ubuntu20部署Bringing-Old-Photos-Back-to-Life

news2025/1/20 12:07:32

                                                            

环境准备:

ubuntu20.04 

Python 3.8.10

首先将微软的「Bringing-Old-Photos-Back-to-Life」库 clone 到本地:

git clone https://github.com/microsoft/Bringing-Old-Photos-Back-to-Life.git

cd Face_Enhancement/models/networks/
git clone https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
cp -rf Synchronized-BatchNorm-PyTorch/sync_batchnorm .
cd ../../../

Global 权重配置 

cd Global/detection_models
git clone https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
cp -rf Synchronized-BatchNorm-PyTorch/sync_batchnorm .
cd ../../

Face_Detection 权重  

人脸识别预训练模型:

cd Face_Detection/
wget http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
bzip2 -d shape_predictor_68_face_landmarks.dat.bz2
cd ../

Face_Enhancement 权重

Face_Enhancement 权重用于人脸部位增强,下载后权重文件解压至 ./Face_Enhancement 

cd Face_Enhancement/
wget https://github.com/microsoft/Bringing-Old-Photos-Back-to-Life/releases/download/v1.0/face_checkpoints.zip
unzip face_checkpoints.zip
cd ../
cd Global/
wget https://github.com/microsoft/Bringing-Old-Photos-Back-to-Life/releases/download/v1.0/global_checkpoints.zip
unzip global_checkpoints.zip
cd ../

 创建 python3 虚拟环境

python3 -m venv .venv

source .venv/bin/activate

安装项目依赖库

pip3 install -r requirements.txt

出现的问题:


Running Stage 4: Blending
Traceback (most recent call last):
File “align_warp_back_multiple_dlib.py”, line 428, in
blended = blur_blending_cv2(warped_back, blended, backward_mask)
File “align_warp_back_multiple_dlib.py”, line 219, in blur_blending_cv2
mask *= 255.0
numpy.core._exceptions.UFuncTypeError: Cannot cast ufunc ‘multiply’ output from dtype(‘float64’) to dtype(‘uint8’) with casting rule ‘same_kind’

找到文件align_warp_back_multiple_dlib.py的219行,将代码 mask *= 255.0 改为:mask = mask * 255.0,再次运行。
 

修复不带折痕的照片

对于不带折痕的照片,终端输入时需要三个参数,

  • --input_folder ,存放需要修复图片的文件路径,不指定时默认为 ./test_images/old;
  • --output_folder,存放修复后图片的文件路径,不指定时默认为 ./output/
  • --GPU,指定用到的 GPU 编号,可设定为 0 、 0,10,1,2 ,没有 GPU 配置时 设为 -1 表示运行时只用 CPU ; 设定 GPU 时需要确保配置的 Pytorch 是 GPU 版本,相对 CPU 的话,GPU 测试时间会更短;

测试时,启动命令如下,这里 --input_folder、--output_folder参数都为默认,所以命令中加这两个参数,电脑比较渣没有 GPU 所以设为 -1;

python3 run.py --GPU -1

 修复带折痕的照片

与不带折痕相比,修复带折痕照片要多加入一个参数 --with_scratch,还有一点不同的是存放原照片默认路径更改为为 ./test_images/old_w_scratch ,其它参数设置见 3.1

终端中输入的测试命令如下:

python3 run.py --GPU -1 --with_scratch

最终的运行结果

export PYTHONPATH=/home/xxx/.local/lib/python3.8/site-packages/

文末福利

整个打包版下载地址,联系我要提取码

百度网盘 请输入提取码百度网盘为您提供文件的网络备份、同步和分享服务。空间大、速度快、安全稳固,支持教育网加速,支持手机端。注册使用百度网盘即可享受免费存储空间icon-default.png?t=N7T8https://pan.baidu.com/s/1oKgBB0gkRIGjwzeTtFYWFw百度网盘 请输入提取码


文章出自:http://www.whnw.com.cn/news/1707355.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1344709.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

迷宫问题的对比实验研究(代码注释详细、迷宫及路径可视化)

题目描述 对不同的迷宫进行算法问题,广度优先、深度优先、以及人工智能上介绍的一些算法:例如A*算法,蚁群算法等。 基本要求: (1)从文件读入9*9的迷宫,设置入口和出口,分别采用以上方…

Vscode —— 解决Vscode终端无法使用npm的命令的问题

在cmd中可以正常执行npm -v等指令,但是在vs code终端中,无法执行npm -v,node -v等指令 出现报错 解决办法👇 方法一:【右键单击Vscode】以【管理员身份运行】,【重启Vscode】 方法二:①【用户变量】的【path】添加npm所在路径的…

C语言实验3:函数的定义

目录 一、实验要求 二、实验原理 1.函数头 2.函数体 3.函数的定义及使用 三、实验内容 1. sum函数 代码 截图 分析 2. sum函数 代码 截图 分析 3. rank_grade函数 代码 截图 分析 4. rank_grade函数 代码 截图 分析 5. 函数的嵌套使用 代码 截图 分析…

实现二叉树的基本操作与OJ练习

目录 1.二叉树的基本操作 1.1二叉树基本操作完整代码 1.2检测value值是否存在 1.3层序遍历 1.4判断一棵树是不是完全二叉树 2.OJ练习 2.1平衡二叉树 2.2对称二叉树 2.3二叉树遍历 1.二叉树的基本操作 1.1二叉树基本操作完整代码 public class BinaryTree {static…

推荐系统/电商中的 业务指标GMV

GMV(Gross Merchandise Volume)是指在一定时间内,一个电商平台上所有商品的总销售价值,通常以货币单位(例如美元、人民币等)表示。GMV是一个关键的电商业务指标,用于衡量平台的交易规模和业务增…

Flink(十一)【状态管理】

Flink 状态管理 我们一直称 Flink 为运行在数据流上的有状态计算框架和处理引擎。在之前的章节中也已经多次提到了“状态”(state),不论是简单聚合、窗口聚合,还是处理函数的应用,都会有状态的身影出现。状态就如同事务…

【网络安全】upload靶场pass1-10思路

目录 Pass-1 Pass-2 Pass-3 Pass-4 Pass-5 Pass-6 Pass-7 Pass-8 Pass-9 Pass-10 🌈嗨!我是Filotimo__🌈。很高兴与大家相识,希望我的博客能对你有所帮助。 💡本文由Filotimo__✍️原创,首发于CSDN&#x1…

“从零到一“基于Freeswitch二次开发: 应用架构设计(二)

一、架构分享 上一篇文章“从零到一“基于Freeswitch二次开发:Freeswitch入门与网络架构 (一) 对Freeswitch二次开发做了一个介绍,距离这篇文章的发布时间有点久了,之前一直没时间把下文补上来。正好到了年末想起来,就把我们的一个实现架构进…

前端性能优化 将资源放到 linux 服务器上 提升访问效率

我们先远端连接服务器 然后服务器终端输入 mkdir 目录路径建出一个新的文件路径 回到我们自己的电脑 然后 在要缓存到服务器的文件目录下打开终端 输入 scp -r ./xidis.hdr 用户名 如果没设置用户名就是root服务器公网IP:/root/xhdr例如 scp -r ./xidis.hdr root1.113.266…

JavaScript基础知识点总结:从零开始学习JavaScript(六)

本章内容主要让小伙伴们自主练习 ,建议大家先自己写出来答案,然后对照我的!(题不难主要培养自己的编程思维!!!) 如果大家感感兴趣也可以去看: 🎉博客主页&…

Python跨年烟花秀

写在前面 今年跨年怎么过呢~博主用python的pygame实现了一场炫酷的烟花秀,一起来看看吧! 环境需求 python3.11.4及以上PyCharm Community Edition 2023.2.5pyinstaller6.2.0(可选,这个库用于打包,使程序没有python环境…

C#高级 08Json操作

1.概念 Json是存储和交换文本信息的语法。类似于XML。Json比XML更小、更快、更易解析。Json与XML一样是一种数据格式。Json是一种轻量级的数据交换格式。它基于ECMAScript的一个子集。Json采取完全独立于语言的文本格式, 但是也使用了类似于C语言的习惯。这些特性使…

这儿有一道SPSS回归分析考试题,大家学会了吗?

为研究某地区房地产市场的价格与相关影响因素之间的关系,现从该地区采集了 20 份样本,数据如下表,请给出销售价格与相关影响因素之间的函数表达式,并从统计学角度分析这些因素之间的关系,最后预测 X 小区的平均销售价格…

java中的缓冲类HeapByteBuffer和DirectByteBuffer的区别

使用之前写的文章里的例子 https://blog.csdn.net/zlpzlpzyd/article/details/135292683 HeapByteBuffer import java.io.File; import java.io.FileInputStream; import java.io.Serializable; import java.nio.ByteBuffer; import java.nio.channels.FileChannel;public clas…

Tomcat与Servlet是什么关系

Tomcat与Servlet是什么关系 Apache Tomcat和Servlet之间存在密切的关系,可以说它们是一对密切合作的组件。下面是它们的关系: Tomcat是Servlet容器: Tomcat是一个开源的、轻量级的Servlet容器。Servlet容器是一个Web服务器扩展,用…

经典文献阅读之--OccNeRF(基于神经辐射场的自监督多相机占用预测)

0. 简介 作为基于视觉感知的基本任务,3D占据预测重建了周围环境的3D结构。它为自动驾驶规划和导航提供了详细信息。然而,大多数现有方法严重依赖于激光雷达点云来生成占据地面真实性,而这在基于视觉的系统中是不可用的。之前我们介绍了《经典…

php获取访客IP、UA、操作系统、浏览器等信息

最近有个需求就是获取下本地的ip地址、网上搜索了相关的教程,总结一下分享给大家、有需要的小伙伴可以参考一下 一、简单的获取 User Agent 信息代码: echo $_SERVER[HTTP_USER_AGENT]; 二、获取访客操作系统信息: /** * 获取客户端操作系统信息,包括win10 * pa…

一语道破爬虫,来揭开爬虫面纱

目录 一、爬虫(网络蜘蛛(Spider)) 1.1、是什么: 1.2、学习的原因 1.3、用在地方: 1.4、是否合法: 1.5、后果 案例: 二、应用领域 三、Robots协议 四、抓包 4.1、浏览器抓包 4.2、抓包工具 常见…

DDAE: Denoising Diffusion Autoencoders are Unified Self-supervised Learners

DDAE: Denoising Diffusion Autoencoders are Unified Self-supervised Learners Paper:https://arxiv.org/abs/2303.09769 Code:https://github.com/FutureXiang/ddae TL; DR:扩散模型的训练其实就是训练一个去噪模型,考虑到类似…