【28】Kotlin语法进阶——使用协程编写高效的并发程序

news2025/1/27 12:32:21

提示:此文章仅作为本人记录日常学习使用,若有存在错误或者不严谨得地方欢迎指正。

文章目录

  • 一、Kotlin中的协程
    • 1.1 协程的基本用法
      • 1.1.1协程与协程作用域
      • 1.1.2 使用launch函数创建子协程
      • 1.1.3 通过suspend关键声明挂起函数
      • 1.1.4 coroutineScope函数
    • 1.2 更多的作用域构建器
      • 1.2.1 项目中创建协程的常用方法
      • 1.2.2 获取协程的返回值
      • 1.2.3 withContext函数

一、Kotlin中的协程

协程是Kotlin语言中很有代表性的一种并发设计模式,用于简化异步执行的代码。协程和线程有点类似,可以简单地将它理解成一种轻量级的线程。我们前面学习的线程是属于重量级的,这是因为线程需要依靠操作系统的调度来实现不同线程之间的切换。而协程仅在编程语言的层面就能实现不同协程之间的切换,无需操作系统的介入,从而极大提高了并发编程的运行效率。
举一个具体的例子,例如我们有foo()和bar()这两个方法:

fun foo(){
	a()
	b()
	c()
}
fun bar(){
	x()
	y()
	z()
}

在没有开启线程的情况下,先调用foo()方法后调用bar()方法,理论上结果一定是a()、b()、c()执行完了以后,x()、y()、z()才能够得到执行。而如果在协程A中调用foo()方法,在协程B中调用bar()方法。虽然它们仍运行在同一个线程中,但在执行foo()方法时随时都有可能被挂起而去执行bar()方法;同理在执行bar()方法时也随时都有可能被挂起转而继续执行foo()方法,这就使得最终输出的结果变得不确定了。
可以看出,协程允许我们在单线程模式下模拟多线程编程的效果,代码执行时的挂起与恢复完全是由编程语言来控制的,和操作系统无关。

1.1 协程的基本用法

如果我们需要在项目中使用协程功能,需要在build.gradle.kts(:app)中添加以下依赖:

dependencies {
	· · ·
    implementation("org.jetbrains.kotlinx:kotlinx-coroutines-android:1.3.9") // 适用于Android项目
    implementation("org.jetbrains.kotlinx:kotlinx-coroutines-core:1.3.9") // 适用于非Android项目
}    

创建一个CoroutinesTest.kt文件并在其中定义一个main()函数,然后在main()函数中使用GlobalScope.launch函数:

fun main() {
    GlobalScope.launch {
        println("codes run in coroutine scope")
    }
}

GlobalScope.launch函数可以创建一个协程的作用域,这样代码块中的代码就是在协程中运行的了。按照我们的理解,现在运行main()函数,应该会打印一句话才对。可是当你运行main()函数后却发现控制台中没有任何日志输出:
在这里插入图片描述

这是因为GlobalScope.launch函数每次创建的都是一个顶层协程,当应用程序运行结束时顶层协程也会跟着一起结束。刚才的日志之所以无法打印出来,正是因为代码块中的代码还没来得及运行,应用程序就结束了。为了解决这个问题,我们让程序延迟一段时间再结束就行了:

fun main() {
    GlobalScope.launch {
        println("codes run in coroutine scope")
    }
    // 让主线程休眠1s(1s后再关闭应用程序)
    Thread.sleep(1000)
}

可以看到,在使用Thread.sleep(1000)让主线程休眠1s后,日志可以正常打印出来了。
在这里插入图片描述
可是这种写法还是存在一些问题的,如果代码块中的代码在1秒钟内不能运行结束,那么就会被强制中断:

fun main() {
    GlobalScope.launch {
        println("codes run in coroutine scope")
        delay(1500)
        println("codes run in coroutine finished")
    }
    Thread.sleep(1000)
}

我们在代码块中加入了一个delay()函数,并在它后面又追加了一条打印。delay()函数可以让当前协程延迟一段时间后再运行,但它和Thread.sleep()方法不同。delay()函数只会挂起当前协程,并不会影响其他协程的运行。而Thread.sleep()方法会阻塞当前的线程,这样所有运行在该线程下的协程都会被阻塞

注意:delay()函数只能在协程的作用域或其他挂起函数中调用。

这里我们让协程挂起1.5s(打印第一行日志1.5s后再打印第二行日志),让主线程休眠1s(应用程序1s后结束)。重新运行程序,你会发现代码块中新增加的一条日志并没有打印出来,因为它还没来得及运行,应用程序就已经结束了。为了解决这个问题,我们可以借助runBlocking函数让应用程序在协程中所有代码都运行完了之后再结束

fun main() {
    runBlocking {
        println("codes run in coroutine scope")
        delay(1500)
        println("codes run in coroutine finished")
    }
}

runBlocking函数同样会创建一个协程的作用域,但它可以保证所有该协程作用域内的代码和子协程,在执行完毕之前会一直阻塞当前线程。需要注意的是runBlocking函数通常只应该在测试环境下使用,在正式环境中使用容易产生一些性能问题。重新运行程序,可以看到两条日志都能够正常打印出来了:
在这里插入图片描述

1.1.1协程与协程作用域

  • 协程(Coroutine)是一种轻量级的并发单元,可以在其执行过程中挂起并返回到其父协程或顶层协程。协程的主要特点是它们能够被挂起并恢复,这使得它们可以用来实现并发和异步编程。
  • 协程作用域(Coroutine Scope)则是一种定义协程生命周期范围的对象。每个协程都必须在某个作用域内运行,当作用域被销毁时,它内部的所有协程都会被自动取消。协程作用域可以用来管理协程的启动、取消和结构化并发

简单来说,协程是轻量级的并发单元,而协程作用域则是定义协程生命周期范围的对象,它可以用来管理和控制协程的执行。

1.1.2 使用launch函数创建子协程

接下来我们学习一下如何使用launch函数创建多个协程

fun main() {
    runBlocking {
        launch {
            println("launch1")
            delay(1000)
            println("launch1 finished")
        }
        launch {
            println("launch2")
            delay(1000)
            println("launch2 finished")
        }
    }
}

这里的launch函数和我们前面所使用的GlobalScope.launch函数不同。首先①launch函数必须在协程的作用域中才能调用,其次②launch函数会在当前协程的作用域下创建子协程子协程的特点是如果外层作用域的协程结束了,该作用域下的所有子协程也会一同结束,而GlobalScope.launch函数创建的永远是顶层协程
我们在runBlocking函数结构中调用了两次launch函数,也就相当于创建了两个子协程。重新运行程序,结果如下:
在这里插入图片描述
可以看到两个子协程中的日志是交替打印的,说明它们确实是像多线程一样并发运行的。然而这两个协程实际却运行在同一个线程当中,只是由编程语言来决定如何在多个协程之间进行调度。调度的过程完全不需要操作系统参与,这也就使得协程的并发效率会更高。
为了直观的体验到协程在处理并发事件时的效率,我们进行以下实验:

fun main() {
    // 协程开始执行的时间
    val start = System.currentTimeMillis()
    runBlocking {
        repeat(100000) {
            launch {
                println(".")
            }
        }
    }
    // 协程执行完毕的时间
    val end = System.currentTimeMillis()
    println("协程执行时间:${end - start}ms")
}

我们使用repeat()函数创建了10万个协程,并让每个协程打印一行日志,然后记录下整个操作的耗时。重新运行程序,可以看到我们仅耗时348毫秒,这足以看出协程是多么的高效。试想一下,如果我们开启的是10万个线程,程序或许早都因为内存泄露而崩溃了。
在这里插入图片描述

1.1.3 通过suspend关键声明挂起函数

随着launch函数中的逻辑越来越复杂,可能你需要将部分launch函数中的代码提取到一个单独的函数中。这个时候就产生了另一个问题:我们在launch函数中编写的代码是拥有协程作用域的,但是如果将其提取到一个单独的函数中就没有协程作用域了,那么我们该如何调用像delay()这样的挂起函数呢?
为此Kotlin提供了一个suspend关键字,使用suspend关键字可以将任意函数声明成挂起函数,而挂起函数之间都是可以相互调用的:

fun main() {
    // 协程开始执行的时间
    val start = System.currentTimeMillis()
    runBlocking {
        repeat(100000) {
            launch {
                printDot()
            }
        }
    }
    // 协程执行完毕的时间
    val end = System.currentTimeMillis()
    println("协程执行时间:${end - start}ms")
}

// 通过suspend关键字将printDot()声明成挂起函数
suspend fun printDot() {
    println(".")
    delay(1000)
}

这样printDot()函数就是一个挂起函数了,我们也就可以在printDot()函数中调用delay()函数。但suspend关键字只能将一个函数声明成挂起函数,却无法给他提供协程作用域的。例如你现在尝试在printDot()函数中调用launch函数,一定是无法调用成功的,因为launch函数要求必须在协程作用域当中才能调用

1.1.4 coroutineScope函数

为了解决suspend关键字作用域的问题,我们可以借助coroutineScope函数来解决。由于coroutineScope函数也是一个挂起函数,因此可以在其他挂起函数中调用它。coroutineScope函数的特点是会继承外部协程的作用域并创建一个子协程,借助这个特性,我们可以给任意挂起函数提供协程作用域

suspend fun printDot() = coroutineScope {
    launch {
        println(".")
        delay(1000)
    }
}

通过在printDot()内部使用coroutineScope函数,使得coroutineScope函数内部启动的协程(由launch创建)继承了printDot()函数的父作用域(也就是调用printDot()函数的外部作用域)。
可以看到,现在我们可以在printDot()这个挂起函数中调用launch函数了。coroutineScope函数和runBlocking函数有点类似,它可以保证其作用域内的所有代码和子协程在全部执行完之前,外部的协程会一直被挂起。例如下面的示例代码:

fun main() {
    // runBlocking确保其作用域内所有代码和子协程都执行完毕前会阻塞当前线程
    runBlocking {
        // coroutineScope确保其作用域内所有代码和子协程都执行完毕前会阻塞当前线程
        coroutineScope {
            launch {
                for (i in 1..10) {
                    println(".")
                    delay(1000)
                }
            }
        }
        println("coroutineScope finished")
    }
    println("runBlocking finished")
}

我们先使用runBlocking函数创建了一个协程作用域,然后这个主协程作用域内又调用了coroutineScope函数创建了另一个新的协程作用域,并等待该作用域内的所有子协程执行完毕。运行结果如下:
在这里插入图片描述
由此可见coroutineScope函数确实是将外部runBlocking协程挂起了。只有当coroutineScope作用域内所有的代码和子协程都执行完毕后,才会执行它之后的代码。需要注意,虽然coroutineScope函数和runBlocking函数很类似,但coroutineScope函数只会阻塞当前协程,既不会影响其他协程,也不会影响任何线程,因此是不会造成任何性能上的问题的。而runBlocking函数则会挂起外部线程,如果你恰好又在主线程中调用runBlocking函数的话,很可能会造成界面卡死,所以不推荐在实际项目中体验。

1.2 更多的作用域构建器

在上一小节的内容中,我们学习了GlobalScope.launch、runBlocking、launch、coroutineScope这几种作用域构建器。它们之间的调用方法还是有些许不同的:

  • GlobalScope.launch{ }函数、runBlocking{ }函数可以在任意地方调用。(实际项目中不推荐使用
  • coroutineScope{ }函数可以在协程作用域或者挂起函数中调用。
  • launch{ }函数只能在协程作用域中调用。

注意:
①由于runBlocking{ }函数会阻塞当前线程,因此只建议在测试环境下使用,不建议在实际项目中使用。
②而GlobalScope.launch{ }函数每次创建的都是顶层协程(当应用程序结束时顶层协程也会结束),除非明确需要创建顶层协程,否则也不建议在实际项目中使用


这里将讲一下为什么不建议在实际项目中使用顶层协程:
不建议使用的原因是它的管理成本太高了。例如我们在某个Activity中使用协程发起了一条网络请求,由于网络请求是耗时的,当用户在服务器还没来得及响应的情况下就关闭了当前Activity,按理说此时应该取消这条网络请求或者不应该进行回调操作。因为Activity已经被用户关闭了,此时就算服务器返回了数据也没有任何意义。
然而为了取消顶层协程,不管是GlobalScope.launch{ }函数还是launch{ }函数,它们都会返回一个Job对象,我们需要调用Job对象的cancel()方法来取消协程:

val job = GlobalScope.launch {
    · · ·
}
job.cancel()

如果我们每次创建的都是顶层协程,那么当Activity关闭时,我们就需要逐个调用所有已创建协程的cancel()方法,这简直是一种灾难!因此GlobalScope.launch{ }这种协程作用域构建器在实际项目中也不太常用。


1.2.1 项目中创建协程的常用方法

下面是实际项目中比较常见的写法:

fun main() {
	// 创建Job对象
    val job = Job()
    // 通过Job对象创建CoroutineScope对象
    val scope = CoroutineScope(job)
    // 通过CoroutineScope对象的launch{}函数创建协程
    scope.launch {
        //处理具体逻辑
    }
    // 关闭协程
    job.cancel()
}

我们先是创建了一个Job对象,然后通过这个Job对象来创建一个CoroutineScope对象。之后我们就可以通过调用这个CoroutineScope对象的launch{ }函数来创建一个协程了。现在所有调用CoroutineScope的launch{ }函数所创建协程,都会被关联在Job对象的作用域下面。现在我们只需要调用一次Job对象中的cancel()方法,就可以将同一作用域内的所有协程全部取消,从而很大程度上降低了协程管理的成本。
总而言之,CoroutineScope( )函数更适合实际项目当中使用。如果你只是在Main()函数中编写一些学习测试用的代码,还是使用runBlocking{ }函数最为方便。

1.2.2 获取协程的返回值

通过前面的学习你已经知道了调用launch{ }函数可以创建一个新的协程,但是launch{ }函数只能用于执行一段逻辑,却不能获取执行的结果,因为他的返回值永远是一个Job对象。那么如何能够创建一个协程并获取它的执行结果呢?
其实我们通过async函数就可以实现,async函数必须在协程作用域当中才能调用。async函数会创建一个新的协程并返回一个Deferred对象,如果我们想要获取async函数代码块的执行结果,只需要调用Deferred对象的await()方法即可。下面是一段示例代码:

fun main() {
    runBlocking {
        val result = async {
            5 + 5
        }.await()
        println(result)
    }
}

我们通过async()函数将运算结果保存了下来,然后打印到日志中。
在这里插入图片描述
在调用了async函数之后,代码块中的代码就会立刻开始执行。当调用await()方法时,如果async函数体中的代码还没有执行完毕,那么当前协程(即 runBlocking 函数内的协程)会被挂起,直到可以获得async函数的执行结果。我们接下来编写一段代码进行验证:

fun main() {
    runBlocking {
        // 开始时间
        val start = System.currentTimeMillis()
        // result1延时1s
        val result1 = async {
            delay(1000)
            5 + 5
        }.await()
        // result2延时1s
        val result2 = async {
            delay(1000)
            4 + 6
        }.await()
        println("result is : ${result1 + result2}")
        // 结束时间
        val end = System.currentTimeMillis()
        println("一共耗时 : ${end - start}ms")
    }
}

这里我们使用了两个async函数来执行任务,在每个async代码块中调用delay()方法进行1秒的延时,然后在async代码块执行完毕后都调用了await()方法。按照我们之前的学习,await()方法使得async代码块中的代码在执行完毕之前会一直阻塞当前协程。运行程序后可以看到如下打印,足以说明协程是顺序执行的,即等待result1执行完毕后再执行result2的。
在这里插入图片描述
但是上面这种写法效率是很低的,因为每个async块执行完后都调用了await()方法。这意味着,第一个async块中的代码在执行完毕后必须等待1秒后才去执行第二个async块。而第二个async块同样会等待1秒后才去执行主线程中的其他代码,所以总的执行时间约为2秒。其实两个async函数完全可以同时执行,从而提高运行效率。现在对上述代码进行优化:

fun main() {
    runBlocking {
        val start = System.currentTimeMillis()
        val deferred1 = async {
            delay(1000)
            5 + 5
        }
        val deferred2 = async {
            delay(1000)
            4 + 6
        }
        // 在使用返回值的地方再调用await()方法
        println("result is : ${deferred1.await() + deferred2.await()}")
        val end = System.currentTimeMillis()
        println("一共耗时 : ${end - start}ms")
    }
}

可以看到在这段代码中,我们改变了调用await()函数的时机,仅在需要用到async代码块的执行结果时才调用await()方法去获取。这样两个async函数就可以并行执行了,第二个async再也不用等待第一个async完成之后才能执行了。这次重新运行程序:
在这里插入图片描述
可以看到我们的代码耗时从2015ms缩短为了1015ms,运行效率显著提升。这也就说明我们两个async中的代码确实是并行执行的,并且成功将他们的结果输出到日志中了。

1.2.3 withContext函数

最后我们再来学习一个比较特殊的作用域构建器——withContext( )函数。withContext()函数也是一个挂起函数,可以将其理解成async函数的一种简化版写法。示例代码如下:

fun main() {
    runBlocking {
        val result = withContext(Dispatchers.Default) {
            5 + 5
        }
        println(result)
    }
}

当我们调用withContext()函数后,会立即执行代码块中的代码,同时会将外部协程(runBlocking{ })挂起。当代码块中的代码全部执行完毕后,会将最后一行的执行结果作为withContext()函数的返回值进行返回。因此基本相当于val result = async{ 5 + 5 }.await()的写法,唯一不同的是withContext()函数会强制要求我们指定一个线程参数。
你已经知道协程是一种轻量级的线程,因此很多传统编程情况下需要开启多线程执行并发任务。然而借助协程,我们只需要在一个线程中开启多个协程来执行就可以了。这并不意味着我们就永远不需要开启线程了,比如说Android中的网络请求必须要在子线程中进行,即使你开启了协程去执行网络请求,假如它是主线程当中的协程,那么程序依然会报错。这个时候我们就应该通过线程参数给协程指定一个具体运行的线程。
线程参数主要有以下3种值可以选择:Dispatchers.Default、Dispatchers.IO、Dispatchers.Main。

  • Dispatchers.Default:使用一种默认低并发的线程策略,当你要执行的代码属于计算密集型任务时,开启过高的并发反而可能会影响任务的运行效率,因此就可以使用Dispatchers.Default。
  • Dispatchers.IO:使用一种较高并发的线程策略,当你要执行的代码大多数时间是在阻塞和等待中,比如说要执行网络请求时,为了能够支持更高的并发数量,此时就可以使用Dispatchers.IO。
  • Dispatchers.Main:表示不会开启子线程,而是在Android主线程中执行代码,但是这个值只能在Android项目中使用,纯Kotlin程序使用这种类型的线程参数会报错。

事实上除了coroutineScope{ }函数之外,其他所有的函数都是可以指定这样一个线程参数的,只不过withContext()函数是强制要求指定的,而其他函数则是可选的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1346886.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

对比学习简介

1. 引言 在本教程中,我们将介绍对比学习领域中的相关概念。首先,我们将讨论这种技术背后相关的理论知识;接着,我们将介绍最常见的对比学习的损失函数和常见的训练策略。 闲话少说,我们直接开始吧! 2. 举…

React is not defined解决

组件未引入React报错React is not defined 神奇的是代码内并没有用到React的地方 必需要导入React才不报错 看着就很奇怪 原因是因为React创建组件需要使用到React上的一个方法createClass创建组件 在babel-loader的babel/preset-react预设里写个配置即可不用导入也不报错: //…

《深入理解C++11:C++11新特性解析与应用》笔记七

第七章 为改变思考方式而改变 7.1 指针空值--nullptr 7.1.1 指针空值:从0到NULL,再到nullptr 传统C头文件里NULL是一个宏定义: 在函数重载同时出现int和char *参数版本的函数时,使用NULL作为参数调用函数会调用int参数版本&…

机器学习部分相关概念

数据集(Data Set)即数据的集合,每一条单独的数据被称为样本(Sample)。 对于每个样本,它通常具有一些属性(Attribute)或者特征(Feature), 特征所具体取得值被称为特征值(Feature Value)。 西瓜数据集 色泽根蒂纹理青绿稍蜷模糊乌黑蜷缩清晰 …

大数据 - 大数据入门第一篇 | 关于大数据你了解多少?

🐶1.1 概述 大数据(BigData):指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。 大数据主要解决、海量数据的采…

【Linux】内核编译 镜像制作

文章目录 一、Ubuntu内核编译1.1 为什么自己编译内核1.2 Ubuntu 内核源码下载1.21 内核的作用1.22 Linux内核与ubuntu内核1.23 Ubuntu内核源码获取 1.3 在Windows系统下编译ubuntu内核1.4 在Linux系统下编译ubuntu内核 二、镜像制作 一、Ubuntu内核编译 1.1 为什么自己编译内核…

《QDebug 2023年12月》

一、Qt Widgets 问题交流 1. 二、Qt Quick 问题交流 1.Q_REVISION 标记的信号槽或者 REVISION 标记的属性,在子类中访问 Q_REVISION 是 Qt 用来做版本控制的一个宏。以 QQuickWindow 为例,继承后去访问 REVISION 标记的 opacity 属性或者 Q_REVISION…

nodejs+vue+微信小程序+python+PHP的林业信息管理系统的设计与实现-计算机毕业设计推荐

本文先充分调查林业信息管理系统的需求分析,深入剖析系统应该具有的功能,并设计完善的数据库。利用成熟的开发技术完成编码工作,林业信息管理系统可以为林业局领导提供业务管理功能,林业局领导也就是系统的管理员,具有…

【LeetCode】每日一题 2023_12_31 一年中的第几天(日期)

文章目录 随便聊聊时间题目:一年中的第几天题目描述代码与解题思路 随便聊聊时间 LeetCode?启动!!! 12 月的打卡勋章,get! 题目:一年中的第几天 题目链接:1154. 一年中…

数据结构期末复习(1)数据结构和算法 线性表

数据结构期末总复习(gaois课堂版) 数据结构的概念 数据结构是计算机科学中的一个重要概念,它指的是组织和存储数据的方式。数据结构可以帮助我们高效地操作和管理数据,使得计算机程序能够更加有效地执行各种任务。 数据结构有很…

【JavaScript】面向对象继承

目录 一、前言二、问题是最好的老师1、为什么要使用继承2、如何实现继承 三、面向对象继承方式1、借用构造函数继承1)、优点2)、缺点 2、原型链继承1)、完整代码2)、缺点 3、组合继承(原型链借用构造函数)1…

Rust学习笔记000 安装

安装命令 curl --proto https --tlsv1.2 -sSf https://sh.rustup.rs | sh $ curl --proto https --tlsv1.2 -sSf https://sh.rustup.rs | sh info: downloading installerWelcome to Rust!This will download and install the official compiler for the Rust programming la…

C语言转WebAssembly的全流程,及Web端调用测试

第一步:安装环境 参考网址:https://emscripten.org/docs/getting_started/downloads.html 具体过程: 克隆代码:git clone https://github.com/emscripten-core/emsdk.git进入代码目录:cd emsdk获取最新远端代码&…

关键字:try-catch关键字

在 Java 中,try-catch关键字用于异常处理。它们允许编写代码来捕获和处理异常,以确保程序能够在出现问题时合理地处理它们而不会崩溃。 以下是try-catch关键字的基本语法: 在try块中编写可能会抛出异常的代码。如果在try块中的任何代码抛出…

【Proteus仿真】【STM32单片机】自动除湿器系统

文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用Proteus8仿真STM32单片机控制器,使用按键、LCD1602液晶、DHT11温湿度、继电器除湿模块等。 主要功能: 系统运行后,LCD1602显示DHT11传感器检测的湿度值阈值…

将数据“0x0f“写入AT24C02再读出送P1口显示

#include <reg51.h> // 包含51单片机寄存器定义的头文件 #include <intrins.h> //包含_nop_()函数定义的头文件 #define OP_READ 0xa1 // 器件地址以及读取操作,0xa1即为1010 0001B #define OP_WRITE 0xa0 // 器件地址以及写入…

浅析xxl-obj分布式任务调度平台RCE漏洞

文章目录 前言本地环境搭建1、初始化数据库2、搭建调度中心3、搭建出执行器 XXL-JOB漏洞1、后台弱口令->RCE2、未授权API->RCE3、默认accessToken4、CVE-2022-361575、SSRF漏洞->RCE 总结 前言 在日常开发中&#xff0c;经常会用定时任务执行某些不紧急又非常重要的事…

jmeter的常用功能及在测试中的基本使用和压测实战

Jmeter基础功能 了解Jmeter的常用组件 元件&#xff1a;多个类似功能组件的容器&#xff08;类似于类&#xff09; 一&#xff1a;Test Plan&#xff08;测试计划&#xff09; 测试计划通常用来给测试的项目重命名&#xff0c;使用多线程脚本运行时还可以配置线程组运行方式…

【HR非技术问题面试篇】你怎么看待加班?

你对加班怎么看待? &#x1f60a;老油条经典回答系列 &#x1f60a;老油条经典回答系列 这种问题&#xff0c;怎么回答都可以&#xff0c;我觉得重要的实时表达你自己。如果你就不想加班&#xff0c;也没必要勉强说自己爱加班&#xff0c;结果入职之后干的不开心。 不过&…

S32K312使用ITCM向FLASH代码区写入数据

使用C40_IP的系列方法向FLASH代码区写入数据时&#xff0c;程序会卡死在读取写操作的状态C40_Ip_MainInterfaceWriteStatus()这个方法中。本文主要介绍S32K312通过ITCM的方式&#xff0c;通过C40_IP的方法向FLASH代码区成功写入数据的方法和步骤。 首先&#xff0c;验证一下C4…