【时钟】分布式时钟HLC|Logical Time|Vector Clock|True Time

news2025/1/21 4:46:23

目录

简略

详细

附录

1 分布式系统不能使用NTP的原因


简略

分布式系统中不同于单机系统不能使用NTP(网络时间协议(Network Time Protocol))来获取时间,所以我们需要一个特别的方式来获取分布式系统中的时间,mvcc也是使用time保证读写相互不影响

Logical Time

      使用 接收到的消息内的时间和自己的时间中最新的那个。

      各个节点发送消息时附带自己的时间Ci,对方收到之后和自己的时间Cj 比对,选择大的时间更新为自己的时间Cj = max{Cj,Ci}.

Vector Clock

      接收到的消息有所有节点的“时间戳”集合,每个时间戳都比本地的集合对应节点的大,就用对方的,都比本地的节点小就用自己的,不是全部都大或者都小就裁决。

        VectorClock一个集合内包含所有节点的“时间戳”:{Node1:0,Node2:2,Node3:3.......}(这个时间戳并不是物理意义上的时间而是由程序赋予的逻辑计数(count)),收发消息时比对和更新自身VectorClock:

a本机:{0,0,1}  消息:{0,1,2}。消息的每个节点的count都大于等于本机的,那么舍弃本机,同步消息

b:本机:{0,1,2}  消息:{0,1,1}。消息的每个节点的count都小于等于本机的,那么舍弃消息,保留本机

c:本机:{0,3,1}  消息:{0,1,2}。出现冲突,有的大,有的小,无法判断出来到底谁是最新版本。就要进行冲突仲裁。

True Time

需要专用硬件支持

Google Spanner里面,通过引入True Time来解决了分布式时间问题。Spanner通过使用GPS + Atomic Clock来对集群的机器进行校时,精度误差范围能控制在ms级别. 需要专用硬件支持

Hybrid Logic Clock(HLC/混合逻辑时钟)

HLC存储两部分信息:本地时钟(物理部分)l,计数器(逻辑部分)c

本地时钟部分l=集群节点的本地时钟的最大值(每次进行事务通信时更新这部分信息)

计数器部分c=每次事件或者消息通信时++(累加),类似逻辑时钟里每次事件都++(累加)。

HLC比较大小时,先用比较l部分,如果l相等再看c是否为零。

详细

摘抄自:分布式系统中的时间 - https://www.jianshu.com/p/18f063573aae

Logical Time

本质是通过事件发生的顺序,通过相互通信更新自己的时间,即通过a->b 根据通信得到C(a) > C(b);

每个进程Pi维护一个本地计数器Ci,相当于logical clocks,按照以下的规则更新Ci

1 每次执行一个事件(例如通过网络发送消息,或者将消息交给应用层,或者其它的一些内部事件)之前,将Ci加1

2 当Pi发送消息m给Pj的时候,在消息m上附着上Ci

3 当接收进程Pj接收到Pi的发送的消息时,更新自己的Cj = max{Cj,Ci}

未解决问题:我们不能通过C(a) > C(b) 得出a->b,不能使用真实时间进行事务查询

Vector Clock

VectorClock是一种用向量来表示偏序关系的逻辑时钟,从数据结构上可以理解为一个集合内包含所有节点的“时间戳”,当然这个时间戳并不是物理意义上的时间(也有些实践会同时加入timestamps以解决冲突问题),而是由程序赋予的逻辑计数(count),{Node1:0,Node2:2,Node3:3.......},如果我们已经统一了向量内的位置对应的node,那么时钟可以直接用一个{0,2,3}来表示。

对于每一个分布式存储的对象副本都有这样一个时间戳,那么存在一下几种关系:

a本机:{0,0,1}  消息:{0,1,2}。消息的每个节点的count都大于等于本机的,那么舍弃本机,同步消息

b:本机:{0,1,2}  消息:{0,1,1}。消息的每个节点的count都小于等于本机的,那么舍弃消息,保留本机

c:本机:{0,3,1}  消息:{0,1,2}。出现冲突,有的大,有的小,无法判断出来到底谁是最新版本。就要进行冲突仲裁。

ps:vector clock类似于quorum协议,更新的时候将本机vector clock与事务vector clock进行对比,根据规则进行更新

未解决问题:不能使用真实时间进行事务查询

True Time

前面我们说了,NTP是有误差的,而且NTP还可能出现时间回退的情况,所以我们不能直接依赖NTP来确定一个事件发生的时间。在Google Spanner里面,通过引入True Time来解决了分布式时间问题。Spanner通过使用GPS + Atomic Clock来对集群的机器进行校时,精度误差范围能控制在ms级别,通过提供一套TrueTime API给外面使用。

TrueTime API很简单,只有三个函数:

MethodReturn

TT.now()TTinterval: [earliest, latest]

TT.after(t)true if t has definitely passed

TT.before(t)true if t has definitely not arrived

首先now得到当前的一个时间区间,spanner不能得到精确的一个时间点,只能得到一段区间,但这个区间误差范围很小,也就是ms级别,我们用ε来表示,也就是[t - ε, t + ε]这个范围,

假设事件a发生绝对时间为tt.a,那么我们只能知道tt.a.earliest <= tt.a <= tt.a.latest, 所以对于另一个事件b,只要tt.b.earliest > tt.a.latest,我们就能确定b一定是在a之后发生的,也就是说,我们需要等待大概2ε的事件才能去提交b,这个就是spanner里面说的commit wait time,保证误差时间消除掉。

未解决问题:需要专用硬件支持

Hybrid Logic Clock

      混合逻辑时钟HLC存储两部分信息,一部分取值来源于本地时钟(物理部分)l,另一部分取值来自于计数器(逻辑部分)c。

    来源于物理的部分,里面保存的其实是当前所有参与节点的本地时钟的最大值(每次进行事务通信时更新这部分信息),另一部分则是每次事件或者消息通信时++(累加),类似逻辑时钟里每次事件都++(累加)。

    HLC将这两部分称为l和c。混合逻辑时钟比较大小时,先用比较l部分,如果相等再看c是否为零。

 混合逻辑时钟HLC的算法描述如下:

本地事件或者发送消息时:

如果本地时钟(pt)大于当前的混合逻辑时钟的l,则将l更新成本地时钟,将c清零。

否则,l保持不变,将c加1。

if pt.j  >  l.j {

    l.j = pt.j

   c.j = 0

} else {

      l.j = l.j

      c.j := c.j

}

return l.j c.j

收到消息时,l 等于(当前的逻辑时钟的l、机器的本地时钟pt、收到消息里面带的l)三者中的最大值。

如果l部分是更新为本地时钟了,则将c清零。(保证HLC最大,如果本地时钟最大则重置HLC.c=0)

否则,c取较大的那个l对应到的c加1。

l'.j = l.j;

l.j = max(l'.j, l.m, pt.j);

if l.j = l'.j = m.j then c.j = max(c.j, c.m) + 1

else if l.j = l'.j then c.j = c.j + 1

else if l.j = l.m then c.j = c.m + 1

else c.j = 0

return l.j c.j

        各节点相互通信的最终结果是,节点的“本地时钟”的物理部分,最终记录的是所有参与者中最大的本地时钟。这里有一个问题是由于HLC是一个 相对的时间所以当集群中有一台机器时间快了的话,所有时间都提前了,另外这个时间不是一个True Time,这样 导致snapshot读的时间和整体系统运行时间不一致

       那么HLC怎么实现snapshot 读呢?我们将HLC作为数据的version,假设e和f事件发生成同一节点上,l.e < l.f ,我们引入一个虚拟事件g,l.e+1 <= l.g <= l.f ,并且 c.g = 0,这样的虚拟事件肯定是能找到的,并且引入一个虚构事件并不影响真实事件发生的先后关系。注意了!这个虚拟事件的时钟其实是可以跟全局的节点比较时序的(l.g, 0) ! 也就意味着,我们可以拿一个本地时钟去确定一个快照了!我们读取HLC<=HLC.g的数据即可

  快照是只要happens before我的,我一定能够看到。混合逻辑时钟通过保留了物理时钟部分,使得拿到'全局'的时间戳成为可能,而逻辑时钟里面happens before的因果关系仍然可以保留。

Timestamp Oracle(与Tidb 使用raft来实现时间一致,保证性能呢最够好,保证能读到数据即可,使用raft同步一写多读的话性能上会更好点)

       无论上面的Ture Time还是Hybrid Logic Time,都是为了在分布式情况下获取全局唯一时间,如果我们整个系统不复杂,而且没有spanner那种跨全球的需求,有时候一台中心授时服务没准就可以了。

在GooglePercolator系统这,他们就提到使用了一个timestamp oracle(TSO)的服务来提供统一的授时服务,为啥叫oracle,我猜想可能底层用的就是oracle数据库。。。

使用TSO的好处在于因为只有一个中心授时,所以我们一定能确定所有时间的时间,但TSO需要关注几个问题:

网络延时,因为所有的事件都需要从TSO获取时间,所以TSO的场景通常都是小集群,不能是那种全球级别的数据库。

性能,TSO是一个非常高频的操作,但鉴于它只干一件事情,就是授时,通常一个TSO每秒都能支持1m+ 以上的QPS,而这个对很多应用来说是绰绰有余的。

容错,TSO是一个单点,所以不得不考虑容错,而这个现在基于zookeeper,etcd也不是特别困难的事情。

所以,如果我们没法实现TrueTime,同时又觉得HLC太复杂,但又想获取全局时间,TSO没准是一个很好的选择,因为它足够简单高效。

TSO方案

作者:羊吃白菜

链接:https://www.jianshu.com/p/18f063573aae

Hybrid Logical Clock (HLC) (sergeiturukin.com)

References

  • http://www.cse.buffalo.edu/tech-reports/2014-04.pdf
  • Distributed systems for fun and profit
  • CS 417 Documents
  • pt, for physical time
  • l, logical, holds maximumptheard so far
  • c, captures causality

附录

1 分布式系统不能使用NTP的原因

NTP是网络时间协议(Network Time Protocol)的缩写,这是一种网络协议,用于同步计算机的时钟与世界统一的时间。通常,单个计算机或网络内的多台计算机可以使用NTP服务器来校准其系统时钟,保持与统一时间(例如,UTC,协调世界时)的一致性,减少时间误差。

但是,在分布式系统中,仅仅依赖NTP来同步时间可能不足够,因为:

1. 分布式系统跨越广泛的地理位置,网络延迟和变化可以造成同步的不精确。

2. NTP无法确保绝对的时钟同步一致性,通常会有毫秒级别的误差,这对于需要高精度时钟同步的分布式系统可能是不可接受的。

3. 分布式系统中的某些算法和应用可能需要比NTP更强的时间协调机制,比如逻辑时钟或向量时钟,它们能够提供系统事件的顺序一致性而不仅仅是时间同步。

因此,虽然NTP可以在分布式系统中提供基本的时钟同步,但它可能不足以满足所有分布式系统所需的精确时间同步要求。复杂的分布式系统可能会采用额外的协议和技术,如真实时间时钟(RTCs)、时钟同步算法(比如Google的TrueTime API),以及各种容错机制来更准确地同步各个节点的时钟。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1347747.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Debezium发布历史40

原文地址&#xff1a; https://debezium.io/blog/2018/09/20/materializing-aggregate-views-with-hibernate-and-debezium/ 欢迎关注留言&#xff0c;我是收集整理小能手&#xff0c;工具翻译&#xff0c;仅供参考&#xff0c;笔芯笔芯. 使用 Hibernate 和 Debezium 实现聚合…

Linux安装Oracle调用dbca无响应和密码问题

Linux服务器下调用dbca无响应&#xff0c;或弹出如下提示&#xff1a; 则需要在Linux命令行窗口&#xff0c;输入如下命令即可 export DISPLAYip:0.0 注意&#xff1a;该ip应该为可显示图形桌面的机器ip地址。 该桌面需要已经安装了Xmanager-Passive&#xff08;比如 Xmanag…

Langchain-Chatchat开源库使用的随笔记(一)

笔者最近在研究Langchain-Chatchat&#xff0c;所以本篇作为随笔记进行记录。 最近核心探索的是知识库的使用&#xff0c;其中关于文档如何进行分块的详细&#xff0c;可以参考笔者的另几篇文章&#xff1a; 大模型RAG 场景、数据、应用难点与解决&#xff08;四&#xff09;R…

2024 Win 安装Oracle12C

文章目录 一、下载1.1 官方下载1.2 官方Archive下载1.3 博主提供 二、安装2.1 解压2.2 安装 三、连接3.1 SQL Plus3.2 切换到容器数据库orclpdb3.3 查询SID 四、查看数据4.1 SQL Develop 连接4.2 创建新用户4.3 develop 直接创建新用户4.3.2 SQL 错误: ORA-65096: 公用用户名或…

Django 学习教程- Django 入门案例

Django学习教程系列 Django学习教程-介绍与安装 前言 本教程是为 Django 5.0 编写的&#xff0c;它支持 Python 3.10 至以上。如果 Django 版本不匹配&#xff0c;可以参考教程 使用右下角的版本切换器来获取你的 Django 版本 &#xff0c;或将 Django 更新到最新版本。如果…

Select工作原理

I/O多路复用是一种并发处理的机制&#xff0c;允许一个进程通过一种机制监视多个描述符&#xff0c;从而在有多个I/O操作需要处理时选择其中之一进行服务。select 函数是一种常见的实现 I/O 多路复用的系统调用&#xff0c;它允许一个进程同时监视多个文件描述符的可读性、可写…

Elasticsearch-8.11.1 (2+1)HA(高可用)集群部署

目录 一、环境描述 二、安装 ES 2.1 下载Elasticsearch 2.2 解压Elasticsearch 2.3 创建es服务账号/密码 2.3 修改服务器配置 2.4 配置节点 2.4.1 配置说明 2.4.2 配置高可用集群 2.4.2.1 maser节点服务配置 2.4.2.2 node1 节点服务配置 2.4.2.3 node2 节点服务配置…

HarmonyOS4.0系统性深入开发10卡片事件能力说明

卡片事件能力说明 ArkTS卡片中提供了postCardAction()接口用于卡片内部和提供方应用间的交互&#xff0c;当前支持router、message和call三种类型的事件&#xff0c;仅在卡片中可以调用。 接口定义&#xff1a;postCardAction(component: Object, action: Object): void 接口…

年度总结 | 回味2023不平凡的一年

目录 前言1. 平台成就2. 自我提升3. Bug连连4. 个人展望 前言 每年CSDN的总结都不能落下&#xff0c;回顾去年&#xff1a;年度总结 | 回味2022不平凡的一年&#xff0c;在回忆今年&#xff0c;展望下年 1. 平台成就 平台造就我&#xff08;我也造就平台哈哈&#xff09; 每…

基于 LangChain + GLM搭建知识本地库

一种利用 langchain 思想实现的基于本地知识库的问答应用&#xff0c;目标期望建立一套对中文场景与开源模型支持友好、可离线运行的知识库问答解决方案。 受GanymedeNil的项目document.ai和AlexZhangji创建的ChatGLM-6B Pull Request启发&#xff0c;建立了全流程可使用开源模…

UE4运用C++和框架开发坦克大战教程笔记(十三)(第40~42集)

UE4运用C和框架开发坦克大战教程笔记&#xff08;十三&#xff09;&#xff08;第40~42集&#xff09; 40. 多按键绑定41. 自动生成对象42. 资源模块数据结构测试自动生成对象按资源类型生成对象 40. 多按键绑定 上节课实现了按键绑定系统的 4 种基础绑定&#xff0c;这节课来…

探索 Vue 异步组件的世界:解锁高效开发的秘密(上)

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

008、所有权

所有权可以说是Rust中最为独特的一个功能了。正是所有权概念和相关工具的引入&#xff0c;Rust才能够在没有垃圾回收机制的前提下保障内存安全。 因此&#xff0c;正确地了解所有权概念及其在Rust中的实现方式&#xff0c;对于所有Rust开发者来讲都是十分重要的。在本文中&…

原型链补充

1.什么是原型对象 函数的独有属性,他用prototype来表示,可以在函数的prototype上挂载一些公用的属性和方法,供实例化对象来访问。 2.__proto__属性 这个属性每一个对象都有,实例化对象就是通过这个属性,来访问原型对象上的属性和方法的。 3.三者之间的关系 1.在构造函数的原型…

Linux驱动学习—pinctl和gpio子系统

1、pinctl和gpio子系统&#xff08;一&#xff09; 1.1pinctrl 子系统主要工作内容 <1>获取设备树中 pin 信息&#xff0c;管理系统中所有的可以控制的 pin&#xff0c; 在系统初始化的时候&#xff0c; 枚举所有可以控制的 pin&#xff0c; 并标识这些 pin。 <2>…

Unity坦克大战开发全流程——结束场景——失败界面

结束场景——失败界面 在玩家类中重写死亡函数 在beginPanel中锁定鼠标

数据结构【线性表篇】(三)

数据结构【线性表篇】(三&#xff09; 文章目录 数据结构【线性表篇】(三&#xff09;前言为什么突然想学算法了&#xff1f;为什么选择码蹄集作为刷题软件&#xff1f; 目录一、双链表二、循环链表三、静态链表 结语 前言 为什么突然想学算法了&#xff1f; > 用较为“官方…

U4_3 语法分析-自底向上分析-LR0/LR1/SLR分析

文章目录 一、LR分析法1、概念2、流程3、LR分析器结构及分析表构造1&#xff09;结构2&#xff09;一些概念 二、LR(0)分析法1、流程2、分析动作1&#xff09;移近2&#xff09;归约(reduce) 3、总结1&#xff09;LR分析器2&#xff09;构造DFA3&#xff09;构造LR(0)的方法(三…

Redis(上)

1、redis Redis是一个完全开源免费的高性能&#xff08;NOSQL&#xff09;的key-value数据库。它遵守BSD协议&#xff0c;使用ANSI C语言编写&#xff0c;并支持网络和持久化。Redis拥有极高的性能&#xff0c;每秒可以进行11万次的读取操作和8.1万次的写入操作。它支持丰富的数…

nodejs+vue+微信小程序+python+PHP的医疗报销系统的设计与实现-计算机毕业设计推荐

接着进行系统的需求分析、功能设计、数据库设计&#xff0c;最后进行编码实现。医疗报销系统主要包括了前台和后台信息管理两个部分&#xff0c;前台实现信息浏览、报销申请、意见反馈、个人信息管理等&#xff0c;后台实现新闻资讯管理、报销审核、报销流程管理、系统信息管理…