量和转发率(保留3位小数)。

--输入:
DROP TABLE IF EXISTS tb_user_video_log, tb_video_info;
CREATE TABLE tb_user_video_log (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    uid INT NOT NULL COMMENT '用户ID',
    video_id INT NOT NULL COMMENT '视频ID',
    start_time datetime COMMENT '开始观看时间',
    end_time datetime COMMENT '结束观看时间',
    if_follow TINYINT COMMENT '是否关注',
    if_like TINYINT COMMENT '是否点赞',
    if_retweet TINYINT COMMENT '是否转发',
    comment_id INT COMMENT '评论ID'
) CHARACTER SET utf8 COLLATE utf8_bin;

CREATE TABLE tb_video_info (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    video_id INT UNIQUE NOT NULL COMMENT '视频ID',
    author INT NOT NULL COMMENT '创作者ID',
    tag VARCHAR(16) NOT NULL COMMENT '类别标签',
    duration INT NOT NULL COMMENT '视频时长(秒数)',
    release_time datetime NOT NULL COMMENT '发布时间'
)CHARACTER SET utf8 COLLATE utf8_bin;

INSERT INTO tb_user_video_log(uid, video_id, start_time, end_time, if_follow, if_like, if_retweet, comment_id) VALUES
  (101, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:30', 0, 1, 1, null),
  (102, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:24', 0, 0, 1, null),
  (103, 2001, '2021-10-01 11:00:00', '2021-10-01 11:00:34', 0, 1, 0, 1732526),
  (101, 2002, '2021-09-01 10:00:00', '2021-09-01 10:00:42', 1, 0, 1, null),
  (102, 2002, '2021-10-01 11:00:00', '2021-10-01 11:00:30', 1, 0, 1, null);

INSERT INTO tb_video_info(video_id, author, tag, duration, release_time) VALUES
  (2001, 901, '影视', 30, '2021-01-01 7:00:00'),
  (2002, 901, '美食', 60, '2021-01-01 7:00:00'),
  (2003, 902, '旅游', 90, '2021-01-01 7:00:00');

在这里插入图片描述

select 
	aa.tag
	,if_retweet_cnt as retweet_cut	
	,round(if_retweet_cnt/play_cnt,3) as retweet_rate
from(
			select 
				b.tag
				,sum(a.if_retweet) as if_retweet_cnt
				,count(a.start_time) as play_cnt
			from tb_user_video_log a
			join tb_video_info b
			on a.video_id=b.video_id
			where date(a.start_time)>(select DATE_SUB(date(max(start_time)),INTERVAL 30 day) from tb_user_video_log)
			group by b.tag
) aa 
order by retweet_rate desc

在这里插入图片描述

4.每个创作者每月的涨粉率及截止当前的总粉丝量

题目:计算2021年里每个创作者每月的涨粉率及截止当月的总粉丝量。

--输入:
DROP TABLE IF EXISTS tb_user_video_log, tb_video_info;
CREATE TABLE tb_user_video_log (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    uid INT NOT NULL COMMENT '用户ID',
    video_id INT NOT NULL COMMENT '视频ID',
    start_time datetime COMMENT '开始观看时间',
    end_time datetime COMMENT '结束观看时间',
    if_follow TINYINT COMMENT '是否关注',
    if_like TINYINT COMMENT '是否点赞',
    if_retweet TINYINT COMMENT '是否转发',
    comment_id INT COMMENT '评论ID'
) CHARACTER SET utf8 COLLATE utf8_bin;

CREATE TABLE tb_video_info (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    video_id INT UNIQUE NOT NULL COMMENT '视频ID',
    author INT NOT NULL COMMENT '创作者ID',
    tag VARCHAR(16) NOT NULL COMMENT '类别标签',
    duration INT NOT NULL COMMENT '视频时长(秒数)',
    release_time datetime NOT NULL COMMENT '发布时间'
)CHARACTER SET utf8 COLLATE utf8_bin;

INSERT INTO tb_user_video_log(uid, video_id, start_time, end_time, if_follow, if_like, if_retweet, comment_id) VALUES
  (101, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:30', 0, 1, 1, null),
  (102, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:24', 0, 0, 1, null),
  (103, 2001, '2021-10-01 11:00:00', '2021-10-01 11:00:34', 0, 1, 0, 1732526),
  (101, 2002, '2021-09-01 10:00:00', '2021-09-01 10:00:42', 1, 0, 1, null),
  (102, 2002, '2021-10-01 11:00:00', '2021-10-01 11:00:30', 1, 0, 1, null);

INSERT INTO tb_video_info(video_id, author, tag, duration, release_time) VALUES
  (2001, 901, '影视', 30, '2021-01-01 7:00:00'),
  (2002, 901, '美食', 60, '2021-01-01 7:00:00'),
  (2003, 902, '旅游', 90, '2021-01-01 7:00:00');

在这里插入图片描述

select 
	aa.author
	,aa.month
	,round(aa.fans_cnt/aa.play_cnt,3) as fans_growth_rate
	,sum(aa.fans_cnt) over(partition by aa.author order by aa.month)  as total_fans
from(
			select 
				b.author
				,DATE_FORMAT(a.start_time,'%Y-%m') as month
				,sum(if(if_follow=2,-1,if_follow)) as fans_cnt
				,count(a.start_time) as play_cnt
			from tb_user_video_log a
			join tb_video_info b
			on a.video_id=b.video_id
			where year(a.start_time)='2021'
			group by b.author,DATE_FORMAT(a.start_time,'%Y-%m')
) aa
order by aa.author,total_fans 

在这里插入图片描述

5.国庆期间每类视频点赞量和转发量

题目:统计2021年国庆头3天每类视频每天的近一周总点赞量和一周内最大单天转发量,结果按视频类别降序、日期升序排序。假设数据库中数据足够多,至少每个类别下国庆头3天及之前一周的每天都有播放记录。

--输入:
DROP TABLE IF EXISTS tb_user_video_log, tb_video_info;
CREATE TABLE tb_user_video_log (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    uid INT NOT NULL COMMENT '用户ID',
    video_id INT NOT NULL COMMENT '视频ID',
    start_time datetime COMMENT '开始观看时间',
    end_time datetime COMMENT '结束观看时间',
    if_follow TINYINT COMMENT '是否关注',
    if_like TINYINT COMMENT '是否点赞',
    if_retweet TINYINT COMMENT '是否转发',
    comment_id INT COMMENT '评论ID'
) CHARACTER SET utf8 COLLATE utf8_bin;

CREATE TABLE tb_video_info (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    video_id INT UNIQUE NOT NULL COMMENT '视频ID',
    author INT NOT NULL COMMENT '创作者ID',
    tag VARCHAR(16) NOT NULL COMMENT '类别标签',
    duration INT NOT NULL COMMENT '视频时长(秒数)',
    release_time datetime NOT NULL COMMENT '发布时间'
)CHARACTER SET utf8 COLLATE utf8_bin;

INSERT INTO tb_user_video_log(uid, video_id, start_time, end_time, if_follow, if_like, if_retweet, comment_id) VALUES
   (101, 2001, '2021-09-24 10:00:00', '2021-09-24 10:00:20', 1, 1, 0, null)
  ,(105, 2002, '2021-09-25 11:00:00', '2021-09-25 11:00:30', 0, 0, 1, null)
  ,(102, 2002, '2021-09-25 11:00:00', '2021-09-25 11:00:30', 1, 1, 1, null)
  ,(101, 2002, '2021-09-26 11:00:00', '2021-09-26 11:00:30', 1, 0, 1, null)
  ,(101, 2002, '2021-09-27 11:00:00', '2021-09-27 11:00:30', 1, 1, 0, null)
  ,(102, 2002, '2021-09-28 11:00:00', '2021-09-28 11:00:30', 1, 0, 1, null)
  ,(103, 2002, '2021-09-29 11:00:00', '2021-09-29 11:00:30', 1, 0, 1, null)
  ,(102, 2002, '2021-09-30 11:00:00', '2021-09-30 11:00:30', 1, 1, 1, null)
  ,(101, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:20', 1, 1, 0, null)
  ,(102, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:15', 0, 0, 1, null)
  ,(103, 2001, '2021-10-01 11:00:50', '2021-10-01 11:01:15', 1, 1, 0, 1732526)
  ,(106, 2002, '2021-10-02 10:59:05', '2021-10-02 11:00:05', 2, 0, 1, null)
  ,(107, 2002, '2021-10-02 10:59:05', '2021-10-02 11:00:05', 1, 0, 1, null)
  ,(108, 2002, '2021-10-02 10:59:05', '2021-10-02 11:00:05', 1, 1, 1, null)
  ,(109, 2002, '2021-10-03 10:59:05', '2021-10-03 11:00:05', 0, 1, 0, null);

INSERT INTO tb_video_info(video_id, author, tag, duration, release_time) VALUES
   (2001, 901, '旅游', 30, '2020-01-01 7:00:00')
  ,(2002, 901, '旅游', 60, '2021-01-01 7:00:00')
  ,(2003, 902, '影视', 90, '2020-01-01 7:00:00')
  ,(2004, 902, '美女', 90, '2020-01-01 8:00:00');
select 
	a3.tag
	,a3.dt
	,a3.sum_like_cnt_7d
	,a3.max_retweet_cnt_7d
from(
			select 
					aa.tag
					,aa.dt
					,sum(aa.if_like_cnt) over(partition by aa.tag order by aa.dt desc rows between current row and 6 following) as sum_like_cnt_7d
					,max(aa.if_retweet_cnt) over(partition by aa.tag order by aa.dt desc rows between current row and 6 following) as max_retweet_cnt_7d
			from(
						select 
							b.tag
							,date(a.start_time) as dt
							,sum(a.if_like) as if_like_cnt
							,sum(a.if_retweet) as if_retweet_cnt
						from tb_user_video_log a
						join tb_video_info b
						on a.video_id=b.video_id
						where date(a.start_time) BETWEEN '2021-09-25' AND '2021-10-03'
						group by b.tag,date(a.start_time)
			) aa
) a3
where a3.dt BETWEEN '2021-10-01'  and '2021-10-03'
order by a3.tag desc,a3.dt 

6.近一个月发布的视频中热度最高的top3视频

题目:找出近一个月发布的视频中热度最高的top3视频。

--输入:
DROP TABLE IF EXISTS tb_user_video_log, tb_video_info;
CREATE TABLE tb_user_video_log (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    uid INT NOT NULL COMMENT '用户ID',
    video_id INT NOT NULL COMMENT '视频ID',
    start_time datetime COMMENT '开始观看时间',
    end_time datetime COMMENT '结束观看时间',
    if_follow TINYINT COMMENT '是否关注',
    if_like TINYINT COMMENT '是否点赞',
    if_retweet TINYINT COMMENT '是否转发',
    comment_id INT COMMENT '评论ID'
) CHARACTER SET utf8 COLLATE utf8_bin;

CREATE TABLE tb_video_info (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    video_id INT UNIQUE NOT NULL COMMENT '视频ID',
    author INT NOT NULL COMMENT '创作者ID',
    tag VARCHAR(16) NOT NULL COMMENT '类别标签',
    duration INT NOT NULL COMMENT '视频时长(秒数)',
    release_time datetime NOT NULL COMMENT '发布时间'
)CHARACTER SET utf8 COLLATE utf8_bin;

INSERT INTO tb_user_video_log(uid, video_id, start_time, end_time, if_follow, if_like, if_retweet, comment_id) VALUES
   (101, 2001, '2021-09-24 10:00:00', '2021-09-24 10:00:30', 1, 1, 1, null)
  ,(101, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:31', 1, 1, 0, null)
  ,(102, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:35', 0, 0, 1, null)
  ,(103, 2001, '2021-10-03 11:00:50', '2021-10-03 11:01:35', 1, 1, 0, 1732526)
  ,(106, 2002, '2021-10-02 10:59:05', '2021-10-02 11:00:04', 2, 0, 1, null)
  ,(107, 2002, '2021-10-02 10:59:05', '2021-10-02 11:00:06', 1, 0, 0, null)
  ,(108, 2002, '2021-10-02 10:59:05', '2021-10-02 11:00:05', 1, 1, 1, null)
  ,(109, 2002, '2021-10-03 10:59:05', '2021-10-03 11:00:01', 0, 1, 0, null)
  ,(105, 2002, '2021-09-25 11:00:00', '2021-09-25 11:00:30', 1, 0, 1, null)
  ,(101, 2003, '2021-09-26 11:00:00', '2021-09-26 11:00:30', 1, 0, 0, null)
  ,(101, 2003, '2021-09-30 11:00:00', '2021-09-30 11:00:30', 1, 1, 0, null);

INSERT INTO tb_video_info(video_id, author, tag, duration, release_time) VALUES
   (2001, 901, '旅游', 30, '2021-09-05 7:00:00')
  ,(2002, 901, '旅游', 60, '2021-09-05 7:00:00')
  ,(2003, 902, '影视', 90, '2021-09-05 7:00:00')
  ,(2004, 902, '影视', 90, '2021-09-05 8:00:00');

在这里插入图片描述

select 
	aa.video_id
	,round((100*com_play_rate+5*like_cnt+3*comment_cnt+2*retweet_cnt)/(TIMESTAMPDIFF(day,rec_paly_date,cur_date)+1),0) as hot_index
from(
			select
				a.video_id
				,avg(if(TIMESTAMPDIFF(second,a.start_time,a.end_time)>=b.duration,1,0)) as com_play_rate
				,sum(a.if_like) as like_cnt
				,count(a.comment_id) as comment_cnt
				,sum(a.if_retweet) as retweet_cnt
				,max(date(a.end_time)) as rec_paly_date
				,max(date(b.release_time)) as rec_release_date
				,max(cur_date) as cur_date
			from tb_user_video_log a
			join tb_video_info b
			on a.video_id=b.video_id
			left join (select max(date(start_time)) as cur_date from tb_user_video_log)c on 1
			group by a.video_id
			having TIMESTAMPDIFF(day,rec_release_date,cur_date)<30
) aa
order by hot_index desc
limit 3

在这里插入图片描述

二、用户增长场景(某度信息流)

1.2021年11月每天的人均浏览文章时长

题目:统计2021年11月每天的人均浏览文章时长(秒数),结果保留1位小数,并按时长由短到长排序。

--输入:
DROP TABLE IF EXISTS tb_user_log;
CREATE TABLE tb_user_log (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    uid INT NOT NULL COMMENT '用户ID',
    artical_id INT NOT NULL COMMENT '视频ID',
    in_time datetime COMMENT '进入时间',
    out_time datetime COMMENT '离开时间',
    sign_in TINYINT DEFAULT 0 COMMENT '是否签到'
) CHARACTER SET utf8 COLLATE utf8_bin;

INSERT INTO tb_user_log(uid, artical_id, in_time, out_time, sign_in) VALUES
  (101, 9001, '2021-11-01 10:00:00', '2021-11-01 10:00:31', 0),
  (102, 9001, '2021-11-01 10:00:00', '2021-11-01 10:00:24', 0),
  (102, 9002, '2021-11-01 11:00:00', '2021-11-01 11:00:11', 0),
  (101, 9001, '2021-11-02 10:00:00', '2021-11-02 10:00:50', 0),
  (102, 9002, '2021-11-02 11:00:01', '2021-11-02 11:00:24', 0);

在这里插入图片描述

select 
	date(in_time) as dt
	,round(sum(TIMESTAMPDIFF(second,in_time,out_time))/count(distinct uid),1) as avg_viiew_len_sec
from tb_user_log
where artical_id <>0 and DATE_FORMAT(in_time,'%Y-%m')='2021-11'
group by date(in_time) 
order by avg_viiew_len_sec

在这里插入图片描述

2.每篇文章同一时刻最大在看人数

题目:统计每篇文章同一时刻最大在看人数,如果同一时刻有进入也有离开时,先记录用户数增加再记录减少,结果按最大人数降序。

--输入:
DROP TABLE IF EXISTS tb_user_log;
CREATE TABLE tb_user_log (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    uid INT NOT NULL COMMENT '用户ID',
    artical_id INT NOT NULL COMMENT '视频ID',
    in_time datetime COMMENT '进入时间',
    out_time datetime COMMENT '离开时间',
    sign_in TINYINT DEFAULT 0 COMMENT '是否签到'
) CHARACTER SET utf8 COLLATE utf8_bin;

INSERT INTO tb_user_log(uid, artical_id, in_time, out_time, sign_in) VALUES
  (101, 9001, '2021-11-01 10:00:00', '2021-11-01 10:00:11', 0),
  (102, 9001, '2021-11-01 10:00:09', '2021-11-01 10:00:38', 0),
  (103, 9001, '2021-11-01 10:00:28', '2021-11-01 10:00:58', 0),
  (104, 9002, '2021-11-01 11:00:45', '2021-11-01 11:01:11', 0),
  (105, 9001, '2021-11-01 10:00:51', '2021-11-01 10:00:59', 0),
  (106, 9002, '2021-11-01 11:00:55', '2021-11-01 11:01:24', 0),
  (107, 9001, '2021-11-01 10:00:01', '2021-11-01 10:01:50', 0);

在这里插入图片描述

select 
	a2.artical_id
	,max(a2.sum_diff) as max_uv
from (
		select 
			a.artical_id
			,a.dt
			,sum(diff) over(partition by a.artical_id order by a.dt,a.diff desc) as sum_diff
		from(
					select 
						artical_id
						,in_time as dt
						,1 as diff
					from tb_user_log
					where artical_id<>0
					union all
					select 
						artical_id
						,out_time as dt
						,-1 as diff
					from tb_user_log
					where artical_id<>0
		) a 
) a2
group by a2.artical_id
order by max_uv desc

在这里插入图片描述

3.2021年11月每天新用户的次日留存率

题目:统计2021年11月每天新用户的次日留存率(保留2位小数)

--输入:
DROP TABLE IF EXISTS tb_user_log;
CREATE TABLE tb_user_log (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    uid INT NOT NULL COMMENT '用户ID',
    artical_id INT NOT NULL COMMENT '视频ID',
    in_time datetime COMMENT '进入时间',
    out_time datetime COMMENT '离开时间',
    sign_in TINYINT DEFAULT 0 COMMENT '是否签到'
) CHARACTER SET utf8 COLLATE utf8_bin;

INSERT INTO tb_user_log(uid, artical_id, in_time, out_time, sign_in) VALUES
  (101, 0, '2021-11-01 10:00:00', '2021-11-01 10:00:42', 1),
  (102, 9001, '2021-11-01 10:00:00', '2021-11-01 10:00:09', 0),
  (103, 9001, '2021-11-01 10:00:01', '2021-11-01 10:01:50', 0),
  (101, 9002, '2021-11-02 10:00:09', '2021-11-02 10:00:28', 0),
  (103, 9002, '2021-11-02 10:00:51', '2021-11-02 10:00:59', 0),
  (104, 9001, '2021-11-02 10:00:28', '2021-11-02 10:00:50', 0),
  (101, 9003, '2021-11-03 11:00:55', '2021-11-03 11:01:24', 0),
  (104, 9003, '2021-11-03 11:00:45', '2021-11-03 11:00:55', 0),
  (105, 9003, '2021-11-03 11:00:53', '2021-11-03 11:00:59', 0),
  (101, 9002, '2021-11-04 11:00:55', '2021-11-04 11:00:59', 0);

在这里插入图片描述

select 
	a.min_in_date as dt
	,round(count(b.uid)/count(a.uid),2) as uv_rate
from(
		-- 每天新用户表
		select
			uid
			,min(date(in_time)) as min_in_date
		from tb_user_log
		group by uid
) a left join(
				-- 用户活跃表
				select 
					uid
					,date(in_time) as date
				from tb_user_log
				union
				select 
					uid
					,date(out_time) as date
				from tb_user_log
) b on a.uid=b.uid and min_in_date = DATE_SUB(date,INTERVAL 1 day)
where DATE_FORMAT(a.min_in_date,'%Y-%m')='2021-11'
group by a.min_in_date
order by dt

在这里插入图片描述

4.统计活跃间隔对用户分级结果

题目:统计活跃间隔对用户分级后,各活跃等级用户占比,结果保留两位小数,且按占比降序排序。

--输入:
DROP TABLE IF EXISTS tb_user_log;
CREATE TABLE tb_user_log (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    uid INT NOT NULL COMMENT '用户ID',
    artical_id INT NOT NULL COMMENT '视频ID',
    in_time datetime COMMENT '进入时间',
    out_time datetime COMMENT '离开时间',
    sign_in TINYINT DEFAULT 0 COMMENT '是否签到'
) CHARACTER SET utf8 COLLATE utf8_bin;

INSERT INTO tb_user_log(uid, artical_id, in_time, out_time, sign_in) VALUES
  (109, 9001, '2021-08-31 10:00:00', '2021-08-31 10:00:09', 0),
  (109, 9002, '2021-11-04 11:00:55', '2021-11-04 11:00:59', 0),
  (108, 9001, '2021-09-01 10:00:01', '2021-09-01 10:01:50', 0),
  (108, 9001, '2021-11-03 10:00:01', '2021-11-03 10:01:50', 0),
  (104, 9001, '2021-11-02 10:00:28', '2021-11-02 10:00:50', 0),
  (104, 9003, '2021-09-03 11:00:45', '2021-09-03 11:00:55', 0),
  (105, 9003, '2021-11-03 11:00:53', '2021-11-03 11:00:59', 0),
  (102, 9001, '2021-10-30 10:00:00', '2021-10-30 10:00:09', 0),
  (103, 9001, '2021-10-21 10:00:00', '2021-10-21 10:00:09', 0),
  (101, 0, '2021-10-01 10:00:00', '2021-10-01 10:00:42', 1);

在这里插入图片描述

select 
	a3.user_grade
	,round(count(a3.uid)/max(a3.user_cnt),2) as ratio
from(
		select 
			a2.uid
			,a2.user_cnt
			,case when last_dt_diff>=30 then '流失用户'
						when last_dt_diff>=7 then '沉睡用户'
						when first_dt_diff<7 then '新晋用户'
						else '忠实用户' end as user_grade
	-- 						when last_dt_diff<7 then '忠实用户'
	-- 						else null end as user_grade
		from(
					select 
						a.uid 
						,TIMESTAMPDIFF(day,first_dt,cur_dt) as first_dt_diff  -- 最早活跃日期间隔
						,TIMESTAMPDIFF(day,last_dt,cur_dt) as last_dt_diff  	-- 最晚活跃日期间隔
						,b.user_cnt
					from(
								select 							
									uid
									,min(date(in_time)) as first_dt  -- 最早活跃日期
									,max(date(out_time)) as last_dt  -- 最晚活跃日期
								from tb_user_log
								group by uid
					) a left join(
												select 
													max(date(out_time)) as cur_dt     -- 当前日期
													,count(distinct uid) as user_cnt  -- 所有用户数
												from tb_user_log
					) b on 1		
		) a2
) a3
group by a3.user_grade
order by ratio desc

在这里插入图片描述

5.每天的日活数及新用户占比

题目:统计每天的日活数及新用户占比

--输入:
DROP TABLE IF EXISTS tb_user_log;
CREATE TABLE tb_user_log (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    uid INT NOT NULL COMMENT '用户ID',
    artical_id INT NOT NULL COMMENT '视频ID',
    in_time datetime COMMENT '进入时间',
    out_time datetime COMMENT '离开时间',
    sign_in TINYINT DEFAULT 0 COMMENT '是否签到'
) CHARACTER SET utf8 COLLATE utf8_bin;

INSERT INTO tb_user_log(uid, artical_id, in_time, out_time, sign_in) VALUES
  (101, 9001, '2021-10-31 10:00:00', '2021-10-31 10:00:09', 0),
  (102, 9001, '2021-10-31 10:00:00', '2021-10-31 10:00:09', 0),
  (101, 0, '2021-11-01 10:00:00', '2021-11-01 10:00:42', 1),
  (102, 9001, '2021-11-01 10:00:00', '2021-11-01 10:00:09', 0),
  (108, 9001, '2021-11-01 10:00:01', '2021-11-01 10:01:50', 0),
  (108, 9001, '2021-11-02 10:00:01', '2021-11-02 10:01:50', 0),
  (104, 9001, '2021-11-02 10:00:28', '2021-11-02 10:00:50', 0),
  (106, 9001, '2021-11-02 10:00:28', '2021-11-02 10:00:50', 0),
  (108, 9001, '2021-11-03 10:00:01', '2021-11-03 10:01:50', 0),
  (109, 9002, '2021-11-03 11:00:55', '2021-11-03 11:00:59', 0),
  (104, 9003, '2021-11-03 11:00:45', '2021-11-03 11:00:55', 0),
  (105, 9003, '2021-11-03 11:00:53', '2021-11-03 11:00:59', 0),
  (106, 9003, '2021-11-03 11:00:45', '2021-11-03 11:00:55', 0);

在这里插入图片描述

select 
	a2.dt                 							  			 -- 当天
	,a2.dau as dau                                               -- 日活数
	,round(ifnull(b2.uv_new_daily,0)/a2.dau,2) as uv_new_ratio   -- 新用户占比  
from(
		select 
			b.dt                               		
			,count(distinct b.uid) as dau           -- 当天活跃用户数
		from(
				-- 用户活跃表
				select 
					uid
					,date(in_time) as dt            -- 用户活跃当天
				from tb_user_log
				union 
				select 
					uid
					,date(out_time) as dt
				from tb_user_log
		) b
		group by b.dt
) a2 left join(
				select 
					a.dt                                       
					,count(distinct a.uid) as uv_new_daily    -- 当天新用户数
				from(
							-- 当天新用户表
							select 
								uid
								,min(date(in_time)) as dt      -- 出现新用户当天   
							from tb_user_log 
							group by uid			
				) a 
				group by a.dt
) b2 on b2.dt=a2.dt
order by a2.dt

在这里插入图片描述

6.连续签到领金币

题目:计算每个用户2021年7月以来每月获得的金币数(该活动到10月底结束,11月1日开始的签到不再获得金币)。结果按月份、ID升序排序。

--输入:
DROP TABLE IF EXISTS tb_user_log;
CREATE TABLE tb_user_log (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    uid INT NOT NULL COMMENT '用户ID',
    artical_id INT NOT NULL COMMENT '视频ID',
    in_time datetime COMMENT '进入时间',
    out_time datetime COMMENT '离开时间',
    sign_in TINYINT DEFAULT 0 COMMENT '是否签到'
) CHARACTER SET utf8 COLLATE utf8_bin;

INSERT INTO tb_user_log(uid, artical_id, in_time, out_time, sign_in) VALUES
  (101, 0, '2021-07-07 10:00:00', '2021-07-07 10:00:09', 1),
  (101, 0, '2021-07-08 10:00:00', '2021-07-08 10:00:09', 1),
  (101, 0, '2021-07-09 10:00:00', '2021-07-09 10:00:42', 1),
  (101, 0, '2021-07-10 10:00:00', '2021-07-10 10:00:09', 1),
  (101, 0, '2021-07-11 23:59:55', '2021-07-11 23:59:59', 1),
  (101, 0, '2021-07-12 10:00:28', '2021-07-12 10:00:50', 1),
  (101, 0, '2021-07-13 10:00:28', '2021-07-13 10:00:50', 1),
  (102, 0, '2021-10-01 10:00:28', '2021-10-01 10:00:50', 1),
  (102, 0, '2021-10-02 10:00:01', '2021-10-02 10:01:50', 1),
  (102, 0, '2021-10-03 11:00:55', '2021-10-03 11:00:59', 1),
  (102, 0, '2021-10-04 11:00:45', '2021-10-04 11:00:55', 0),
  (102, 0, '2021-10-05 11:00:53', '2021-10-05 11:00:59', 1),
  (102, 0, '2021-10-06 11:00:45', '2021-10-06 11:00:55', 1);

在这里插入图片描述

select 
	c.uid, 
	DATE_FORMAT(c.sign_dt, "%Y%m") as month,
    sum(case when c.sign_idx=0 then 7 when c.sign_idx=3 then 3 else 1 end) as coin
from (
		select 
			b.uid, 
			b.sign_dt,
			(ROW_NUMBER() over(wd_uid_dt) ) % 7 as sign_idx
		from (
				select 
					a.uid,                                                  -- 用户     
					a.sign_dt,                                              -- 签到日期
					a.rn,                                                   -- 每次签到序号
					DATE_SUB(a.sign_dt, INTERVAL a.rn DAY) as base_dt       -- 首次签到日期
				from (
						select 
							DISTINCT 
							uid,                                                                 -- 用户
							DATE(in_time) as sign_dt,                                            -- 签到日期
							DENSE_RANK() over(partition by uid order by DATE(in_time)) as rn     -- 每次签到序号
						from tb_user_log
						where artical_id = 0 and sign_in = 1 and DATE(in_time) >= "2021-07-07" and DATE(in_time) <= "2021-10-31"   
				) a
		) b
		window wd_uid_dt as (partition by b.uid, b.base_dt order by b.sign_dt)
) c
group by c.uid, DATE_FORMAT(c.sign_dt, "%Y%m")
order by DATE_FORMAT(c.sign_dt, "%Y%m"), c.uid;

在这里插入图片描述

三、电商场景(某东商城)

1.计算商城中2021年每月的GMV

题目:请计算商城中2021年每月的GMV,输出GMV大于10w的每月GMV,值保留到整数。

--输入:
DROP TABLE IF EXISTS tb_order_overall;
CREATE TABLE tb_order_overall (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    order_id INT NOT NULL COMMENT '订单号',
    uid INT NOT NULL COMMENT '用户ID',
    event_time datetime COMMENT '下单时间',
    total_amount DECIMAL NOT NULL COMMENT '订单总金额',
    total_cnt INT NOT NULL COMMENT '订单商品总件数',
    `status` TINYINT NOT NULL COMMENT '订单状态'
) CHARACTER SET utf8 COLLATE utf8_bin;

INSERT INTO tb_order_overall(order_id, uid, event_time, total_amount, total_cnt, `status`) VALUES
  (301001, 101, '2021-10-01 10:00:00', 15900, 2, 1),
  (301002, 101, '2021-10-01 11:00:00', 15900, 2, 1),
  (301003, 102, '2021-10-02 10:00:00', 34500, 8, 0),
  (301004, 103, '2021-10-12 10:00:00', 43500, 9, 1),
  (301005, 105, '2021-11-01 10:00:00', 31900, 7, 1),
  (301006, 102, '2021-11-02 10:00:00', 24500, 6, 1),
  (391007, 102, '2021-11-03 10:00:00', -24500, 6, 2),
  (301008, 104, '2021-11-04 10:00:00', 55500, 12, 0);

在这里插入图片描述

select 
	DATE_FORMAT(event_time,'%Y-%m') as month
	,round(sum(if(status!=2,total_amount,0)),0) as GMV
from tb_order_overall
where year(event_time)='2021'
group by month
having GMV>100000
order by GMV

在这里插入图片描述

2.统计2021年10月每个退货率不大于0.5的商品各项指标

题目:请统计2021年10月每个有展示记录的退货率不大于0.5的商品各项指标。

--输入:
DROP TABLE IF EXISTS tb_user_event;
CREATE TABLE tb_user_event (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    uid INT NOT NULL COMMENT '用户ID',
    product_id INT NOT NULL COMMENT '商品ID',
    event_time datetime COMMENT '行为时间',
    if_click TINYINT COMMENT '是否点击',
    if_cart TINYINT COMMENT '是否加购物车',
    if_payment TINYINT COMMENT '是否付款',
    if_refund TINYINT COMMENT '是否退货退款'
) CHARACTER SET utf8 COLLATE utf8_bin;

INSERT INTO tb_user_event(uid, product_id, event_time, if_click, if_cart, if_payment, if_refund) VALUES
  (101, 8001, '2021-10-01 10:00:00', 0, 0, 0, 0),
  (102, 8001, '2021-10-01 10:00:00', 1, 0, 0, 0),
  (103, 8001, '2021-10-01 10:00:00', 1, 1, 0, 0),
  (104, 8001, '2021-10-02 10:00:00', 1, 1, 1, 0),
  (105, 8001, '2021-10-02 10:00:00', 1, 1, 1, 0),
  (101, 8002, '2021-10-03 10:00:00', 1, 1, 1, 0),
  (109, 8001, '2021-10-04 10:00:00', 1, 1, 1, 1);

在这里插入图片描述

select 
	a.product_id
	,round(click_cnt/play_cnt,3) as ctr
	,round(if(click_cnt>0,cart_cnt/click_cnt,0),3) as cart_rate
	,round(if(cart_cnt>0,payment_cnt/cart_cnt,0),3) as payment_rate
	,round(if(payment_cnt>0,refund_cnt/payment_cnt,0),3) as refund_rate
from(
			select 
				product_id
				,sum(if_click) as click_cnt
				,count(1) as play_cnt
				,sum(if_cart)  as cart_cnt
				,sum(if_payment) as payment_cnt
				,sum(if_refund) as refund_cnt
			from tb_user_event
			where date_format(event_time,'%Y-%m')='2021-10' 
			group by product_id
) a
where payment_cnt=0 or round(if(payment_cnt>0,refund_cnt/payment_cnt,0),3)<=0.5
order by a.product_id 

在这里插入图片描述

3.某店铺的各商品毛利率及店铺整体毛利率

题目:请计算2021年10月以来店铺901中商品毛利率大于24.9%的商品信息及店铺整体毛利率。

--输入:
DROP TABLE IF EXISTS tb_order_overall;
CREATE TABLE tb_order_overall (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    order_id INT NOT NULL COMMENT '订单号',
    uid INT NOT NULL COMMENT '用户ID',
    event_time datetime COMMENT '下单时间',
    total_amount DECIMAL NOT NULL COMMENT '订单总金额',
    total_cnt INT NOT NULL COMMENT '订单商品总件数',
    `status` TINYINT NOT NULL COMMENT '订单状态'
) CHARACTER SET utf8 COLLATE utf8_bin;

INSERT INTO tb_order_overall(order_id, uid, event_time, total_amount, total_cnt, `status`) VALUES
  (301001, 101, '2021-10-01 10:00:00', 30000, 3, 1),
  (301002, 102, '2021-10-01 11:00:00', 23900, 2, 1),
  (301003, 103, '2021-10-02 10:00:00', 31000, 2, 1);

DROP TABLE IF EXISTS tb_product_info;
CREATE TABLE tb_product_info (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    product_id INT NOT NULL COMMENT '商品ID',
    shop_id INT NOT NULL COMMENT '店铺ID',
    tag VARCHAR(12) COMMENT '商品类别标签',
    in_price DECIMAL NOT NULL COMMENT '进货价格',
    quantity INT NOT NULL COMMENT '进货数量',
    release_time datetime COMMENT '上架时间'
) CHARACTER SET utf8 COLLATE utf8_bin;

DROP TABLE IF EXISTS tb_order_detail;
CREATE TABLE tb_order_detail (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    order_id INT NOT NULL COMMENT '订单号',
    product_id INT NOT NULL COMMENT '商品ID',
    price DECIMAL NOT NULL COMMENT '商品单价',
    cnt INT NOT NULL COMMENT '下单数量'
) CHARACTER SET utf8 COLLATE utf8_bin;

INSERT INTO tb_product_info(product_id, shop_id, tag, in_price, quantity, release_time) VALUES
  (8001, 901, '家电', 6000, 100, '2020-01-01 10:00:00'),
  (8002, 902, '家电', 12000, 50, '2020-01-01 10:00:00'),
  (8003, 901, '3C数码', 12000, 50, '2020-01-01 10:00:00');

INSERT INTO tb_order_detail(order_id, product_id, price, cnt) VALUES
  (301001, 8001, 8500, 2),
  (301001, 8002, 15000, 1),
  (301002, 8001, 8500, 1),
  (301002, 8002, 16000, 1),
  (301003, 8002, 14000, 1),
  (301003, 8003, 18000, 1);

在这里插入图片描述

select 
	a3.product_id
	,concat(a3.profit_rate,'%') as profit_rate
from(
		select
			ifnull(a2.product_id,'店铺汇总') as product_id
			,round((1-sum(a2.in_price*a2.cnt)/sum(a2.price*a2.cnt))*100,1) as profit_rate
		from(
				select
					c.product_id
					,c.price
					,c.cnt
					,a.in_price
				from tb_order_detail c 
				left join tb_product_info a on a.product_id=c.product_id
				left join tb_order_overall b on b.order_id=c.order_id
				where date(b.event_time)>='2021-10-01' and a.shop_id='901' and b.status='1'
		) a2 
		group by a2.product_id
		with ROLLUP
		having profit_rate>24.9 or product_id is null
		order by a2.product_id
) a3 

在这里插入图片描述

4.零食类商品中复购率top3高的商品

题目:请统计零食类商品中复购率top3高的商品。

--输入:
DROP TABLE IF EXISTS tb_order_overall;
CREATE TABLE tb_order_overall (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    order_id INT NOT NULL COMMENT '订单号',
    uid INT NOT NULL COMMENT '用户ID',
    event_time datetime COMMENT '下单时间',
    total_amount DECIMAL NOT NULL COMMENT '订单总金额',
    total_cnt INT NOT NULL COMMENT '订单商品总件数',
    `status` TINYINT NOT NULL COMMENT '订单状态'
) CHARACTER SET utf8 COLLATE utf8_bin;

DROP TABLE IF EXISTS tb_product_info;
CREATE TABLE tb_product_info (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    product_id INT NOT NULL COMMENT '商品ID',
    shop_id INT NOT NULL COMMENT '店铺ID',
    tag VARCHAR(12) COMMENT '商品类别标签',
    in_price DECIMAL NOT NULL COMMENT '进货价格',
    quantity INT NOT NULL COMMENT '进货数量',
    release_time datetime COMMENT '上架时间'
) CHARACTER SET utf8 COLLATE utf8_bin;

DROP TABLE IF EXISTS tb_order_detail;
CREATE TABLE tb_order_detail (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    order_id INT NOT NULL COMMENT '订单号',
    product_id INT NOT NULL COMMENT '商品ID',
    price DECIMAL NOT NULL COMMENT '商品单价',
    cnt INT NOT NULL COMMENT '下单数量'
) CHARACTER SET utf8 COLLATE utf8_bin;

INSERT INTO tb_product_info(product_id, shop_id, tag, in_price, quantity, release_time) VALUES
  (8001, 901, '零食', 60, 1000, '2020-01-01 10:00:00'),
  (8002, 901, '零食', 140, 500, '2020-01-01 10:00:00'),
  (8003, 901, '零食', 160, 500, '2020-01-01 10:00:00');

INSERT INTO tb_order_overall(order_id, uid, event_time, total_amount, total_cnt, `status`) VALUES
  (301001, 101, '2021-09-30 10:00:00', 140, 1, 1),
  (301002, 102, '2021-10-01 11:00:00', 235, 2, 1),
  (301011, 102, '2021-10-31 11:00:00', 250, 2, 1),
  (301003, 101, '2021-11-02 10:00:00', 300, 2, 1),
  (301013, 105, '2021-11-02 10:00:00', 300, 2, 1),
  (301005, 104, '2021-11-03 10:00:00', 170, 1, 1);

INSERT INTO tb_order_detail(order_id, product_id, price, cnt) VALUES
  (301001, 8002, 150, 1),
  (301011, 8003, 200, 1),
  (301011, 8001, 80, 1),
  (301002, 8001, 85, 1),
  (301002, 8003, 180, 1),
  (301003, 8002, 140, 1),
  (301003, 8003, 180, 1),
  (301013, 8002, 140, 2),
  (301005, 8003, 180, 1);

在这里插入图片描述

select 
	a2.product_id
	,round(sum(a2.repurchase)/count(a2.repurchase),3) as repurchase_rate
from(
		select 
			a.product_id
			,b.uid
			,if(count(b.event_time)>1,1,0) as repurchase
		from tb_order_overall b
		join tb_order_detail c on b.order_id=c.order_id
		join tb_product_info a on a.product_id=c.product_id
		where a.tag='零食' and date(b.event_time) > (select DATE_SUB(max(date(event_time)),INTERVAL 90 day) from tb_order_overall)
		group by a.product_id,b.uid
) a2
group by a2.product_id
order by repurchase_rate desc,a2.product_id 
limit 3;

在这里插入图片描述

5.10月的新户客单价和获客成本

题目:请计算2021年10月商城里所有新用户的首单平均交易金额(客单价)和平均获客成本(保留一位小数)。

--输入:
DROP TABLE IF EXISTS tb_order_overall;
CREATE TABLE tb_order_overall (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    order_id INT NOT NULL COMMENT '订单号',
    uid INT NOT NULL COMMENT '用户ID',
    event_time datetime COMMENT '下单时间',
    total_amount DECIMAL NOT NULL COMMENT '订单总金额',
    total_cnt INT NOT NULL COMMENT '订单商品总件数',
    `status` TINYINT NOT NULL COMMENT '订单状态'
) CHARACTER SET utf8 COLLATE utf8_bin;

DROP TABLE IF EXISTS tb_product_info;
CREATE TABLE tb_product_info (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    product_id INT NOT NULL COMMENT '商品ID',
    shop_id INT NOT NULL COMMENT '店铺ID',
    tag VARCHAR(12) COMMENT '商品类别标签',
    in_price DECIMAL NOT NULL COMMENT '进货价格',
    quantity INT NOT NULL COMMENT '进货数量',
    release_time datetime COMMENT '上架时间'
) CHARACTER SET utf8 COLLATE utf8_bin;

DROP TABLE IF EXISTS tb_order_detail;
CREATE TABLE tb_order_detail (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    order_id INT NOT NULL COMMENT '订单号',
    product_id INT NOT NULL COMMENT '商品ID',
    price DECIMAL NOT NULL COMMENT '商品单价',
    cnt INT NOT NULL COMMENT '下单数量'
) CHARACTER SET utf8 COLLATE utf8_bin;

INSERT INTO tb_product_info(product_id, shop_id, tag, in_price, quantity, release_time) VALUES
  (8001, 901, '日用', 60, 1000, '2020-01-01 10:00:00'),
  (8002, 901, '零食', 140, 500, '2020-01-01 10:00:00'),
  (8003, 901, '零食', 160, 500, '2020-01-01 10:00:00'),
  (8004, 902, '零食', 130, 500, '2020-01-01 10:00:00');

INSERT INTO tb_order_overall(order_id, uid, event_time, total_amount, total_cnt, `status`) VALUES
  (301002, 102, '2021-10-01 11:00:00', 235, 2, 1),
  (301003, 101, '2021-10-02 10:00:00', 300, 2, 1),
  (301005, 104, '2021-10-03 10:00:00', 160, 1, 1);

INSERT INTO tb_order_detail(order_id, product_id, price, cnt) VALUES
  (301002, 8001, 85, 1),
  (301002, 8003, 180, 1),
  (301003, 8004, 140, 1),
  (301003, 8003, 180, 1),
  (301005, 8003, 180, 1);

在这里插入图片描述

select 
	round(avg(total_amount), 1) as avg_amount,
    round(avg(raw_amount-total_amount), 1) as avg_cost
from (
    select 
		uid, 
		total_amount, 
		raw_amount
    from(
			select 
				distinct 
				uid,
				first_value(event_time) over(wd_uid_first) as event_time,
				first_value(order_id) over(wd_uid_first) as order_id,
				first_value(total_amount) over(wd_uid_first) as total_amount
			from tb_order_overall
			window wd_uid_first as (partition by uid order by event_time)
    )a join (
				select 
					order_id, 
					sum(price * cnt) as raw_amount
				from tb_order_detail
				group by order_id
    )b on a.order_id=b.order_id
    where date_format(event_time, '%Y-%m') = '2021-10'
)c

在这里插入图片描述

6.店铺901国庆期间的7日动销率和滞销率

题目:请计算店铺901在2021年国庆头3天的7日动销率和滞销率,结果保留3位小数,按日期升序排序。

--输入:
DROP TABLE IF EXISTS tb_order_overall;
CREATE TABLE tb_order_overall (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    order_id INT NOT NULL COMMENT '订单号',
    uid INT NOT NULL COMMENT '用户ID',
    event_time datetime COMMENT '下单时间',
    total_amount DECIMAL NOT NULL COMMENT '订单总金额',
    total_cnt INT NOT NULL COMMENT '订单商品总件数',
    `status` TINYINT NOT NULL COMMENT '订单状态'
) CHARACTER SET utf8 COLLATE utf8_bin;

DROP TABLE IF EXISTS tb_product_info;
CREATE TABLE tb_product_info (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    product_id INT NOT NULL COMMENT '商品ID',
    shop_id INT NOT NULL COMMENT '店铺ID',
    tag VARCHAR(12) COMMENT '商品类别标签',
    in_price DECIMAL NOT NULL COMMENT '进货价格',
    quantity INT NOT NULL COMMENT '进货数量',
    release_time datetime COMMENT '上架时间'
) CHARACTER SET utf8 COLLATE utf8_bin;

DROP TABLE IF EXISTS tb_order_detail;
CREATE TABLE tb_order_detail (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    order_id INT NOT NULL COMMENT '订单号',
    product_id INT NOT NULL COMMENT '商品ID',
    price DECIMAL NOT NULL COMMENT '商品单价',
    cnt INT NOT NULL COMMENT '下单数量'
) CHARACTER SET utf8 COLLATE utf8_bin;

INSERT INTO tb_product_info(product_id, shop_id, tag, in_price, quantity, release_time) VALUES
  (8001, 901, '日用', 60, 1000, '2020-01-01 10:00:00'),
  (8002, 901, '零食', 140, 500, '2020-01-01 10:00:00'),
  (8003, 901, '零食', 160, 500, '2020-01-01 10:00:00');

INSERT INTO tb_order_overall(order_id, uid, event_time, total_amount, total_cnt, `status`) VALUES
  (301004, 102, '2021-09-30 10:00:00', 170, 1, 1),
  (301005, 104, '2021-10-01 10:00:00', 160, 1, 1),
  (301003, 101, '2021-10-02 10:00:00', 300, 2, 1),
  (301002, 102, '2021-10-03 11:00:00', 235, 2, 1);

INSERT INTO tb_order_detail(order_id, product_id, price, cnt) VALUES
  (301004, 8002, 180, 1),
  (301005, 8002, 170, 1),
  (301002, 8001, 85, 1),
  (301002, 8003, 180, 1),
  (301003, 8002, 150, 1),
  (301003, 8003, 180, 1);

在这里插入图片描述

select 
	dt, 
	sale_rate, 
	1 - sale_rate as unsale_rate
from (
    select 
		dt, 
		round(min(sale_pid_cnt) / count(all_pid), 3) as sale_rate
    from (
			-- 国庆期间店铺901截止每天的近7天有销量的商品数
			select 
				dt, 
				count(distinct if(shop_id!=901, null, product_id)) as sale_pid_cnt
			from (
					select 
						distinct date(event_time) as dt
					from tb_order_overall
					where date(event_time) between '2021-10-01' and '2021-10-03'
			) as t_dates
			left join (
						select 
							distinct date(event_time) as event_dt, 
							product_id
						from tb_order_overall
						join tb_order_detail using(order_id)
			) as t_dt_pid on datediff(dt,event_dt) between 0 and 6
			left join tb_product_info using(product_id)
			group by dt
    ) as t_dt_901_pid_cnt
    left join (
				-- 店铺901每个商品上架日期
				select 
					date(release_time) as release_dt, 
					product_id as all_pid
				from tb_product_info
				where shop_id=901
    ) as t_release_dt on dt >= release_dt     -- 当天店铺901已上架在售的商品
    group by dt
) as t_dt_sr;

在这里插入图片描述

四、出行场景(某滴打车)

1.2021年国庆在北京接单3次及以上的司机统计信息

题目:请统计2021年国庆7天期间在北京市接单至少3次的司机的平均接单数和平均兼职收入(暂不考虑平台佣金,直接计算完成的订单费用总额),结果保留3位小数。

DROP TABLE IF EXISTS tb_get_car_record,tb_get_car_order;
CREATE TABLE tb_get_car_record (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    uid INT NOT NULL COMMENT '用户ID',
    city VARCHAR(10) NOT NULL COMMENT '城市',
    event_time datetime COMMENT '打车时间',
    end_time datetime COMMENT '打车结束时间',
    order_id INT COMMENT '订单号'
) CHARACTER SET utf8 COLLATE utf8_bin;

CREATE TABLE tb_get_car_order (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    order_id INT NOT NULL COMMENT '订单号',
    uid INT NOT NULL COMMENT '用户ID',
    driver_id INT NOT NULL COMMENT '司机ID',
    order_time datetime COMMENT '接单时间',
    start_time datetime COMMENT '开始计费的上车时间',
    finish_time datetime COMMENT '订单结束时间',
    mileage DOUBLE COMMENT '行驶里程数',
    fare DOUBLE COMMENT '费用',
    grade TINYINT COMMENT '评分'
) CHARACTER SET utf8 COLLATE utf8_bin;

INSERT INTO tb_get_car_record(uid, city, event_time, end_time, order_id) VALUES
 (101, '北京', '2021-10-01 07:00:00', '2021-10-01 07:02:00', null),
 (102, '北京', '2021-10-01 09:00:30', '2021-10-01 09:01:00', 9001),
 (101, '北京', '2021-10-01 08:28:10', '2021-10-01 08:30:00', 9002),
 (103, '北京', '2021-10-02 07:59:00', '2021-10-02 08:01:00', 9003),
 (104, '北京', '2021-10-03 07:59:20', '2021-10-03 08:01:00', 9004),
 (105, '北京', '2021-10-01 08:00:00', '2021-10-01 08:02:10', 9005),
 (106, '北京', '2021-10-01 17:58:00', '2021-10-01 18:01:00', 9006),
 (107, '北京', '2021-10-02 11:00:00', '2021-10-02 11:01:00', 9007),
 (108, '北京', '2021-10-02 21:00:00', '2021-10-02 21:01:00', 9008) ;

INSERT INTO tb_get_car_order(order_id, uid, driver_id, order_time, start_time, finish_time, mileage, fare, grade) VALUES
 (9002, 101, 201, '2021-10-01 08:30:00', null, '2021-10-01 08:31:00', null, null, null),
 (9001, 102, 202, '2021-10-01 09:01:00', '2021-10-01 09:06:00', '2021-10-01 09:31:00', 10.0, 41.5, 5),
 (9003, 103, 202, '2021-10-02 08:01:00', '2021-10-02 08:15:00', '2021-10-02 08:31:00', 11.0, 41.5, 4),
 (9004, 104, 202, '2021-10-03 08:01:00', '2021-10-03 08:13:00', '2021-10-03 08:31:00', 7.5, 22, 4),
 (9005, 105, 203, '2021-10-01 08:02:10', '2021-10-01 08:18:00', '2021-10-01 08:31:00', 15.0, 44, 5),
 (9006, 106, 203, '2021-10-01 18:01:00', '2021-10-01 18:09:00', '2021-10-01 18:31:00', 8.0, 25, 5),
 (9007, 107, 203, '2021-10-02 11:01:00', '2021-10-02 11:07:00', '2021-10-02 11:31:00', 9.9, 30, 5),
 (9008, 108, 203, '2021-10-02 21:01:00', '2021-10-02 21:10:00', '2021-10-02 21:31:00', 13.2, 38, 4);

在这里插入图片描述



2.有取消订单记录的司机平均评分

题目:请找到2021年10月有过取消订单记录的司机,计算他们每人全部已完成的有评分订单的平均评分及总体平均评分,保留1位小数。先按driver_id升序输出,再输出总体情况。

--输入:
DROP TABLE IF EXISTS tb_get_car_record,tb_get_car_order;
CREATE TABLE tb_get_car_record (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    uid INT NOT NULL COMMENT '用户ID',
    city VARCHAR(10) NOT NULL COMMENT '城市',
    event_time datetime COMMENT '打车时间',
    end_time datetime COMMENT '打车结束时间',
    order_id INT COMMENT '订单号'
) CHARACTER SET utf8 COLLATE utf8_bin;

CREATE TABLE tb_get_car_order (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    order_id INT NOT NULL COMMENT '订单号',
    uid INT NOT NULL COMMENT '用户ID',
    driver_id INT NOT NULL COMMENT '司机ID',
    order_time datetime COMMENT '接单时间',
    start_time datetime COMMENT '开始计费的上车时间',
    finish_time datetime COMMENT '订单结束时间',
    mileage FLOAT COMMENT '行驶里程数',
    fare FLOAT COMMENT '费用',
    grade TINYINT COMMENT '评分'
) CHARACTER SET utf8 COLLATE utf8_bin;

INSERT INTO tb_get_car_record(uid, city, event_time, end_time, order_id) VALUES
 (101, '北京', '2021-10-01 07:00:00', '2021-10-01 07:02:00', null),
 (102, '北京', '2021-10-01 09:00:30', '2021-10-01 09:01:00', 9001),
 (101, '北京', '2021-10-01 08:28:10', '2021-10-01 08:30:00', 9002),
 (103, '北京', '2021-10-02 07:59:00', '2021-10-02 08:01:00', 9003),
 (104, '北京', '2021-10-03 07:59:20', '2021-10-03 08:01:00', 9004),
 (105, '北京', '2021-10-01 08:00:00', '2021-10-01 08:02:10', 9005),
 (106, '北京', '2021-10-01 17:58:00', '2021-10-01 18:01:00', 9006),
 (107, '北京', '2021-10-02 11:00:00', '2021-10-02 11:01:00', 9007),
 (108, '北京', '2021-10-02 21:00:00', '2021-10-02 21:01:00', 9008),
 (109, '北京', '2021-10-08 18:00:00', '2021-10-08 18:01:00', 9009);

INSERT INTO tb_get_car_order(order_id, uid, driver_id, order_time, start_time, finish_time, mileage, fare, grade) VALUES
 (9002, 101, 202, '2021-10-01 08:30:00', null, '2021-10-01 08:31:00', null, null, null),
 (9001, 102, 202, '2021-10-01 09:01:00', '2021-10-01 09:06:00', '2021-10-01 09:31:00', 10.0, 41.5, 5),
 (9003, 103, 202, '2021-10-02 08:01:00', '2021-10-02 08:15:00', '2021-10-02 08:31:00', 11.0, 41.5, 4),
 (9004, 104, 202, '2021-10-03 08:01:00', '2021-10-03 08:13:00', '2021-10-03 08:31:00', 7.5, 22, 4),
 (9005, 105, 203, '2021-10-01 08:02:10', null, '2021-10-01 08:31:00', null, null, null),
 (9006, 106, 203, '2021-10-01 18:01:00', '2021-10-01 18:09:00', '2021-10-01 18:31:00', 8.0, 25.5, 5),
 (9007, 107, 203, '2021-10-02 11:01:00', '2021-10-02 11:07:00', '2021-10-02 11:31:00', 9.9, 30, 5),
 (9008, 108, 203, '2021-10-02 21:01:00', '2021-10-02 21:10:00', '2021-10-02 21:31:00', 13.2, 38, 4),
 (9009, 109, 203, '2021-10-08 18:01:00', '2021-10-08 18:11:50', '2021-10-08 18:51:00', 13, 40, 5);

在这里插入图片描述

3.每个城市中评分最高的司机信息

题目:请统计每个城市中评分最高的司机平均评分、日均接单量和日均行驶里程数。

--输入:
DROP TABLE IF EXISTS tb_get_car_record,tb_get_car_order;
CREATE TABLE tb_get_car_record (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    uid INT NOT NULL COMMENT '用户ID',
    city VARCHAR(10) NOT NULL COMMENT '城市',
    event_time datetime COMMENT '打车时间',
    end_time datetime COMMENT '打车结束时间',
    order_id INT COMMENT '订单号'
) CHARACTER SET utf8 COLLATE utf8_bin;

CREATE TABLE tb_get_car_order (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    order_id INT NOT NULL COMMENT '订单号',
    uid INT NOT NULL COMMENT '用户ID',
    driver_id INT NOT NULL COMMENT '司机ID',
    order_time datetime COMMENT '接单时间',
    start_time datetime COMMENT '开始计费的上车时间',
    finish_time datetime COMMENT '订单结束时间',
    mileage FLOAT COMMENT '行驶里程数',
    fare FLOAT COMMENT '费用',
    grade TINYINT COMMENT '评分'
) CHARACTER SET utf8 COLLATE utf8_bin;

INSERT INTO tb_get_car_record(uid, city, event_time, end_time, order_id) VALUES
 (101, '北京', '2021-10-01 07:00:00', '2021-10-01 07:02:00', null),
 (102, '北京', '2021-10-01 09:00:30', '2021-10-01 09:01:00', 9001),
 (101, '北京', '2021-10-01 08:28:10', '2021-10-01 08:30:00', 9002),
 (103, '北京', '2021-10-02 07:59:00', '2021-10-02 08:01:00', 9003),
 (104, '北京', '2021-10-03 07:59:20', '2021-10-03 08:01:00', 9004),
 (105, '北京', '2021-10-01 08:00:00', '2021-10-01 08:02:10', 9005),
 (106, '北京', '2021-10-01 17:58:00', '2021-10-01 18:01:00', 9006),
 (107, '北京', '2021-10-02 11:00:00', '2021-10-02 11:01:00', 9007),
 (108, '北京', '2021-10-02 21:00:00', '2021-10-02 21:01:00', 9008),
 (109, '北京', '2021-10-08 18:00:00', '2021-10-08 18:01:00', 9009);

INSERT INTO tb_get_car_order(order_id, uid, driver_id, order_time, start_time, finish_time, mileage, fare, grade) VALUES
 (9002, 101, 202, '2021-10-01 08:30:00', null, '2021-10-01 08:31:00', null, null, null),
 (9001, 102, 202, '2021-10-01 09:01:00', '2021-10-01 09:06:00', '2021-10-01 09:31:00', 10.0, 41.5, 5),
 (9003, 103, 202, '2021-10-02 08:01:00', '2021-10-02 08:15:00', '2021-10-02 08:31:00', 11.0, 41.5, 4),
 (9004, 104, 202, '2021-10-03 08:01:00', '2021-10-03 08:13:00', '2021-10-03 08:31:00', 7.5, 22, 4),
 (9005, 105, 203, '2021-10-01 08:02:10', null, '2021-10-01 08:31:00', null, null, null),
 (9006, 106, 203, '2021-10-01 18:01:00', '2021-10-01 18:09:00', '2021-10-01 18:31:00', 8.0, 25.5, 5),
 (9007, 107, 203, '2021-10-02 11:01:00', '2021-10-02 11:07:00', '2021-10-02 11:31:00', 9.9, 30, 5),
 (9008, 108, 203, '2021-10-02 21:01:00', '2021-10-02 21:10:00', '2021-10-02 21:31:00', 13.2, 38, 4),
 (9009, 109, 203, '2021-10-08 18:01:00', '2021-10-08 18:11:50', '2021-10-08 18:51:00', 13, 40, 5);

在这里插入图片描述


4.国庆期间近7日日均取消订单量

题目:请统计国庆头3天里,每天的近7日日均订单完成量和日均订单取消量,按日期升序排序。结果保留2位小数。

--输入:
DROP TABLE IF EXISTS tb_get_car_record,tb_get_car_order;
CREATE TABLE tb_get_car_record (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    uid INT NOT NULL COMMENT '用户ID',
    city VARCHAR(10) NOT NULL COMMENT '城市',
    event_time datetime COMMENT '打车时间',
    end_time datetime COMMENT '打车结束时间',
    order_id INT COMMENT '订单号'
) CHARACTER SET utf8 COLLATE utf8_bin;

CREATE TABLE tb_get_car_order (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    order_id INT NOT NULL COMMENT '订单号',
    uid INT NOT NULL COMMENT '用户ID',
    driver_id INT NOT NULL COMMENT '司机ID',
    order_time datetime COMMENT '接单时间',
    start_time datetime COMMENT '开始计费的上车时间',
    finish_time datetime COMMENT '订单结束时间',
    mileage FLOAT COMMENT '行驶里程数',
    fare FLOAT COMMENT '费用',
    grade TINYINT COMMENT '评分'
) CHARACTER SET utf8 COLLATE utf8_bin;

INSERT INTO tb_get_car_record(uid, city, event_time, end_time, order_id) VALUES
 (101, '北京', '2021-09-25 08:28:10', '2021-09-25 08:30:00', 9011),
 (102, '北京', '2021-09-25 09:00:30', '2021-09-25 09:01:00', 9012),
 (103, '北京', '2021-09-26 07:59:00', '2021-09-26 08:01:00', 9013),
 (104, '北京', '2021-09-26 07:59:00', '2021-09-26 08:01:00', 9023),
 (104, '北京', '2021-09-27 07:59:20', '2021-09-27 08:01:00', 9014),
 (105, '北京', '2021-09-28 08:00:00', '2021-09-28 08:02:10', 9015),
 (106, '北京', '2021-09-29 17:58:00', '2021-09-29 18:01:00', 9016),
 (107, '北京', '2021-09-30 11:00:00', '2021-09-30 11:01:00', 9017),
 (108, '北京', '2021-09-30 21:00:00', '2021-09-30 21:01:00', 9018),
 (102, '北京', '2021-10-01 09:00:30', '2021-10-01 09:01:00', 9002),
 (106, '北京', '2021-10-01 17:58:00', '2021-10-01 18:01:00', 9006),
 (101, '北京', '2021-10-02 08:28:10', '2021-10-02 08:30:00', 9001),
 (107, '北京', '2021-10-02 11:00:00', '2021-10-02 11:01:00', 9007),
 (108, '北京', '2021-10-02 21:00:00', '2021-10-02 21:01:00', 9008),
 (103, '北京', '2021-10-02 07:59:00', '2021-10-02 08:01:00', 9003),
 (104, '北京', '2021-10-03 07:59:20', '2021-10-03 08:01:00', 9004),
 (109, '北京', '2021-10-03 18:00:00', '2021-10-03 18:01:00', 9009);

INSERT INTO tb_get_car_order(order_id, uid, driver_id, order_time, start_time, finish_time, mileage, fare, grade) VALUES
 (9011, 101, 211, '2021-09-25 08:30:00', '2021-09-25 08:31:00', '2021-09-25 08:54:00', 10, 35, 5),
 (9012, 102, 211, '2021-09-25 09:01:00', '2021-09-25 09:01:50', '2021-09-25 09:28:00', 11, 32, 5),
 (9013, 103, 212, '2021-09-26 08:01:00', '2021-09-26 08:03:00', '2021-09-26 08:27:00', 12, 31, 4),
 (9023, 104, 213, '2021-09-26 08:01:00', null, '2021-09-26 08:27:00', null, null, null),
 (9014, 104, 212, '2021-09-27 08:01:00', '2021-09-27 08:04:00', '2021-09-27 08:21:00', 11, 31, 5),
 (9015, 105, 212, '2021-09-28 08:02:10', '2021-09-28 08:04:10', '2021-09-28 08:25:10', 12, 31, 4),
 (9016, 106, 213, '2021-09-29 18:01:00', '2021-09-29 18:02:10', '2021-09-29 18:23:00', 11, 39, 4),
 (9017, 107, 213, '2021-09-30 11:01:00', '2021-09-30 11:01:40', '2021-09-30 11:31:00', 11, 38, 5),
 (9018, 108, 214, '2021-09-30 21:01:00', '2021-09-30 21:02:50', '2021-09-30 21:21:00', 14, 38, 5),
 (9002, 102, 202, '2021-10-01 09:01:00', '2021-10-01 09:06:00', '2021-10-01 09:31:00', 10.0, 41.5, 5),
 (9006, 106, 203, '2021-10-01 18:01:00', '2021-10-01 18:09:00', '2021-10-01 18:31:00', 8.0, 25.5, 4),
 (9001, 101, 202, '2021-10-02 08:30:00', null, '2021-10-02 08:31:00', null, null, null),
 (9007, 107, 203, '2021-10-02 11:01:00', '2021-10-02 11:07:00', '2021-10-02 11:31:00', 9.9, 30, 5),
 (9008, 108, 204, '2021-10-02 21:01:00', '2021-10-02 21:10:00', '2021-10-02 21:31:00', 13.2, 38, 4),
 (9003, 103, 202, '2021-10-02 08:01:00', '2021-10-02 08:15:00', '2021-10-02 08:31:00', 11.0, 41.5, 4),
 (9004, 104, 202, '2021-10-03 08:01:00', '2021-10-03 08:13:00', '2021-10-03 08:31:00', 7.5, 22, 4),
 (9009, 109, 204, '2021-10-03 18:01:00', null, '2021-10-03 18:51:00', null, null, null);

在这里插入图片描述

5.工作日各时段叫车量、等待接单时间和调度时间

题目:统计周一到周五各时段的叫车量、平均等待接单时间和平均调度时间。全部以event_time-开始打车时间为时段划分依据,平均等待接单时间和平均调度时间均保留1位小数,平均调度时间仅计算完成了的订单,结果按叫车量升序排序。

--输入:
DROP TABLE IF EXISTS tb_get_car_record,tb_get_car_order;
CREATE TABLE tb_get_car_record (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    uid INT NOT NULL COMMENT '用户ID',
    city VARCHAR(10) NOT NULL COMMENT '城市',
    event_time datetime COMMENT '打车时间',
    end_time datetime COMMENT '打车结束时间',
    order_id INT COMMENT '订单号'
) CHARACTER SET utf8 COLLATE utf8_bin;

CREATE TABLE tb_get_car_order (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    order_id INT NOT NULL COMMENT '订单号',
    uid INT NOT NULL COMMENT '用户ID',
    driver_id INT NOT NULL COMMENT '司机ID',
    order_time datetime COMMENT '接单时间',
    start_time datetime COMMENT '开始计费的上车时间',
    finish_time datetime COMMENT '订单结束时间',
    mileage FLOAT COMMENT '行驶里程数',
    fare FLOAT COMMENT '费用',
    grade TINYINT COMMENT '评分'
) CHARACTER SET utf8 COLLATE utf8_bin;

INSERT INTO tb_get_car_record(uid, city, event_time, end_time, order_id) VALUES
 (107, '北京', '2021-09-20 11:00:00', '2021-09-20 11:00:30', 9017),
 (108, '北京', '2021-09-20 21:00:00', '2021-09-20 21:00:40', 9008),
 (108, '北京', '2021-09-20 18:59:30', '2021-09-20 19:01:00', 9018),
 (102, '北京', '2021-09-21 08:59:00', '2021-09-21 09:01:00', 9002),
 (106, '北京', '2021-09-21 17:58:00', '2021-09-21 18:01:00', 9006),
 (103, '北京', '2021-09-22 07:58:00', '2021-09-22 08:01:00', 9003),
 (104, '北京', '2021-09-23 07:59:00', '2021-09-23 08:01:00', 9004),
 (103, '北京', '2021-09-24 19:59:20', '2021-09-24 20:01:00', 9019),
 (101, '北京', '2021-09-24 08:28:10', '2021-09-24 08:30:00', 9011);

INSERT INTO tb_get_car_order(order_id, uid, driver_id, order_time, start_time, finish_time, mileage, fare, grade) VALUES
 (9017, 107, 213, '2021-09-20 11:00:30', '2021-09-20 11:02:10', '2021-09-20 11:31:00', 11, 38, 5),
 (9008, 108, 204, '2021-09-20 21:00:40', '2021-09-20 21:03:00', '2021-09-20 21:31:00', 13.2, 38, 4),
 (9018, 108, 214, '2021-09-20 19:01:00', '2021-09-20 19:04:50', '2021-09-20 19:21:00', 14, 38, 5),
 (9002, 102, 202, '2021-09-21 09:01:00', '2021-09-21 09:06:00', '2021-09-21 09:31:00', 10.0, 41.5, 5),
 (9006, 106, 203, '2021-09-21 18:01:00', '2021-09-21 18:09:00', '2021-09-21 18:31:00', 8.0, 25.5, 4),
 (9007, 107, 203, '2021-09-22 11:01:00', '2021-09-22 11:07:00', '2021-09-22 11:31:00', 9.9, 30, 5),
 (9003, 103, 202, '2021-09-22 08:01:00', '2021-09-22 08:15:00', '2021-09-22 08:31:00', 11.0, 41.5, 4),
 (9004, 104, 202, '2021-09-23 08:01:00', '2021-09-23 08:13:00', '2021-09-23 08:31:00', 7.5, 22, 4),
 (9005, 105, 202, '2021-09-23 10:01:00', '2021-09-23 10:13:00', '2021-09-23 10:31:00', 9, 29, 5),
 (9019, 103, 202, '2021-09-24 20:01:00', '2021-09-24 20:11:00', '2021-09-24 20:51:00', 10, 39, 4),
 (9011, 101, 211, '2021-09-24 08:30:00', '2021-09-24 08:31:00', '2021-09-24 08:54:00', 10, 35, 5);

在这里插入图片描述

6.各城市最大同时等车人数

题目:请统计各个城市在2021年10月期间,单日中最大的同时等车人数。

DROP TABLE IF EXISTS tb_get_car_record,tb_get_car_order;
CREATE TABLE tb_get_car_record (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    uid INT NOT NULL COMMENT '用户ID',
    city VARCHAR(10) NOT NULL COMMENT '城市',
    event_time datetime COMMENT '打车时间',
    end_time datetime COMMENT '打车结束时间',
    order_id INT COMMENT '订单号'
) CHARACTER SET utf8 COLLATE utf8_bin;

CREATE TABLE tb_get_car_order (
    id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
    order_id INT NOT NULL COMMENT '订单号',
    uid INT NOT NULL COMMENT '用户ID',
    driver_id INT NOT NULL COMMENT '司机ID',
    order_time datetime COMMENT '接单时间',
    start_time datetime COMMENT '开始计费的上车时间',
    finish_time datetime COMMENT '订单结束时间',
    mileage FLOAT COMMENT '行驶里程数',
    fare FLOAT COMMENT '费用',
    grade TINYINT COMMENT '评分'
) CHARACTER SET utf8 COLLATE utf8_bin;

INSERT INTO tb_get_car_record(uid, city, event_time, end_time, order_id) VALUES
 (108, '北京', '2021-10-20 08:00:00', '2021-10-20 08:00:40', 9008),
 (108, '北京', '2021-10-20 08:00:10', '2021-10-20 08:00:45', 9018),
 (102, '北京', '2021-10-20 08:00:30', '2021-10-20 08:00:50', 9002),
 (106, '北京', '2021-10-20 08:05:41', '2021-10-20 08:06:00', 9006),
 (103, '北京', '2021-10-20 08:05:50', '2021-10-20 08:07:10', 9003),
 (104, '北京', '2021-10-20 08:01:01', '2021-10-20 08:01:20', 9004),
 (103, '北京', '2021-10-20 08:01:15', '2021-10-20 08:01:30', 9019),
 (101, '北京', '2021-10-20 08:28:10', '2021-10-20 08:30:00', 9011);

INSERT INTO tb_get_car_order(order_id, uid, driver_id, order_time, start_time, finish_time, mileage, fare, grade) VALUES
 (9008, 108, 204, '2021-10-20 08:00:40', '2021-10-20 08:03:00', '2021-10-20 08:31:00', 13.2, 38, 4),
 (9018, 108, 214, '2021-10-20 08:00:45', '2021-10-20 08:04:50', '2021-10-20 08:21:00', 14, 38, 5),
 (9002, 102, 202, '2021-10-20 08:00:50', '2021-10-20 08:06:00', '2021-10-20 08:31:00', 10.0, 41.5, 5),
 (9006, 106, 203, '2021-10-20 08:06:00', '2021-10-20 08:09:00', '2021-10-20 08:31:00', 8.0, 25.5, 4),
 (9003, 103, 202, '2021-10-20 08:07:10', '2021-10-20 08:15:00', '2021-10-20 08:31:00', 11.0, 41.5, 4),
 (9004, 104, 202, '2021-10-20 08:01:20', '2021-10-20 08:13:00', '2021-10-20 08:31:00', 7.5, 22, 4),
 (9019, 103, 202, '2021-10-20 08:01:30', '2021-10-20 08:11:00', '2021-10-20 08:51:00', 10, 39, 4),
 (9011, 101, 211, '2021-10-20 08:30:00', '2021-10-20 08:31:00', '2021-10-20 08:54:00', 10, 35, 5);

在这里插入图片描述

五、某宝店铺分析(电商模式)

1.某宝店铺的SPU数量

题目:11月结束后,小牛同学需要对其在某宝的网店就11月份用户交易情况和产品情况进行分析以更好的经营小店。请你统计每款的SPU(货号)数量,并按SPU数量降序排序

--输入:
drop table if exists product_tb;
CREATE TABLE product_tb(
item_id char(10) NOT NULL,
style_id char(10) NOT NULL,
tag_price int(10) NOT NULL,
inventory int(10) NOT NULL
);
INSERT INTO product_tb VALUES('A001', 'A', 100,  20);
INSERT INTO product_tb VALUES('A002', 'A', 120, 30);
INSERT INTO product_tb VALUES('A003', 'A', 200,  15);
INSERT INTO product_tb VALUES('B001', 'B', 130, 18);
INSERT INTO product_tb VALUES('B002', 'B', 150,  22);
INSERT INTO product_tb VALUES('B003', 'B', 125, 10);
INSERT INTO product_tb VALUES('B004', 'B', 155,  12);
INSERT INTO product_tb VALUES('C001', 'C', 260, 25);
INSERT INTO product_tb VALUES('C002', 'C', 280,  18);

在这里插入图片描述


2.某宝店铺的实际销售额与客单价

题目:11月结束后,小牛同学需要对其在某宝的网店就11月份用户交易情况和产品情况进行分析以更好的经营小店。请你统计实际总销售额与客单价(人均付费,总收入/总用户数,结果保留两位小数),

--输入:
drop table if exists sales_tb;
CREATE TABLE sales_tb(
sales_date date NOT NULL,
user_id int(10) NOT NULL,
item_id char(10) NOT NULL,
sales_num int(10) NOT NULL,
sales_price int(10) NOT NULL
);

INSERT INTO sales_tb VALUES('2021-11-1', 1, 'A001',  1, 90);
INSERT INTO sales_tb VALUES('2021-11-1', 2, 'A002',  2, 220);
INSERT INTO sales_tb VALUES('2021-11-1', 2, 'B001',  1, 120);
INSERT INTO sales_tb VALUES('2021-11-2', 3, 'C001',  2, 500);
INSERT INTO sales_tb VALUES('2021-11-2', 4, 'B001',  1, 120);
INSERT INTO sales_tb VALUES('2021-11-3', 5, 'C001',  1, 240);
INSERT INTO sales_tb VALUES('2021-11-3', 6, 'C002',  1, 270);
INSERT INTO sales_tb VALUES('2021-11-4', 7, 'A003',  1, 180);
INSERT INTO sales_tb VALUES('2021-11-4', 8, 'B002',  1, 140);
INSERT INTO sales_tb VALUES('2021-11-4', 9, 'B001',  1, 125);
INSERT INTO sales_tb VALUES('2021-11-5', 10, 'B003',  1, 120);
INSERT INTO sales_tb VALUES('2021-11-5', 10, 'B004',  1, 150);
INSERT INTO sales_tb VALUES('2021-11-5', 10, 'A003',  1, 180);
INSERT INTO sales_tb VALUES('2021-11-6', 11, 'B003',  1, 120);
INSERT INTO sales_tb VALUES('2021-11-6', 10, 'B004',  1, 150);

在这里插入图片描述


3.某宝店铺折扣率

题目:11月结束后,小牛同学需要对其在某宝的网店就11月份用户交易情况和产品情况进行分析以更好的经营小店。请你统计折扣率(GMV/吊牌金额,GMV指的是成交金额)

--输入:
drop table if exists product_tb;
CREATE TABLE product_tb(
item_id char(10) NOT NULL,
style_id char(10) NOT NULL,
tag_price int(10) NOT NULL,
inventory int(10) NOT NULL
);
INSERT INTO product_tb VALUES('A001', 'A', 100,  20);
INSERT INTO product_tb VALUES('A002', 'A', 120, 30);
INSERT INTO product_tb VALUES('A003', 'A', 200,  15);
INSERT INTO product_tb VALUES('B001', 'B', 130, 18);
INSERT INTO product_tb VALUES('B002', 'B', 150,  22);
INSERT INTO product_tb VALUES('B003', 'B', 125, 10);
INSERT INTO product_tb VALUES('B004', 'B', 155,  12);
INSERT INTO product_tb VALUES('C001', 'C', 260, 25);
INSERT INTO product_tb VALUES('C002', 'C', 280,  18);

drop table if exists sales_tb;
CREATE TABLE sales_tb(
sales_date date NOT NULL,
user_id int(10) NOT NULL,
item_id char(10) NOT NULL,
sales_num int(10) NOT NULL,
sales_price int(10) NOT NULL
);

INSERT INTO sales_tb VALUES('2021-11-1', 1, 'A001',  1, 90);
INSERT INTO sales_tb VALUES('2021-11-1', 2, 'A002',  2, 220);
INSERT INTO sales_tb VALUES('2021-11-1', 2, 'B001',  1, 120);
INSERT INTO sales_tb VALUES('2021-11-2', 3, 'C001',  2, 500);
INSERT INTO sales_tb VALUES('2021-11-2', 4, 'B001',  1, 120);
INSERT INTO sales_tb VALUES('2021-11-3', 5, 'C001',  1, 240);
INSERT INTO sales_tb VALUES('2021-11-3', 6, 'C002',  1, 270);
INSERT INTO sales_tb VALUES('2021-11-4', 7, 'A003',  1, 180);
INSERT INTO sales_tb VALUES('2021-11-4', 8, 'B002',  1, 140);
INSERT INTO sales_tb VALUES('2021-11-4', 9, 'B001',  1, 125);
INSERT INTO sales_tb VALUES('2021-11-5', 10, 'B003',  1, 120);
INSERT INTO sales_tb VALUES('2021-11-5', 10, 'B004',  1, 150);
INSERT INTO sales_tb VALUES('2021-11-5', 10, 'A003',  1, 180);
INSERT INTO sales_tb VALUES('2021-11-6', 11, 'B003',  1, 120);
INSERT INTO sales_tb VALUES('2021-11-6', 10, 'B004',  1, 150);

4.某宝店铺动销率与售罄率

题目:11月结束后,小牛同学需要对其在某宝的网店就11月份用户交易情况和产品情况进行分析以更好的经营小店。请你统计每款的动销率(pin_rate,有销售的SKU数量/在售SKU数量)与售罄率(sell-through_rate,GMV/备货值,备货值=吊牌价*库存数),按style_id升序排序。

--输入:
drop table if exists product_tb;
CREATE TABLE product_tb(
item_id char(10) NOT NULL,
style_id char(10) NOT NULL,
tag_price int(10) NOT NULL,
inventory int(10) NOT NULL
);
INSERT INTO product_tb VALUES('A001', 'A', 100,  20);
INSERT INTO product_tb VALUES('A002', 'A', 120, 30);
INSERT INTO product_tb VALUES('A003', 'A', 200,  15);
INSERT INTO product_tb VALUES('B001', 'B', 130, 18);
INSERT INTO product_tb VALUES('B002', 'B', 150,  22);
INSERT INTO product_tb VALUES('B003', 'B', 125, 10);
INSERT INTO product_tb VALUES('B004', 'B', 155,  12);
INSERT INTO product_tb VALUES('C001', 'C', 260, 25);
INSERT INTO product_tb VALUES('C002', 'C', 280,  18);

drop table if exists sales_tb;
CREATE TABLE sales_tb(
sales_date date NOT NULL,
user_id int(10) NOT NULL,
item_id char(10) NOT NULL,
sales_num int(10) NOT NULL,
sales_price int(10) NOT NULL
);

INSERT INTO sales_tb VALUES('2021-11-1', 1, 'A001',  1, 90);
INSERT INTO sales_tb VALUES('2021-11-1', 2, 'A002',  2, 220);
INSERT INTO sales_tb VALUES('2021-11-1', 2, 'B001',  1, 120);
INSERT INTO sales_tb VALUES('2021-11-2', 3, 'C001',  2, 500);
INSERT INTO sales_tb VALUES('2021-11-2', 4, 'B001',  1, 120);
INSERT INTO sales_tb VALUES('2021-11-3', 5, 'C001',  1, 240);
INSERT INTO sales_tb VALUES('2021-11-3', 6, 'C002',  1, 270);
INSERT INTO sales_tb VALUES('2021-11-4', 7, 'A003',  1, 180);
INSERT INTO sales_tb VALUES('2021-11-4', 8, 'B002',  1, 140);
INSERT INTO sales_tb VALUES('2021-11-4', 9, 'B001',  1, 125);
INSERT INTO sales_tb VALUES('2021-11-5', 10, 'B003',  1, 120);
INSERT INTO sales_tb VALUES('2021-11-5', 10, 'B004',  1, 150);
INSERT INTO sales_tb VALUES('2021-11-5', 10, 'A003',  1, 180);
INSERT INTO sales_tb VALUES('2021-11-6', 11, 'B003',  1, 120);
INSERT INTO sales_tb VALUES('2021-11-6', 10, 'B004',  1, 150);

5.某宝店铺连续2天及以上购物的用户及其对应的天数

题目:11月结束后,小牛同学需要对其在某宝的网店就11月份用户交易情况和产品情况进行分析以更好的经营小店。请你统计连续2天及以上在该店铺购物的用户及其对应的次数(若有多个用户,按user_id升序排序)。

--输入:
drop table if exists sales_tb;
CREATE TABLE sales_tb(
sales_date date NOT NULL,
user_id int(10) NOT NULL,
item_id char(10) NOT NULL,
sales_num int(10) NOT NULL,
sales_price int(10) NOT NULL
);

INSERT INTO sales_tb VALUES('2021-11-1', 1, 'A001',  1, 90);
INSERT INTO sales_tb VALUES('2021-11-1', 2, 'A002',  2, 220);
INSERT INTO sales_tb VALUES('2021-11-1', 2, 'B001',  1, 120);
INSERT INTO sales_tb VALUES('2021-11-2', 3, 'C001',  2, 500);
INSERT INTO sales_tb VALUES('2021-11-2', 4, 'B001',  1, 120);
INSERT INTO sales_tb VALUES('2021-11-3', 5, 'C001',  1, 240);
INSERT INTO sales_tb VALUES('2021-11-3', 6, 'C002',  1, 270);
INSERT INTO sales_tb VALUES('2021-11-4', 7, 'A003',  1, 180);
INSERT INTO sales_tb VALUES('2021-11-4', 8, 'B002',  1, 140);
INSERT INTO sales_tb VALUES('2021-11-4', 9, 'B001',  1, 125);
INSERT INTO sales_tb VALUES('2021-11-5', 10, 'B003',  1, 120);
INSERT INTO sales_tb VALUES('2021-11-5', 10, 'B004',  1, 150);
INSERT INTO sales_tb VALUES('2021-11-5', 10, 'A003',  1, 180);
INSERT INTO sales_tb VALUES('2021-11-6', 11, 'B003',  1, 120);
INSERT INTO sales_tb VALUES('2021-11-6', 10, 'B004',  1, 150);

六、牛客直播课分析(在线教育行业)

1.牛客直播转换率

题目:牛客某页面推出了数据分析系列直播课程介绍。用户可以选择报名任意一场或多场直播课。请你统计每个科目的转换率(sign_rate(%),转化率=报名人数/浏览人数,结果保留两位小数)。

--输入:
drop table if exists course_tb;
CREATE TABLE course_tb(
course_id int(10) NOT NULL, 
course_name char(10) NOT NULL,
course_datetime char(30) NOT NULL);

INSERT INTO course_tb VALUES(1, 'Python', '2021-12-1 19:00-21:00');
INSERT INTO course_tb VALUES(2, 'SQL', '2021-12-2 19:00-21:00');
INSERT INTO course_tb VALUES(3, 'R', '2021-12-3 19:00-21:00');

drop table if exists behavior_tb;
CREATE TABLE behavior_tb(
user_id int(10) NOT NULL, 
if_vw int(10) NOT NULL,
if_fav int(10) NOT NULL,
if_sign int(10) NOT NULL,
course_id int(10) NOT NULL);

INSERT INTO behavior_tb VALUES(100, 1, 1, 1, 1);
INSERT INTO behavior_tb VALUES(100, 1, 1, 1, 2);
INSERT INTO behavior_tb VALUES(100, 1, 1, 1, 3);
INSERT INTO behavior_tb VALUES(101, 1, 1, 1, 1);
INSERT INTO behavior_tb VALUES(101, 1, 1, 1, 2);
INSERT INTO behavior_tb VALUES(101, 1, 0, 0, 3);
INSERT INTO behavior_tb VALUES(102, 1, 1, 1, 1);
INSERT INTO behavior_tb VALUES(102, 1, 1, 1, 2);
INSERT INTO behavior_tb VALUES(102, 1, 1, 1, 3);
INSERT INTO behavior_tb VALUES(103, 1, 1, 0, 1);
INSERT INTO behavior_tb VALUES(103, 1, 0, 0, 2);
INSERT INTO behavior_tb VALUES(103, 1, 0, 0, 3);
INSERT INTO behavior_tb VALUES(104, 1, 1, 1, 1);
INSERT INTO behavior_tb VALUES(104, 1, 1, 1, 2);
INSERT INTO behavior_tb VALUES(104, 1, 1, 0, 3);
INSERT INTO behavior_tb VALUES(105, 1, 0, 0, 1);
INSERT INTO behavior_tb VALUES(106, 1, 0, 0, 1);
INSERT INTO behavior_tb VALUES(107, 1, 0, 0, 1);
INSERT INTO behavior_tb VALUES(107, 1, 1, 1, 2);
INSERT INTO behavior_tb VALUES(108, 1, 1, 1, 3);

2.牛客直播开始时各直播间在线人数

题目:牛客某页面推出了数据分析系列直播课程介绍。用户可以选择报名任意一场或多场直播课。请你统计直播开始时(19:00),各科目的在线人数,以上例子的输出结果为(按照course_id升序排序)。

--输入:
CREATE TABLE course_tb(
course_id int(10) NOT NULL, 
course_name char(10) NOT NULL,
course_datetime char(30) NOT NULL);
INSERT INTO course_tb VALUES(1, 'Python', '2021-12-1 19:00-21:00');
INSERT INTO course_tb VALUES(2, 'SQL', '2021-12-2 19:00-21:00');
INSERT INTO course_tb VALUES(3, 'R', '2021-12-3 19:00-21:00');

CREATE TABLE attend_tb(
user_id int(10) NOT NULL, 
course_id int(10) NOT NULL,
in_datetime datetime NOT NULL,
out_datetime datetime NOT NULL
);
INSERT INTO attend_tb VALUES(100, 1, '2021-12-1 19:00:00', '2021-12-1 19:28:00');
INSERT INTO attend_tb VALUES(100, 1, '2021-12-1 19:30:00', '2021-12-1 19:53:00');
INSERT INTO attend_tb VALUES(101, 1, '2021-12-1 19:00:00', '2021-12-1 20:55:00');
INSERT INTO attend_tb VALUES(102, 1, '2021-12-1 19:00:00', '2021-12-1 19:05:00');
INSERT INTO attend_tb VALUES(104, 1, '2021-12-1 19:00:00', '2021-12-1 20:59:00');
INSERT INTO attend_tb VALUES(101, 2, '2021-12-2 19:05:00', '2021-12-2 20:58:00');
INSERT INTO attend_tb VALUES(102, 2, '2021-12-2 18:55:00', '2021-12-2 21:00:00');
INSERT INTO attend_tb VALUES(104, 2, '2021-12-2 18:57:00', '2021-12-2 20:56:00');
INSERT INTO attend_tb VALUES(107, 2, '2021-12-2 19:10:00', '2021-12-2 19:18:00');
INSERT INTO attend_tb VALUES(100, 3, '2021-12-3 19:01:00', '2021-12-3 21:00:00');
INSERT INTO attend_tb VALUES(102, 3, '2021-12-3 18:58:00', '2021-12-3 19:05:00');
INSERT INTO attend_tb VALUES(108, 3, '2021-12-3 19:01:00', '2021-12-3 19:56:00');

3.牛客直播各科目平均观看时长

题目:牛客某页面推出了数据分析系列直播课程介绍。用户可以选择报名任意一场或多场直播课。请你统计每个科目的平均观看时长(观看时长定义为离开直播间的时间与进入直播间的时间之差,单位是分钟),输出结果按平均观看时长降序排序,结果保留两位小数。

--输入:
drop table if exists course_tb;
CREATE TABLE course_tb(
course_id int(10) NOT NULL, 
course_name char(10) NOT NULL,
course_datetime char(30) NOT NULL);

INSERT INTO course_tb VALUES(1, 'Python', '2021-12-1 19:00-21:00');
INSERT INTO course_tb VALUES(2, 'SQL', '2021-12-2 19:00-21:00');
INSERT INTO course_tb VALUES(3, 'R', '2021-12-3 19:00-21:00');

drop table if exists attend_tb;
CREATE TABLE attend_tb(
user_id int(10) NOT NULL, 
course_id int(10) NOT NULL,
in_datetime datetime NOT NULL,
out_datetime datetime NOT NULL
);
INSERT INTO attend_tb VALUES(100, 1, '2021-12-1 19:00:00', '2021-12-1 19:28:00');
INSERT INTO attend_tb VALUES(100, 1, '2021-12-1 19:30:00', '2021-12-1 19:53:00');
INSERT INTO attend_tb VALUES(101, 1, '2021-12-1 19:00:00', '2021-12-1 20:55:00');
INSERT INTO attend_tb VALUES(102, 1, '2021-12-1 19:00:00', '2021-12-1 19:05:00');
INSERT INTO attend_tb VALUES(104, 1, '2021-12-1 19:00:00', '2021-12-1 20:59:00');
INSERT INTO attend_tb VALUES(101, 2, '2021-12-2 19:05:00', '2021-12-2 20:58:00');
INSERT INTO attend_tb VALUES(102, 2, '2021-12-2 18:55:00', '2021-12-2 21:00:00');
INSERT INTO attend_tb VALUES(104, 2, '2021-12-2 18:57:00', '2021-12-2 20:56:00');
INSERT INTO attend_tb VALUES(107, 2, '2021-12-2 19:10:00', '2021-12-2 19:18:00');
INSERT INTO attend_tb VALUES(100, 3, '2021-12-3 19:01:00', '2021-12-3 21:00:00');
INSERT INTO attend_tb VALUES(102, 3, '2021-12-3 18:58:00', '2021-12-3 19:05:00');
INSERT INTO attend_tb VALUES(108, 3, '2021-12-3 19:01:00', '2021-12-3 19:56:00');

4.牛客直播各科目出勤率

题目:牛客某页面推出了数据分析系列直播课程介绍。用户可以选择报名任意一场或多场直播课。请你统计每个科目的出勤率(attend_rate(%),结果保留两位小数),出勤率=出勤(在线时长10分钟及以上)人数 / 报名人数,输出结果按course_id升序排序,以上数据的输出结果如下。

--输入:
drop table if exists course_tb;
CREATE TABLE course_tb(
course_id int(10) NOT NULL, 
course_name char(10) NOT NULL,
course_datetime char(30) NOT NULL);

INSERT INTO course_tb VALUES(1, 'Python', '2021-12-1 19:00-21:00');
INSERT INTO course_tb VALUES(2, 'SQL', '2021-12-2 19:00-21:00');
INSERT INTO course_tb VALUES(3, 'R', '2021-12-3 19:00-21:00');

drop table if exists behavior_tb;
CREATE TABLE behavior_tb(
user_id int(10) NOT NULL, 
if_vw int(10) NOT NULL,
if_fav int(10) NOT NULL,
if_sign int(10) NOT NULL,
course_id int(10) NOT NULL);

INSERT INTO behavior_tb VALUES(100, 1, 1, 1, 1);
INSERT INTO behavior_tb VALUES(100, 1, 1, 1, 2);
INSERT INTO behavior_tb VALUES(100, 1, 1, 1, 3);
INSERT INTO behavior_tb VALUES(101, 1, 1, 1, 1);
INSERT INTO behavior_tb VALUES(101, 1, 1, 1, 2);
INSERT INTO behavior_tb VALUES(101, 1, 0, 0, 3);
INSERT INTO behavior_tb VALUES(102, 1, 1, 1, 1);
INSERT INTO behavior_tb VALUES(102, 1, 1, 1, 2);
INSERT INTO behavior_tb VALUES(102, 1, 1, 1, 3);
INSERT INTO behavior_tb VALUES(103, 1, 1, 0, 1);
INSERT INTO behavior_tb VALUES(103, 1, 0, 0, 2);
INSERT INTO behavior_tb VALUES(103, 1, 0, 0, 3);
INSERT INTO behavior_tb VALUES(104, 1, 1, 1, 1);
INSERT INTO behavior_tb VALUES(104, 1, 1, 1, 2);
INSERT INTO behavior_tb VALUES(104, 1, 1, 0, 3);
INSERT INTO behavior_tb VALUES(105, 1, 0, 0, 1);
INSERT INTO behavior_tb VALUES(106, 1, 0, 0, 1);
INSERT INTO behavior_tb VALUES(107, 1, 0, 0, 1);
INSERT INTO behavior_tb VALUES(107, 1, 1, 1, 2);
INSERT INTO behavior_tb VALUES(108, 1, 1, 1, 3);

drop table if exists attend_tb;
CREATE TABLE attend_tb(
user_id int(10) NOT NULL, 
course_id int(10) NOT NULL,
in_datetime datetime NOT NULL,
out_datetime datetime NOT NULL
);
INSERT INTO attend_tb VALUES(100, 1, '2021-12-1 19:00:00', '2021-12-1 19:28:00');
INSERT INTO attend_tb VALUES(100, 1, '2021-12-1 19:30:00', '2021-12-1 19:53:00');
INSERT INTO attend_tb VALUES(101, 1, '2021-12-1 19:00:00', '2021-12-1 20:55:00');
INSERT INTO attend_tb VALUES(102, 1, '2021-12-1 19:00:00', '2021-12-1 19:05:00');
INSERT INTO attend_tb VALUES(104, 1, '2021-12-1 19:00:00', '2021-12-1 20:59:00');
INSERT INTO attend_tb VALUES(101, 2, '2021-12-2 19:05:00', '2021-12-2 20:58:00');
INSERT INTO attend_tb VALUES(102, 2, '2021-12-2 18:55:00', '2021-12-2 21:00:00');
INSERT INTO attend_tb VALUES(104, 2, '2021-12-2 18:57:00', '2021-12-2 20:56:00');
INSERT INTO attend_tb VALUES(107, 2, '2021-12-2 19:10:00', '2021-12-2 19:18:00');
INSERT INTO attend_tb VALUES(100, 3, '2021-12-3 19:01:00', '2021-12-3 21:00:00');
INSERT INTO attend_tb VALUES(102, 3, '2021-12-3 18:58:00', '2021-12-3 19:05:00');
INSERT INTO attend_tb VALUES(108, 3, '2021-12-3 19:01:00', '2021-12-3 19:56:00');

5.牛客直播各科目同时在线人数

题目:牛客某页面推出了数据分析系列直播课程介绍。用户可以选择报名任意一场或多场直播课。请你统计每个科目最大同时在线人数(按course_id排序)。

--输入:
drop table if exists course_tb;
CREATE TABLE course_tb(
course_id int(10) NOT NULL, 
course_name char(10) NOT NULL,
course_datetime char(30) NOT NULL);
INSERT INTO course_tb VALUES(1, 'Python', '2021-12-1 19:00-21:00');
INSERT INTO course_tb VALUES(2, 'SQL', '2021-12-2 19:00-21:00');
INSERT INTO course_tb VALUES(3, 'R', '2021-12-3 19:00-21:00');

drop table if exists attend_tb;
CREATE TABLE attend_tb(
user_id int(10) NOT NULL, 
course_id int(10) NOT NULL,
in_datetime datetime NOT NULL,
out_datetime datetime NOT NULL
);
INSERT INTO attend_tb VALUES(100, 1, '2021-12-1 19:00:00', '2021-12-1 19:28:00');
INSERT INTO attend_tb VALUES(100, 1, '2021-12-1 19:30:00', '2021-12-1 19:53:00');
INSERT INTO attend_tb VALUES(101, 1, '2021-12-1 19:00:00', '2021-12-1 20:55:00');
INSERT INTO attend_tb VALUES(102, 1, '2021-12-1 19:00:00', '2021-12-1 19:05:00');
INSERT INTO attend_tb VALUES(104, 1, '2021-12-1 19:00:00', '2021-12-1 20:59:00');
INSERT INTO attend_tb VALUES(101, 2, '2021-12-2 19:05:00', '2021-12-2 20:58:00');
INSERT INTO attend_tb VALUES(102, 2, '2021-12-2 18:55:00', '2021-12-2 21:00:00');
INSERT INTO attend_tb VALUES(104, 2, '2021-12-2 18:57:00', '2021-12-2 20:56:00');
INSERT INTO attend_tb VALUES(107, 2, '2021-12-2 19:10:00', '2021-12-2 19:18:00');
INSERT INTO attend_tb VALUES(100, 3, '2021-12-3 19:01:00', '2021-12-3 21:00:00');
INSERT INTO attend_tb VALUES(102, 3, '2021-12-3 18:58:00', '2021-12-3 19:05:00');
INSERT INTO attend_tb VALUES(108, 3, '2021-12-3 19:01:00', '2021-12-3 19:56:00');

七、某乎问答(内容行业)

1.某乎问答11月份日人均回答量

题目:请你统计11月份日人均回答量(回答问题数量/答题人数),按回答日期排序,结果保留两位小数

--输入:
drop table if exists answer_tb;
CREATE TABLE answer_tb(
answer_date date NOT NULL, 
author_id int(10) NOT NULL,
issue_id char(10) NOT NULL,
char_len int(10) NOT NULL);
INSERT INTO answer_tb VALUES('2021-11-1', 101, 'E001' ,150);
INSERT INTO answer_tb VALUES('2021-11-1', 101, 'E002', 200);
INSERT INTO answer_tb VALUES('2021-11-1',102, 'C003' ,50);
INSERT INTO answer_tb VALUES('2021-11-1' ,103, 'P001', 35);
INSERT INTO answer_tb VALUES('2021-11-1', 104, 'C003', 120);
INSERT INTO answer_tb VALUES('2021-11-1' ,105, 'P001', 125);
INSERT INTO answer_tb VALUES('2021-11-1' , 102, 'P002', 105);
INSERT INTO answer_tb VALUES('2021-11-2',  101, 'P001' ,201);
INSERT INTO answer_tb VALUES('2021-11-2',  110, 'C002', 200);
INSERT INTO answer_tb VALUES('2021-11-2',  110, 'C001', 225);
INSERT INTO answer_tb VALUES('2021-11-2' , 110, 'C002', 220);
INSERT INTO answer_tb VALUES('2021-11-3', 101, 'C002', 180);
INSERT INTO answer_tb VALUES('2021-11-4' ,109, 'E003', 130);
INSERT INTO answer_tb VALUES('2021-11-4', 109, 'E001',123);
INSERT INTO answer_tb VALUES('2021-11-5', 108, 'C001',160);
INSERT INTO answer_tb VALUES('2021-11-5', 108, 'C002', 120);
INSERT INTO answer_tb VALUES('2021-11-5', 110, 'P001', 180);
INSERT INTO answer_tb VALUES('2021-11-5' , 106, 'P002' , 45);
INSERT INTO answer_tb VALUES('2021-11-5' , 107, 'E003', 56);

2.某乎问答高质量的回答中用户属于各级别的数量

题目:回答字数大于等于100字的认为是高质量回答,请你统计某乎问答高质量的回答中用户属于1-2级、3-4级、5-6级的数量分别是多少,按数量降序排列。

--输入:
drop table if exists author_tb;
CREATE TABLE author_tb(
author_id int(10) NOT NULL, 
author_level int(10) NOT NULL,
sex char(10) NOT NULL);
INSERT INTO author_tb VALUES(101 , 6, 'm');
INSERT INTO author_tb VALUES(102 , 1, 'f');
INSERT INTO author_tb VALUES(103 , 1, 'm');
INSERT INTO author_tb VALUES(104 , 3, 'm');
INSERT INTO author_tb VALUES(105 , 4, 'f');
INSERT INTO author_tb VALUES(106 , 2, 'f');
INSERT INTO author_tb VALUES(107 , 2, 'm');
INSERT INTO author_tb VALUES(108 , 5, 'f');
INSERT INTO author_tb VALUES(109 , 6, 'f');
INSERT INTO author_tb VALUES(110 , 5, 'm');

drop table if exists answer_tb;
CREATE TABLE answer_tb(
answer_date date NOT NULL, 
author_id int(10) NOT NULL,
issue_id char(10) NOT NULL,
char_len int(10) NOT NULL);
INSERT INTO answer_tb VALUES('2021-11-1', 101, 'E001' ,150);
INSERT INTO answer_tb VALUES('2021-11-1', 101, 'E002', 200);
INSERT INTO answer_tb VALUES('2021-11-1',102, 'C003' ,50);
INSERT INTO answer_tb VALUES('2021-11-1' ,103, 'P001', 35);
INSERT INTO answer_tb VALUES('2021-11-1', 104, 'C003', 120);
INSERT INTO answer_tb VALUES('2021-11-1' ,105, 'P001', 125);
INSERT INTO answer_tb VALUES('2021-11-1' , 102, 'P002', 105);
INSERT INTO answer_tb VALUES('2021-11-2',  101, 'P001' ,201);
INSERT INTO answer_tb VALUES('2021-11-2',  110, 'C002', 200);
INSERT INTO answer_tb VALUES('2021-11-2',  110, 'C001', 225);
INSERT INTO answer_tb VALUES('2021-11-2' , 110, 'C002', 220);
INSERT INTO answer_tb VALUES('2021-11-3', 101, 'C002', 180);
INSERT INTO answer_tb VALUES('2021-11-4' ,109, 'E003', 130);
INSERT INTO answer_tb VALUES('2021-11-4', 109, 'E001',123);
INSERT INTO answer_tb VALUES('2021-11-5', 108, 'C001',160);
INSERT INTO answer_tb VALUES('2021-11-5', 108, 'C002', 120);
INSERT INTO answer_tb VALUES('2021-11-5', 110, 'P001', 180);
INSERT INTO answer_tb VALUES('2021-11-5' , 106, 'P002' , 45);
INSERT INTO answer_tb VALUES('2021-11-5' , 107, 'E003', 56);

3.某乎问答单日回答问题数大于等于3个的所有用户

题目:请你统计11月份单日回答问题数大于等于3个的所有用户信息(author_date表示回答日期、author_id表示创作者id,answer_cnt表示回答问题个数)。

--输入:
drop table if exists answer_tb;
CREATE TABLE answer_tb(
answer_date date NOT NULL, 
author_id int(10) NOT NULL,
issue_id char(10) NOT NULL,
char_len int(10) NOT NULL);
INSERT INTO answer_tb VALUES('2021-11-1', 101, 'E001' ,150);
INSERT INTO answer_tb VALUES('2021-11-1', 101, 'E002', 200);
INSERT INTO answer_tb VALUES('2021-11-1',102, 'C003' ,50);
INSERT INTO answer_tb VALUES('2021-11-1' ,103, 'P001', 35);
INSERT INTO answer_tb VALUES('2021-11-1', 104, 'C003', 120);
INSERT INTO answer_tb VALUES('2021-11-1' ,105, 'P001', 125);
INSERT INTO answer_tb VALUES('2021-11-1' , 102, 'P002', 105);
INSERT INTO answer_tb VALUES('2021-11-2',  101, 'P001' ,201);
INSERT INTO answer_tb VALUES('2021-11-2',  110, 'C002', 200);
INSERT INTO answer_tb VALUES('2021-11-2',  110, 'C001', 225);
INSERT INTO answer_tb VALUES('2021-11-2' , 110, 'C002', 220);
INSERT INTO answer_tb VALUES('2021-11-3', 101, 'C002', 180);
INSERT INTO answer_tb VALUES('2021-11-4' ,109, 'E003', 130);
INSERT INTO answer_tb VALUES('2021-11-4', 109, 'E001',123);
INSERT INTO answer_tb VALUES('2021-11-5', 108, 'C001',160);
INSERT INTO answer_tb VALUES('2021-11-5', 108, 'C002', 120);
INSERT INTO answer_tb VALUES('2021-11-5', 110, 'P001', 180);
INSERT INTO answer_tb VALUES('2021-11-5' , 106, 'P002' , 45);
INSERT INTO answer_tb VALUES('2021-11-5' , 107, 'E003', 56);

4.某乎问答回答过教育类问题的用户里有多少用户回答

题目:请你统计回答过教育类问题的用户里有多少用户回答过职场类问题。

--输入:
drop table if exists issue_tb;
CREATE TABLE issue_tb(
issue_id char(10) NOT NULL, 
issue_type char(10) NOT NULL);
INSERT INTO issue_tb VALUES('E001' ,'Education');
INSERT INTO issue_tb VALUES('E002' ,'Education');
INSERT INTO issue_tb VALUES('E003' ,'Education');
INSERT INTO issue_tb VALUES('C001', 'Career');
INSERT INTO issue_tb VALUES('C002', 'Career');
INSERT INTO issue_tb VALUES('C003', 'Career');
INSERT INTO issue_tb VALUES('C004', 'Career');
INSERT INTO issue_tb VALUES('P001' ,'Psychology');
INSERT INTO issue_tb VALUES('P002' ,'Psychology');

drop table if exists answer_tb;
CREATE TABLE answer_tb(
answer_date date NOT NULL, 
author_id int(10) NOT NULL,
issue_id char(10) NOT NULL,
char_len int(10) NOT NULL);
INSERT INTO answer_tb VALUES('2021-11-1', 101, 'E001' ,150);
INSERT INTO answer_tb VALUES('2021-11-1', 101, 'E002', 200);
INSERT INTO answer_tb VALUES('2021-11-1',102, 'C003' ,50);
INSERT INTO answer_tb VALUES('2021-11-1' ,103, 'P001', 35);
INSERT INTO answer_tb VALUES('2021-11-1', 104, 'C003', 120);
INSERT INTO answer_tb VALUES('2021-11-1' ,105, 'P001', 125);
INSERT INTO answer_tb VALUES('2021-11-1' , 102, 'P002', 105);
INSERT INTO answer_tb VALUES('2021-11-2',  101, 'P001' ,201);
INSERT INTO answer_tb VALUES('2021-11-2',  110, 'C002', 200);
INSERT INTO answer_tb VALUES('2021-11-2',  110, 'C001', 225);
INSERT INTO answer_tb VALUES('2021-11-2' , 110, 'C002', 220);
INSERT INTO answer_tb VALUES('2021-11-3', 101, 'C002', 180);
INSERT INTO answer_tb VALUES('2021-11-4' ,109, 'E003', 130);
INSERT INTO answer_tb VALUES('2021-11-4', 109, 'E001',123);
INSERT INTO answer_tb VALUES('2021-11-5', 108, 'C001',160);
INSERT INTO answer_tb VALUES('2021-11-5', 108, 'C002', 120);
INSERT INTO answer_tb VALUES('2021-11-5', 110, 'P001', 180);
INSERT INTO answer_tb VALUES('2021-11-5' , 106, 'P002' , 45);
INSERT INTO answer_tb VALUES('2021-11-5' , 107, 'E003', 56);

5.某乎问答最大连续回答问题天数大于等于3天的用户

题目:请你统计最大连续回答问题的天数大于等于3天的用户及其等级(若有多条符合条件的数据,按author_id升序排序)。

--输入:
drop table if exists author_tb;
CREATE TABLE author_tb(
author_id int(10) NOT NULL, 
author_level int(10) NOT NULL,
sex char(10) NOT NULL);
INSERT INTO author_tb VALUES(101 , 6, 'm');
INSERT INTO author_tb VALUES(102 , 1, 'f');
INSERT INTO author_tb VALUES(103 , 1, 'm');
INSERT INTO author_tb VALUES(104 , 3, 'm');
INSERT INTO author_tb VALUES(105 , 4, 'f');
INSERT INTO author_tb VALUES(106 , 2, 'f');
INSERT INTO author_tb VALUES(107 , 2, 'm');
INSERT INTO author_tb VALUES(108 , 5, 'f');
INSERT INTO author_tb VALUES(109 , 6, 'f');
INSERT INTO author_tb VALUES(110 , 5, 'm');

drop table if exists answer_tb;
CREATE TABLE answer_tb(
answer_date date NOT NULL, 
author_id int(10) NOT NULL,
issue_id char(10) NOT NULL,
char_len int(10) NOT NULL);
INSERT INTO answer_tb VALUES('2021-11-1', 101, 'E001' ,150);
INSERT INTO answer_tb VALUES('2021-11-1', 101, 'E002', 200);
INSERT INTO answer_tb VALUES('2021-11-1',102, 'C003' ,50);
INSERT INTO answer_tb VALUES('2021-11-1' ,103, 'P001', 35);
INSERT INTO answer_tb VALUES('2021-11-1', 104, 'C003', 120);
INSERT INTO answer_tb VALUES('2021-11-1' ,105, 'P001', 125);
INSERT INTO answer_tb VALUES('2021-11-1' , 102, 'P002', 105);
INSERT INTO answer_tb VALUES('2021-11-2',  101, 'P001' ,201);
INSERT INTO answer_tb VALUES('2021-11-2',  110, 'C002', 200);
INSERT INTO answer_tb VALUES('2021-11-2',  110, 'C001', 225);
INSERT INTO answer_tb VALUES('2021-11-2' , 110, 'C002', 220);
INSERT INTO answer_tb VALUES('2021-11-3', 101, 'C002', 180);
INSERT INTO answer_tb VALUES('2021-11-4' ,109, 'E003', 130);
INSERT INTO answer_tb VALUES('2021-11-4', 109, 'E001',123);
INSERT INTO answer_tb VALUES('2021-11-5', 108, 'C001',160);
INSERT INTO answer_tb VALUES('2021-11-5', 108, 'C002', 120);
INSERT INTO answer_tb VALUES('2021-11-5', 110, 'P001', 180);
INSERT INTO answer_tb VALUES('2021-11-5' , 106, 'P002' , 45);
INSERT INTO answer_tb VALUES('2021-11-5' , 107, 'E003', 56);

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1348303.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[react]脚手架create-react-app/vite与reac项目

[react]脚手架create-react-app/vite与reac项目 环境问题描述create-react-app 脚手架根据脚手架修改项目结构安装脚手架注入配置文件-config文件夹package.json文件变更删除 serviceWorker.js新增reportWebVitals.js文件更新index.js文件 脚手架creat-react-app 缺点 vite 脚手…

数据结构期末复习(2)链表

链表 链表&#xff08;Linked List&#xff09;是一种常见的数据结构&#xff0c;用于存储一系列具有相同类型的元素。链表由节点&#xff08;Node&#xff09;组成&#xff0c;每个节点包含两部分&#xff1a;数据域&#xff08;存储元素值&#xff09;和指针域&#xff08;指…

MyBatis多表映射

1. 多表映射概念 MyBatis 思想是&#xff1a;数据库不可能永远是你所想或所需的那个样子。 我们希望每个数据库都具备良好的第三范式或 BCNF 范式&#xff0c;可惜它们并不都是那样。 如果能有一种数据库映射模式&#xff0c;完美适配所有的应用程序查询需求&#xff0c;那就太…

【FileZilla的安装与使用(主动与被动模式详解,以及如何利用FileZilla搭建FTP服务器并且进行访问)】

目录 一、FileZilla介绍 1.1 简介 1.2 重要信息和功能 二、FileZilla的安装与使用 2.1 FileZilla服务端安装与配置 2.1.1 安装步骤 2.1.2 新建组 2.1.3 新建用户 2.1.4 新建目录 2.1.5 权限分配 &#xff08;1&#xff09;用户Milk权限分配 &#xff08;2&#xff…

HikvisionCamera开发-萤石云RTMP协议获取视频流

RTMP/RTSP&#xff08;实时流传输协议&#xff09;是一种网络协议&#xff0c;旨在用于传输音频和视频数据。本文将介绍如何在HikvisionCamera二次开发中如何通过RTMP协议获得实时视频流&#xff0c;使用到的摄像头为POE供电的海康威视-臻全彩款&#xff0c;以及套餐内配套录像…

JMeter使用

目录 启动JMeter 创建线程组 设置线程参数 设置http请求参数 ​编辑 创建查看结果树(显示成功/失败多少以及返回结果等信息) 创建聚合报告(显示响应时间、吞吐量、异常数等信息) 点击上方的执行按钮即可开始压力测试 结果树显示 聚合报告结果显示 启动JMeter 在JMete…

【NLP论文】03 基于 jiagu 的情感分析

本篇是NLP论文系列的最后一篇&#xff0c;主要介绍如何计算情感分析结果&#xff0c;并将其融入到XX评价体系和物流关键词词库&#xff0c;之前我已经写了两篇关于情感分析的文章&#xff0c;分别是 SnowNLP 和 Cemotion 技术&#xff0c;最终我才用了 jiagu 来写我的论文&…

机器人中的数值优化之线性共轭梯度法

欢迎大家关注我的B站&#xff1a; 偷吃薯片的Zheng同学的个人空间-偷吃薯片的Zheng同学个人主页-哔哩哔哩视频 (bilibili.com) 本文ppt来自深蓝学院《机器人中的数值优化》 目录 1.无约束优化方法对比 2.Hessian-vec product 3.线性共轭梯度方法的步长​编辑 4.共轭梯度…

mac上使用Navicat Premium 在本地和生产环境中保持数据库同步

Navicat Premium 是一款功能强大的数据库管理和开发工具&#xff0c;支持多种数据库系统&#xff0c;如 MySQL、Oracle、SQL Server 等。作为程序员&#xff0c;我深知在开发过程中需要一款方便、高效的数据库管理工具来提升工作效率。而 Navicat Premium 正是这样一款不可多得…

Spring Boot学习随笔- Jasypt加密数据库用户名和密码以及解密

学习视频&#xff1a;【编程不良人】2021年SpringBoot最新最全教程 第十九章、Jasypt加密 Jasypt全称是Java Simplified Encryption&#xff0c;是一个开源项目。 Jasypt与Spring Boot集成&#xff0c;以便在应用程序的属性文件中加密敏感信息&#xff0c;然后在应用程序运行…

怎么解决 Nginx反向代理加载速度慢?

Nginx反向代理加载速度慢可能由多种原因引起&#xff0c;以下是一些可能的解决方法&#xff1a; 1&#xff0c;网络延迟&#xff1a; 检查目标服务器的网络状况&#xff0c;确保其网络连接正常。如果目标服务器位于不同的地理位置&#xff0c;可能会有较大的网络延迟。考虑使用…

从0到1快速入门ETLCloud

一、ETLCloud的介绍 ETL是将业务系统的数据经过抽取&#xff08;Extract&#xff09;、清洗转换&#xff08;Transform&#xff09;之后加载&#xff08;Load&#xff09;到数据仓库的过程&#xff0c;目的是将企业中的分散、凌乱、标准不统一的数据整合到一起&#xff0c;为企…

【C#】知识点实践序列之Lock的输出多线程信息

大家好&#xff0c;我是全栈小5&#xff0c;欢迎来到《小5讲堂之知识点实践序列》文章。 2023年第2篇文章&#xff0c;此篇文章是C#知识点实践序列之Lock知识点&#xff0c;博主能力有限&#xff0c;理解水平有限&#xff0c;若有不对之处望指正&#xff01; 本篇在Lock锁定代码…

【力扣题解】P700-二叉搜索树中的搜索-Java题解

&#x1f468;‍&#x1f4bb;博客主页&#xff1a;花无缺 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! 本文由 花无缺 原创 收录于专栏 【力扣题解】 文章目录 【力扣题解】P700-二叉搜索树中的搜索-Java题解&#x1f30f;题目描述&#x1f4a1;题解&#x1f…

D45D46|动态规划之子序列问题

300.最长递增子序列&#xff1a; 初始思路&#xff1a; 动态规划五部曲&#xff1a; 1&#xff09;dp数组的定义&#xff0c;dp[i]表述数组第i个元素大于前面几个值&#xff1b; 2&#xff09;dp数组的迭代&#xff0c;min nums[x]表示递增数组中的最后一个值&#xff0c;如…

Linux 安装 mysql【使用yum源进行安装】

配置yum 源 首先&#xff0c;去到mysql网站&#xff0c;找到它的rpm的资源包 “mysql80-community-release-el9-5.noarch.rpm” 我们将其下载下来&#xff0c;然后配置yum源&#xff08;下面两种方式二选一即可&#xff09; ① 使用xftp传输&#xff0c;然后配置yum源 rpm …

【数据结构】栈和队列(队列的基本操作和基础知识)

&#x1f308;个人主页&#xff1a;秦jh__https://blog.csdn.net/qinjh_?spm1010.2135.3001.5343&#x1f525; 系列专栏&#xff1a;《数据结构》https://blog.csdn.net/qinjh_/category_12536791.html?spm1001.2014.3001.5482 ​ 目录 前言 队列 队列的概念和结构 队列的…

王道考研计算机网络——应用层

如何为用户提供服务&#xff1f; CS/P2P 提高域名解析的速度&#xff1a;local name server高速缓存&#xff1a;直接地址映射/低级的域名服务器的地址 本机也有告诉缓存&#xff1a;本机开机的时候从本地域名服务器当中下载域名和地址的对应数据库&#xff0c;放到本地的高…

FDM3D打印系列——RX-78-2高达胸像打印

https://v.youku.com/v_show/id_XNjI4OTQ2NjkyNA.html   大家好&#xff0c;我是阿赵。   2024年的第一篇博客&#xff0c;做一个3D打印作品&#xff0c;RX-78-2高达胸像打印。 成年男人是很少收得到礼物的&#xff0c;所以礼物都要自己准备。这个模型&#xff0c;就算是我…

Javaweb之Mybatis入门程序的详细解析

1.2 入门程序实现 1.2.1 准备工作 1.2.1.1 创建springboot工程 创建springboot工程&#xff0c;并导入 mybatis的起步依赖、mysql的驱动包。 项目工程创建完成后&#xff0c;自动在pom.xml文件中&#xff0c;导入Mybatis依赖和MySQL驱动依赖 <!-- 仅供参考&#xff1a;只…