迈向通用异常检测和理解:大规模视觉语言模型(GPT-4V)率先推出

news2025/3/1 6:44:51
PAPERCODE
https://arxiv.org/pdf/2311.02782.pdfhttps://github.com/caoyunkang/GPT4V-for-Generic-Anomaly-Detection

在这里插入图片描述

        图1 GPT-4V在多模态多任务异常检测中的综合评估 在这项研究中,我们在多模态异常检测的背景下对GPT-4V进行了全面评估。我们考虑了四种模式:图像、视频、点云和时间序列,并探索了九个具体任务,包括工业图像异常检测/定位、点云异常检测、医学图像异常检测/定位、逻辑异常检测、行人异常检测、交通异常检测和时间序列异常检测。我们的评估包括 15 个数据集。

摘要

        异常检测是跨不同域和数据类型的关键任务。但是,现有的异常检测模型通常是针对特定域和模式设计的。本研究探讨了如何使用强大的视觉语言模型 GPT-4V(ision) 以通用方式处理异常检测任务。我们研究了 GPT-4V 在多模态、多域异常检测任务中的应用,包括图像、视频、点云和时间序列数据,涉及多个应用领域,例如工业、医疗、逻辑、视频、3D 异常检测和定位任务。为了提高 GPT-4V 的性能,我们结合了不同类型的附加提示,例如类信息、人类专业知识和参考图像作为提示。根据我们的实验,GPT-4V 被证明在零/单次异常检测中检测和解释全局和细粒度语义模式方面非常有效。这样可以准确区分正常和异常实例。尽管我们在这项研究中进行了广泛的评估,但仍有未来的评估空间,可以从不同方面进一步挖掘 GPT-4V 的通用异常检测能力。其中包括探索定量指标、扩展评估基准、纳入多轮互动以及纳入人类反馈循环。尽管如此,GPT-4V 在通用异常检测和理解方面表现出可喜的性能,从而为异常检测开辟了一条新途径。所有评估示例(包括图像和文本提示)都将在 GPT4V-for-Generic-Anomaly-Detection https://github.com/caoyunkang/ 提供。

动机和概述

        异常检测技术已广泛应用于不同的领域,如工业检测[29,98]、医疗对角线[107]、视频监控[84]、欺诈检测[30]以及许多其他识别异常情况至关重要的领域。尽管存在许多用于异常检测的技术[14,3,69,41,38,79,110,16,103],但许多现有方法主要依赖于描述正态数据分布的方法。他们经常忽视高层次的感知,主要将其视为低层次的任务。但是,异常检测的实际应用通常需要对数据有更全面、更高级的理解。要实现这种理解,至少需要三个关键步骤:

  1. 了解数据类型和类别: 第一步涉及对数据集中存在的数据类型和类别的透彻理解。数据可以采取多种形式,包括图像、视频、点云、时间序列数据等。每种数据类型都可能需要特定的异常检测方法和注意事项。此外,不同的类别可能对正常状态有不同的定义。
  2. 确定正态的标准:在获得数据类型和类别后,可以进一步推理正态态的标准,这需要对数据有较高的了解。
  3. 评估数据一致性:最后一步是评估提供的数据是否符合既定的正态性标准。任何偏离这些标准的行为都可以归类为异常。

我们的方法

提示 GPT-4V 进行异常检测

  1. 任务信息提示:为了有效提示 GPT-4V 进行异常检测,必须提供清晰的任务信息。本研究将提示表述如下:“请确定图像是否包含异常点或异常点。
  2. 类信息提示:对数据类型和类别的理解至关重要。如果 GPT-4V 可能难以识别数据类,可能会提供显式类信息。例如,“请确定与 {CLS} 相关的图像是否包含异常或缺陷。
  3. 正常标准提示:GPT-4V在回答与确定正常标准相关的问题时可能会遇到困难,有时如果没有人类专业知识,甚至无法检查标准。因此,本研究也明确提供了正常标准。例如,MVTec-LOCO [7] 中早餐盒的正常标准可以表示如下:“1.它应该包含两个橙子、一个桃子和一些谷物、坚果和香蕉片;2.水果应该在饭盒的左边,麦片在右上方,坚果和香蕉片在饭盒的右下方。
  4. 参考图像提示:为确保正常标准和图像之间更好地对齐,在语言提示旁边提供了普通参考图像。例如,“第一张图片是正常的。请确定第二张图像是否包含异常或缺陷。

基于GPT-4V的异常检测评估的局限性

  1. 定性结果的优势:分析主要依赖于定性评估,缺乏定量指标,无法更客观地评估模型在异常检测方面的性能。纳入量化措施将为评估提供更有力的基础。
  2. 评估案例的范围:评估仅限于有限的案例或场景范围。这种狭隘的焦点可能无法完全捕捉到实际异常检测任务中遇到的各种挑战。扩大评估案例的范围将更全面地了解模型的功能。
  3. 单次互动评估:该研究主要集中在单轮对话上。相比之下,正如GPT-4V的上下文学习能力所观察到的那样[101],多轮对话可以激发更深层次的互动。单轮对话方法限制了交互的深度,并可能限制模型的理解力及其在响应异常检测任务方面的有效性。探索多轮交互可以揭示模型性能的更细致入微的观点。

实验

        本研究进行了广泛的评估,以评估 GPT-4V 在异常检测方面的能力,如图 1 所示。从模态的角度来看,我们评估了图像(第 3、4、6、7、8 节)、点云(第 5 节)、视频(第 9、10 节)和时间序列(第 11 节)。从领域的角度,对工业检查(第3、4、6、5节)、医疗诊断(第7、8节)和视频监控(第9、10节)进行评估。据我们所知,这是第一项调查如此广泛的异常检测模式和领域的研究。

工业图像异常检测

  • 不同的提示 [ 101, 56 ] 可能会导致 GPT-4V 的不同响应。我们旨在研究不同信息对提示 GPT-4V 进行工业异常检测的影响。在前面讨论的问题之后,本研究进一步发展了三个提示,a)类别信息:所需检测产品的名称,如“瓶子”和“蜡烛”,b)人类专业知识:正常外观和潜在的异常状态,并用语言表达它们,例如,“通常,给出的图像应该显示干净且结构良好的印刷电路板(PCB),并带有清晰的痕迹, 焊接组件和不同的标签。它可能存在引脚弯曲、冷焊点、元件缺失或标签污迹等缺陷“, c) 参考图像:正常参考图像,以使 GPT-4V 更好地了解正态性。我们建议在零样本设置(仅带有语言提示)或单样本设置(与语言提示一起提供一张参考图像)中评估 GPT-4V。对于每个设置,我们测试了三种不同的变体:a) 幼稚的提示,例如“请确定图像是否包含异常或缺陷”,b) 带有类信息,以及 c) 具有人类专业知识。

  • 突出显示给定的类信息以及正常和异常状态描述。绿色、红色和蓝色突出显示 GPT-4V 输出的正确、不正确和附加信息。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

工业图像异常定位

在这里插入图片描述

点云异常检测

在这里插入图片描述

逻辑异常检测

在这里插入图片描述

医学图像异常检测

在这里插入图片描述

行人异常检测

在这里插入图片描述

流量异常检测

在这里插入图片描述

时间序列异常检测

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1346736.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【起草】【第十二章】定制ChatGPT数字亲人

身为普普通通的我们,不知道亲人们在哪一天就要离开这个世界 ? 作为普普通通的程序员,我们可以为我们的亲人做点什么 ? 让他们以数字资产形式留在人世间 ? 对话|6岁女孩病逝捐器官,妈妈:她去…

缺失的第一个正数(LeetCode 41)

文章目录 1.问题描述2.难度等级3.热门指数4.解题思路4.1 暴力4.2 排序4.3 哈希表4.4 空间复杂度为 O(1) 的哈希表4.5 置换 参考文献 1.问题描述 给你一个未排序的整数数组 nums ,请你找出其中没有出现的最小的正整数。 请你实现时间复杂度为 O(n) 并且只使用常数级…

【分布式配置中心】聊聊Apollo的安装与具体配置变更的原理

【管理设计篇】聊聊分布式配置中心 之前就写过一篇文章,介绍配置中心,但是也只是简单描述了下配置中心的设计点。本篇从apollo的安装到部署架构到核心原理进一步解读,大概看了下apollo的原理,感觉没有必要深究,所以就…

vscode软件安装步骤

目录 一、下载软件安装包 二、运行安装包后 一、下载软件安装包 打开vscode官方网址,找到下载界面 链接如下:Download Visual Studio Code - Mac, Linux, Windows 我是windows电脑,各位小伙伴自己选择合适的版本,点击下载按钮…

常用设计模式全面总结版(JavaKotlin)

这篇文章主要是针对之前博客的下列文章的总结版本: 《设计模式系列学习笔记》《Kotlin核心编程》笔记:设计模式【Android知识笔记】FrameWork中的设计模式主要为了在学习了 Kotlin 之后,将 Java 的设计模式实现与 Kotin 的实现放在一起做一个对比。 一、创建型模式 单例模…

2023 AI开发者生态报告

随着人工智能技术的飞速发展,全球IT市场对AI的投入持续增长,预计到2027年将达到4236亿美元。中国作为AI领域的重要参与者,其投资规模预计将占全球的9%。在这样的背景下,2023年的《AI开发者生态报告》为我们揭示了人工智能时代的技…

12.30_黑马数据结构与算法笔记Java

目录 320 全排列无重复 Leetcode47 321 组合 Leetcode77 分析 322 组合 Leetcode77 实现 323 组合 Leetcode77 剪枝 324 组合之和 Leetcode 39 325 组合之和 Leetcode 40 326 组合之和 Leetcode 216 327 N皇后 Leetcode51-1 328 N皇后 Leetcode51-2 329 解数独 Leetco…

喜迎元旦 | 愿新年,胜旧年,百华鞋业祝您元旦快乐,万事胜意!

一年复始岁序开,万象更新启新华 2023年我们聚力同行,相融共生, 凝心携手,奋进前行。 2024年我们挟着未知,带着期待, 继续携手砥砺前行 踏上新征程,向着新的奋斗目标再出发。 元旦&#xff…

C语言之整型提升

文章目录 1 有可能出现的问题2 产生以上问题的原因&#xff08;整型提升&#xff09;3 整型提升的过程4 整型提升示例5 总结 1 有可能出现的问题 代码如下 #include <stdio.h>int main () {int a -1;unsigned int b 1;if (a < b) {printf("a < b");}…

使用内网穿透轻松实现在外远程访问本地威联通QNAP NAS

文章目录 前言1. 威联通安装cpolar内网穿透2. 内网穿透2.1 创建隧道2.2 测试公网远程访问 3. 配置固定二级子域名3.1 保留二级子域名3.2 配置二级子域名 4. 使用固定二级子域名远程访问 前言 购入威联通NAS后&#xff0c;很多用户对于如何在外在公网环境下的远程访问威联通NAS…

Python:日期和时间类型学习

背景 在非开发环境经常需要做一下日期计算&#xff0c;就准备使用Python&#xff0c;顺便记下来学习的痕迹。 代码 1 1 # coding utf-82 2 3 3 from datetime import *4 4 5 5 ########################## 日期 ##########################6 6 date_now date.today()…

wsl中的Ubuntu安装远程桌面

wsl Ubuntu默认只能打开命令行&#xff0c;看不到图形化界面&#xff0c;有些操作不方便。这里介绍两种方法来远程连接到wsl里 VNC 因为win10的wsl不支持systemd&#xff0c; 所以这种方式只能是Windows11的系统&#xff0c;Window10只能用xrdp 1、禁用WSLg 在c:\users\用户…

完全适配各类中小医院专科医院和诊所的云HIS系统源码【前端:Angular+Nginx ,后台:SpringBoot】

云HIS系统采用SaaS软件应用服务模式&#xff0c;提供软件应用服务多租户机制&#xff0c;实现一中心部署多机构使用。相对传统HIS单机构应用模式&#xff0c;它可灵活应对区域医疗、医疗集团、医联体、连锁诊所、单体医院等应用场景&#xff0c;并提升区域内应用的标准化与规范…

浅谈冯诺依曼体系和操作系统

&#x1f30e;冯诺依曼体系结构 文章目录 冯诺依曼体系结构 认识冯诺依曼体系结构       硬件分类       各个硬件的简单认识         输入输出设备         中央处理器         存储器 关于内存 对冯诺依曼体系的理解 操作系统 操作系统…

为什么深度学习神经网络可以学习任何东西

下图你所看到的&#xff0c;是著名的曼德尔布罗特集&#xff0c;我们可以见证这个集合呈现出的复杂形态&#xff1a; 要理解神经网络如何学习曼德尔布罗特集&#xff0c;我们首先需要从最基础的数学概念讲起&#xff1a;什么是函数&#xff1f;函数本质上是一个将输入转化为输出…

测试用例设计方法:正交试验冲锋

1 引言 上篇讲了因果图和判定表法&#xff0c;而这两种方法在变量值很多、排列组合数量极大的场景下&#xff0c;会生成非常庞大且冗余的测试用例&#xff0c;此时我们很难对所有组合场景进行全量测试用例覆盖&#xff0c;基于此短板&#xff0c;正交试验法应运而生。 2 概念及…

CSP CCF 201409-2 画图 C++满分题解

解题思路&#xff1a; 1.使用二维数组标记每一个方块是否被涂色。 2.注意坐标代表的是点&#xff0c;不是方块&#xff0c;交界处的坐标只能算一个方块。 3.可以看成&#xff1a;每一个坐标都对应它左上角的一个小方块&#xff0c;这样可以避免重复计算方块数 #include<i…

每日一题合集1

1038 从二叉搜索树到更大和树 1038. 从二叉搜索树到更大和树 - 力扣&#xff08;LeetCode&#xff09; 二叉树的中序遍历逆向思维 给定一个二叉搜索树 root (BST)&#xff0c;请将它的每个节点的值替换成树中大于或者等于该节点值的所有节点值之和。 提醒一下&#xff0c; …

轻量封装WebGPU渲染系统示例<55>- 顶点数据更新

当前示例源码github地址: https://github.com/vilyLei/voxwebgpu/blob/feature/material/src/voxgpu/sample/VertexUpdateTest.ts 当前示例运行效果: ​​​​​​​ 此示例基于此渲染系统实现&#xff0c;当前示例TypeScript源码如下: export class VertexUpdateTest {pr…

全新ui自动化测试框架教学——Cypress

前言 在现阶段自动化测试领域大规模普及的是selenium及appium等常规自动化测试工具&#xff0c;但在其中会有遇到很多影响因素导致测试结果不理想和不准确的情况发生。在经过Darren洋对自动化测试工具调研后&#xff0c;发现了Cypress这一款针对端到端的自动化测试工具&#xf…