经典文献阅读之--OccNeRF(基于神经辐射场的自监督多相机占用预测)

news2025/1/20 12:07:39

0. 简介

作为基于视觉感知的基本任务,3D占据预测重建了周围环境的3D结构。它为自动驾驶规划和导航提供了详细信息。然而,大多数现有方法严重依赖于激光雷达点云来生成占据地面真实性,而这在基于视觉的系统中是不可用的。之前我们介绍了《经典文献阅读之–RenderOcc(使用2D标签训练多视图3D Occupancy模型)》。这里本文《OccNeRF: Self-Supervised Multi-Camera Occupancy Prediction with Neural Radiance Fields》提出了一种名为OccNeRF的方法,用于自监督多相机3D占用预测。该方法通过参数化重建的占用场来表示无限空间,并通过神经渲染将占用场转换为多相机深度图。为了提供几何和语义监督,该方法利用多帧图像之间的光度一致性进行监督。代码可在Github找到。

在这里插入图片描述

图1. OccNeRF概述。为了表示无界场景,我们提出了一个参数化坐标,将无限空间压缩到有界的占据场。在不使用任何标注标签的情况下,我们利用时间光度约束和预训练的开放词汇分割模型,提供几何和语义监督。

1. 主要贡献

  1. 我们使用2D骨干来提取多摄像头的2D特征。为了节省内存,我们直接插值2D特征,以获取3D体积特征,而不是使用繁重的跨视图注意力。
  2. 我们设计了特定的采样策略,将参数化占用场转换为具有神经渲染的多摄像头深度图。我们利用时间光度损失作为监督信号,这在自监督深度估计方法中常用 [21, 22, 46, 82, 89]。为了更好地利用时间线索,我们执行多帧光度约束
  3. 对于语义占用,我们提出了三种策略,将类名映射到提示词,这些提示词被馈送到预训练的开放词汇分割模型 [33, 43],以获取2D语义标签。

2. 概述

图2显示了我们方法的流程。利用多摄像头图像 { I i } i = 1 N \{I^i\}^N_{i=1} {Ii}i=1N作为输入,我们首先利用2D主干提取N个摄像头的特征 { X i } i = 1 N \{X^i\}^N_{i=1} {Xi}i=1N。然后,将2D特征插值到3D空间,利用已知的内参 { K i } i = 1 N \{K^i\}^N_{i=1} {Ki}i=1N和外参 { T i } i = 1 N \{T^i\}^N_{i=1} {Ti}i=1N获得体积特征。正如第3节所讨论的,为了表示无界场景,我们提出了坐标参数化方法,将无限范围缩小到有限的占用区域。进行体积渲染,将占用区域转换为多帧深度图,由光度损失进行监督。第4节详细介绍了这一部分。最后,第5节展示了我们如何使用预训练的开放词汇分割模型获取2D语义标签。

在这里插入图片描述

图2. OccNeRF的流程。我们首先使用2D主干网络提取多摄像头特征,然后将这些特征提升到3D空间,通过插值得到体积特征。参数化的占据场被重建以描述无界场景。为了获得渲染的深度和语义地图,我们采用了重新组织的采样策略进行体积渲染。多帧深度受光度损失监督。对于语义预测,我们采用了预训练的Grounded-SAM模型,并进行提示清理。绿色箭头表示监督信号。

3. 参数化占据场

与之前的研究[78, 86]不同,我们需要在自监督设置中考虑无界场景。一方面,我们应该保留内部区域的高分辨率(例如[-40m, -40m, -1m, 40m, 40m, 5.4m]),因为这部分涵盖了大部分感兴趣的区域。另一方面,外部区域是必要的,但信息较少,应该在收缩空间内表示,以减少内存消耗。受[3]的启发,我们提出了一个具有可调兴趣区域和收缩阈值的变换函数,以参数化每个体素网格的坐标 r = ( x , y , z ) r = (x, y, z) r=(x,y,z)

在这里插入图片描述

在这段文字中, r ’ = r / r b r’ = r/r_b r=r/rb 是输入 r r r的归一化坐标,而 f ( r ) ∈ ( − 1 , 1 ) f(r) ∈ (−1, 1) f(r)(1,1)表示归一化参数化坐标。 r b r_b rb是内部区域的边界,对于x、y、z方向是不同的。 α ∈ [ 0 , 1 ] α ∈ [0, 1] α[0,1]代表参数化空间中感兴趣区域的比例。较高的 α α α表示我们使用更多的空间来描述内部区域。请注意,在方程1中,当 r = r b r = r_b r=rb时,两个函数具有相同的值和梯度。有关推导细节,请参考补充材料。
为了从2D视图中获得3D体素特征,我们首先在参数化坐标系中为每个体素生成相应的点 P p c = [ x p c , y p c , z p c ] T P_{pc} = [x_{pc}, y_{pc}, z_{pc}]^T Ppc=[xpc,ypc,zpc]T,然后将它们映射回到自车坐标系中:

在这里插入图片描述

然后我们将这些点投影到2D图像特征平面上,并使用双线性插值来获取2D特征:

在这里插入图片描述

在这段文字中,proj是将3D点 P P P投影到由相机外参 T T T和内参 K i K_i Ki定义的2D图像平面的函数, ⟨ ⟩ ⟨⟩ 是双线性插值运算符, F i F_i Fi是插值结果。为了简化聚合过程并减少计算成本,我们直接对多相机的2D特征进行平均以获得体积特征,这与[17, 24]中使用的方法相同。最后,我们使用3D卷积网络来提取特征并预测最终的占用输出。

4. 多帧深度估计

为了将占据场投影到多摄像头深度图中,我们采用了体积渲染[48],这在基于NeRF的方法中被广泛使用[2, 49, 84]。为了渲染给定像素的深度值,我们从摄像机中心 o o o沿着指向像素的方向 d d d发射一条射线。该射线由 v ( t ) = o + t d v(t) = o + td v(t)=o+td表示,其中 t ∈ [ t n , t f ] t ∈ [t_n, t_f] t[tn,tf]。然后,在3D空间中沿着射线采样 L L L个点 { t k } k = 1 L \{t_k\}^L_{k=1} {tk}k=1L,以获取密度 σ ( t k ) σ(t_k) σ(tk)。对于所选的 L L L个积分点,相应像素的深度通过以下公式计算:

在这里插入图片描述

在这里, T ( t k ) = e x p ( − ∑ k ′ = 1 k − 1 σ ( t k ) δ k ) T(t_k) = exp(-\sum_{k′=1}^{k-1} σ(t_k)δ_k) T(tk)=exp(k=1k1σ(tk)δk),其中 δ k = t k + 1 − t k δ_k = t_{k+1} − t_k δk=tk+1tk采样点之间的间隔
一个关键问题是如何在我们提出的坐标系中对 { t k } k = 1 L \{t_k\}^L_{k=1} {tk}k=1L进行采样。在深度空间或视差空间中进行均匀采样将导致参数化网格的内部或外部区域中出现不平衡的点序列,这将对优化过程产生不利影响。假设o在坐标系的原点附近,我们直接从 U [ 0 , 1 ] U[0, 1] U[0,1]中对参数化坐标进行采样 L ( r ) L(r) L(r)个点,并使用方程1的逆函数来计算 { t k } k = 1 L ( v ) \{t_k\}^{L(v)}_{k=1} {tk}k=1L(v)。对于一条射线,特定的 L ( v ) L(v) L(v) r b ( v ) r_b(v) rb(v)计算如下:

在这里插入图片描述

在这里, i 、 j 、 k i、j、k ijk分别是 x 、 y 、 z x、y、z xyz方向的单位向量, l x 、 l y 、 l z l_x、l_y、l_z lxlylz分别是内部区域的长度, d v d_v dv是体素大小。为了更好地适应占据表示,我们直接预测渲染权重而不是密度。

传统的监督方法是计算渲染的RGB图像与原始RGB图像之间的差异,这在NeRF [49]中被采用。然而,我们的实验结果表明这种方法效果不佳。可能的原因是,对于NeRF来说,大规模场景和少量视图监督很难收敛。为了更好地利用时间信息,我们采用了[21, 89]中提出的光度损失。具体来说,我们根据渲染的深度和给定的相对姿态,将相邻帧投影到当前帧上。然后我们计算投影图像与原始图像之间的重建误差:

在这里插入图片描述

在这里, “ i ” “i” i是指投影图像, β = 0.85 β=0.85 β=0.85。此外,我们采用了[21]中介绍的技术,即每像素最小重投影损失和自动遮罩静止像素。对于每个摄像头视角,我们渲染一个短序列而不是单帧,并执行多帧光度损失。

5. 开放词汇语义监督

在这段文本中,作者讨论了使用多相机图像的2D语义标签来提供语义3D占用预测的像素级语义监督。这有助于网络捕捉几何一致性和体素之间的空间关系。为了获得2D标签,之前的研究将3D激光雷达点投影到图像空间,以避免注释密集的3D占用的昂贵成本。然而,作者的目标是在完全以视觉为中心的系统中预测语义占用,并且仅使用2D数据。为此,他们利用了预训练的开放词汇模型GroundedSAM来生成2D语义分割标签。没有任何2D或3D地面真实数据,预训练的开放词汇模型使他们能够获得与给定类别名称语义密切匹配的2D标签。这种方法可以轻松扩展到任何数据集,使他们的方法高效且具有普适性。

…详情请参照古月居

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1344687.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

php获取访客IP、UA、操作系统、浏览器等信息

最近有个需求就是获取下本地的ip地址、网上搜索了相关的教程,总结一下分享给大家、有需要的小伙伴可以参考一下 一、简单的获取 User Agent 信息代码: echo $_SERVER[HTTP_USER_AGENT]; 二、获取访客操作系统信息: /** * 获取客户端操作系统信息,包括win10 * pa…

一语道破爬虫,来揭开爬虫面纱

目录 一、爬虫(网络蜘蛛(Spider)) 1.1、是什么: 1.2、学习的原因 1.3、用在地方: 1.4、是否合法: 1.5、后果 案例: 二、应用领域 三、Robots协议 四、抓包 4.1、浏览器抓包 4.2、抓包工具 常见…

DDAE: Denoising Diffusion Autoencoders are Unified Self-supervised Learners

DDAE: Denoising Diffusion Autoencoders are Unified Self-supervised Learners Paper:https://arxiv.org/abs/2303.09769 Code:https://github.com/FutureXiang/ddae TL; DR:扩散模型的训练其实就是训练一个去噪模型,考虑到类似…

竞赛保研 基于机器视觉的12306验证码识别

文章目录 0 简介1 数据收集2 识别过程3 网络构建4 数据读取5 模型训练6 加入Dropout层7 数据增强8 迁移学习9 结果9 最后 0 简介 🔥 优质竞赛项目系列,今天要分享的是 基于机器视觉的12306验证码识别 该项目较为新颖,适合作为竞赛课题方向…

Harmony全局应用生命周期 EntryAbility.ts 讲解

之前 我们说过 page页面的生命周期 组件的生命周期 其实他和uni一样有一个整个应用的生命周期 我们如下图打开EntryAbility.ts 这是我们整个程序app的状态控制 他这里也有几个全局的生命周期 比如 我们手机 点开当前 App 启动 app 会触发 它的 onCreate 生命周期 当我们从手…

【并发设计模式】聊聊等待唤醒机制的规范实现

在多线程编程中,其实就是分工、协作、互斥。在很多场景中,比如A执行的过程中需要同步等待另外一个线程处理的结果,这种方式下,就是一种等待唤醒的机制。本篇我们来讲述等待唤醒机制的三种实现,以及对应的应用场景。 G…

Linux:apache优化(5)—— 隐藏版本号

防盗链:就是防止别人盗取你们公司的图片、文件、视频 作用:防盗链就是防止别人盗用服务器中的图片、文件、视频等相关资源。运维人员可以通过apache提供rewrite模块进行优化。 配置项: RewriteEngine ON ##打开网页重写功能 RewriteCond …

微服务全链路灰度方案介绍

目录 一、单体架构下的服务发布 1.1 蓝绿发布 二、微服务架构下的服务发布 三、微服务场景下服务发布的问题 四、全链路灰度解决方案 4.1 物理环境隔离 4.2 逻辑环境隔离 4.3 全链路灰度方案实现技术 4.3.1 标签路由 4.3.2 节点打标 4.3.3 流量染色 4.3.4 分布式链路…

基于ssm的程序设计实践项目管理系统+jsp论文

摘 要 现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储,归纳,集中处理数据信息的管理方式。本实践项目管理系统就是在这样的大环境下诞生,其可以帮助管理者在短时间内处理完毕庞大的数据信息…

2023跨境电商年度总结:好用的跨境电商工具集合

不知不觉2023年已到了尾声,迎来崭新的2024年。经过年末旺季冲击的跨境电商,也来到了总结阶段。常言道工具选的好,工作轻松倍。在我们的跨境工作中少不得那些高效有用的工具加持。 接下来小编为大家盘点2023年度跨境工具网站,快来…

shell编程一

shell 定义 Shell 也是一种程序设计语言,它有变量,关键字,各种控制语句,有自己的语法结构,利用shell程序设计语 可以编写功能强、代码简短的程序 #! Shebang 定义解释器 shell的分类和切换 # cat /etc/shells /bin/sh…

AI大模型:未来科技的新篇章

目录 1AI大模型:未来科技的新篇章 2AI超越数学家攻克经典数学难题;非侵入式设备解码大脑思维 1AI大模型:未来科技的新篇章 随着科技的飞速发展,人工智能(AI)已经成为了我们生活中不可或缺的一部分。而AI大…

Ubuntu22.04 安装教程

系统下载 Ubuntu官网下载 清华源镜像 安装流程 1. 选择安装语言 2. 选择是否在安装时更新 为了系统安装速度一般选择安装时不更新,安装后自行更新 3. 选择系统语言和键盘布局 4. 选择安装模式 5. 配置网络信息 6. 设置静态IP 7. 配置代理信息 8. 配置Ubuntu镜像…

(windows2012共享文件夹和防火墙设置

windows2012共享文件夹和防火墙设置 1.windows2012文件夹共享1.共享和高级共享的区别![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/0d815cc6862a4c7a99be11442fb5d950.png#pic_center) 2.windows的防火墙设置1.防火墙设置8080端口让tomot可以在主机可以访问1.新建…

iptables 防火墙(二)

目录 1. SNAT 策略及应用 1.1 SNAT策略概述 1. 只开启路由转发,未设置地址转换的情况 2. 开启路由转发,并设置SNAT转换的情况 1.2 SNAT策略的应用 1. 2.1 共享固定IP上网 (1)打开网关的路由转发 (2)…

ArkUI自定义组件的使用

文章概叙 本文主要讲的是如何在ArkUi红创建一个自定义的组件,并且在新的页面中引用,其实依旧是自定义函数,只是既可以在外部使用,也可以作为组件引入. 介绍 前面的文章中,已经对tab页面的内容编辑的差不多了&#x…

C语言经典算法【每日一练】20

题目&#xff1a;有一个已经排好序的数组。现输入一个数&#xff0c;要求按原来的规律将它插入数组中。 1、先排序 2、插入 #include <stdio.h>// 主函数 void main() {int i,j,p,q,s,n,a[11]{127,3,6,28,54,68,87,105,162,18};//排序&#xff08;选择排序&#xff09…

算法训练day51|动态规划part12

309.最佳买卖股票时机含冷冻期&#xff08;参考&#xff1a;代码随想录 四种状态&#xff0c;来代表寒冷冻期的买卖股票状态 状态一&#xff1a;持有股票状态&#xff08;今天买入股票&#xff0c;或者是之前就买入了股票然后没有操作&#xff0c;一直持有&#xff09;不持有…

Syn_SegNet:用于常规 3T MRI 中超高场 7T MRI 合成和海马亚场分割的联合深度神经网络

Syn_SegNet: A Joint Deep Neural Network for Ultrahigh-Field 7T MRI Synthesis and Hippocampal Subfield Segmentation in Routine 3T MRI Syn_SegNet&#xff1a;用于常规 3T MRI 中超高场 7T MRI 合成和海马亚场分割的联合深度神经网络背景贡献实验为了确定哪个模态分割最…