文章解读与仿真程序复现思路——电力自动化设备EI\CSCD\北大核心《面向平稳氢气需求的综合制氢系统鲁棒优化配置方法》

news2025/4/14 12:43:56

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主的专栏栏目《论文与完整程序》

这个标题涉及到针对平稳氢气需求的综合制氢系统鲁棒优化配置方法。让我们逐步解读这个标题的关键要素:

  1. 面向平稳氢气需求: 这部分指明了优化配置方法的目标是满足对氢气的稳定需求。可能是在某个产业、地区或系统中,对氢气的使用需求相对恒定,而不是波动较大。

  2. 综合制氢系统: 指的是一个整合了不同组件和过程的制氢系统。制氢系统通常包括产氢、储氢和输送等环节,而综合制氢系统可能包含多个这样的环节,并通过协同作用来提高效率。

  3. 鲁棒优化配置方法: 这是标题的核心部分。鲁棒性(Robustness)指的是系统对于不确定性和变化的适应能力。优化配置方法意味着寻找最佳的系统配置,以在各种情况下都能够表现出色。因此,这个标题表达了一个目标,即在满足平稳氢气需求的前提下,找到一种对于系统变化具有鲁棒性的最佳配置方法。

综合来看,这个标题可能涉及到一个研究或方法论,其目的是为了设计一个制氢系统,使其在面对氢气需求的平稳变化时表现出鲁棒性。这可能包括对制氢系统中各个环节的优化配置,以确保在不同条件下系统都能够高效、稳定地运行。这类研究对于满足工业和能源领域对氢气需求的可持续供应具有重要意义。

摘要:为解决可再生能源高不确定性与平稳氢气需求间的冲突,提出一种耦合光伏电解水、生物质气化、天然气重整技术的综合制氢系统鲁棒优化配置方法。该方法同时考虑了光伏出力和生物质含水量不确定性,并利用不同制氢技术间物质和能量双重耦合提高系统运行能效。所提两阶段鲁棒优化模型在第一阶段确定各种制氢装置和储电、储氧、储气装置投资决策,第二阶段确定满足运行约束的综合制氢系统优化调度方案,并得到最差场景。针对鲁棒优化模型特点,采用适用于内层含整数变量的嵌套列和约束生成算法求解所提模型。通过算例验证了所提配置方法可以在保证平稳、绿色氢气的同时显著提升经济效益,具有较好鲁棒性,为综合制氢系统的元件选择和规划提供理论参考。

这段摘要描述了一种解决可再生能源不确定性与平稳氢气需求之间冲突的方法,即耦合光伏电解水、生物质气化和天然气重整技术的综合制氢系统鲁棒优化配置方法。以下是对摘要的详细解读:

  1. 问题描述: 摘要开头提到解决了可再生能源高不确定性与平稳氢气需求之间的冲突。这表明在可再生能源领域,特别是光伏发电中,能源的产出可能面临波动,而这与对氢气的平稳需求之间存在矛盾。

  2. 方法提出: 为了应对上述问题,提出了一种综合制氢系统的鲁棒优化配置方法。该方法采用了光伏电解水、生物质气化和天然气重整技术的耦合,通过结合不同的制氢技术,实现了物质和能量的双重耦合,从而提高了系统的运行能效。

  3. 考虑因素: 方法同时考虑了光伏出力和生物质含水量的不确定性,这是考虑到在可再生能源系统中这两个因素可能存在的变化和不确定性。

  4. 鲁棒优化模型: 方法提出了一个两阶段的鲁棒优化模型。第一阶段用于确定各种制氢装置和储气、储氧、储电装置的投资决策。第二阶段则用于确定在运行约束下的综合制氢系统的优化调度方案,并考虑最差情景,即在最不利的条件下进行优化。

  5. 求解方法: 由于鲁棒优化模型涉及内层含整数变量,采用了嵌套列和约束生成算法来求解模型。

  6. 算例验证: 通过实际算例的验证,证明了所提出的配置方法在确保氢气平稳和绿色的同时,能够显著提升经济效益。此外,该方法还表现出较好的鲁棒性,为综合制氢系统的元件选择和规划提供了理论参考。

总体而言,这项研究为解决可再生能源集成到氢气生产中的技术和经济难题提供了一种综合而鲁棒的方法。

关键词:    综合制氢系统;平稳制氢;鲁棒优化;容量配置;嵌套列和约束生成算法;

  1. 综合制氢系统: 这指的是一个包括多种氢气生产技术的系统,文中提到了耦合光伏电解水、生物质气化和天然气重整技术,意味着该系统综合利用了不同的氢气生产方法,可能是为了提高系统的鲁棒性和效率。

  2. 平稳制氢: 表示在氢气生产过程中追求产氢的平稳性,即在面对可再生能源波动性等因素时,系统仍能够稳定地产生氢气,以满足需求。

  3. 鲁棒优化: 鲁棒性表示系统对于外部变化或不确定性的适应能力。鲁棒优化则是在考虑这些不确定性的情况下,对系统进行优化,使其在各种条件下都能够良好地运行。

  4. 容量配置: 指的是在系统中确定不同组件或设备的容量,这可能涉及到投资决策,例如在第一阶段确定各种制氢装置和储气、储氧、储电装置的投资决策。

  5. 嵌套列和约束生成算法: 这是一种求解鲁棒优化模型的方法,特别适用于包含整数变量的情况。嵌套列和约束生成算法通常用于复杂的、带有整数规划的优化问题,通过逐步优化列生成来找到最优解。

这些关键词共同描绘了一种综合氢气生产系统的优化方法,强调了在面对不确定性时的鲁棒性和平稳性,并涉及到容量配置和高级算法的应用。这种方法的目标似乎是在保证可再生能源集成的情况下,提高氢气生产系统的效率和稳定性。

仿真算例:本节对综合制氢系统中的制氢和储能装置容量 进行优化配置。平稳氢气需求为 1 200 m3 /h,制取 每千克氢气的碳排放限制系数为 6,由于生物质制 氢具有零碳特性,仅考虑生物质加工和运输过程产 生的碳排放。弃光惩罚成本为80 $/MW,制氢波动 惩罚成本为1 000 $/m3 。电解水技术具体参数见附 录 C 表 C1。为体现随机特性,采用场景分析法[7] 选 取宁夏光伏电站 2020 年实际数据生成 4 个典型场 景,各典型场景的概率见附录 C 表 C2,光伏发电和 生物质含水量不确定性的可调鲁棒参数Γ的取值均 为6,光伏发电预测模态如附录C图C1所示,光伏最 大正向、负向预测误差均设置为0.15,生物质含水量 预测值为 10 %,波动范围为 5 %~15 %。各设备的投 资参数[24] 如附录C表C3所示,设光伏、电解水、生物 质气化、天然气重整装置的最大规划容量分别为 12 MW、12 MW、2 000 kg/h、500 m3 /h,储电、储氧、 储气装置的最大规划容量分别为20 MW·h、5000 m3 、 300 m3 。储电装置容量百分比的上、下限分别设定 为 90 %和 25 %。计算环境为 Win10 系统,CPU 为 AMD Ryzen 7 PRO 4750U,内存为 6 GB RAM,采 用 MATLAB R2022b 实现所提模型,调用 Gurobi 软 件求解。

仿真程序复现思路:

为了复现这篇文章中描述的综合制氢系统的优化配置过程,可以采用MATLAB编程语言,并调用Gurobi软件进行求解。下面是一个简化的仿真复现思路,包括关键步骤和一些MATLAB代码的示例:

% 电力系统仿真程序

% Step 1: 定义问题

% 定义决策变量
wind_power = sdpvar(24, 1); % 风力发电输出,每小时一个数据点
solar_power = sdpvar(24, 1); % 太阳能发电输出,每小时一个数据点
battery_energy = sdpvar(24, 1); % 储能系统的电量,每小时一个数据点

% 定义目标函数
objective = compute_objective(wind_power, solar_power, battery_energy);

% 定义约束条件
constraints = [compute_power_balance(wind_power, solar_power, battery_energy), ...
               compute_battery_constraints(battery_energy)];

% Step 2: 设定参数

wind_data = load('wind_data.mat'); % 风速数据,每小时一个数据点
solar_data = load('solar_data.mat'); % 太阳辐射数据,每小时一个数据点
demand_data = load('demand_data.mat'); % 电力需求数据,每小时一个数据点
% ... 其他参数

% 将参数传递给目标函数和约束条件

% Step 3: 调用Gurobi进行求解

options = sdpsettings('solver', 'gurobi', 'verbose', 1);
result = optimize(constraints, objective, options);

% Step 4: 分析结果

if result.problem == 0
    disp('Optimization successful!');
    disp(['Optimal wind power: ', num2str(value(wind_power'))]);
    disp(['Optimal solar power: ', num2str(value(solar_power'))]);
    disp(['Optimal battery energy: ', num2str(value(battery_energy'))]);
else
    disp('Optimization failed!');
    disp(['Solver status: ', result.info]);
end

% Step 5: 仿真结果可视化

% 绘制风力、太阳能、电力需求以及储能系统状态随时间的变化图表。
plot(1:24, value(wind_power'), 'r-', 'LineWidth', 2);
hold on;
plot(1:24, value(solar_power'), 'g-', 'LineWidth', 2);
plot(1:24, demand_data, 'b-', 'LineWidth', 2);
plot(1:24, value(battery_energy'), 'm-', 'LineWidth', 2);
legend('Wind Power', 'Solar Power', 'Demand', 'Battery Energy');
xlabel('Hour');
ylabel('Power (MW) / Energy (MWh)');
title('Power System Simulation Results');
grid on;
hold off;

请注意,上述代码中使用了 compute_objectivecompute_power_balancecompute_battery_constraints 函数,这些函数的实现需要根据具体问题来定义。例如,compute_objective 可能包括最小化系统总成本的逻辑,而 compute_power_balance 则确保电力平衡。这些函数的具体实现取决于你模拟的电力系统的详细规范。

这只是一个简单的示例,实际应用中可能需要考虑更多的因素,例如输电网络、发电机响应时间、能源市场条件等。请根据实际需求和系统特性进行适当的修改和扩展。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1344163.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Spark精讲】一文讲透SparkSQL聚合过程以及UDAF开发

SparkSQL聚合过程 这里的 Partial 方式表示聚合函数的模式,能够支持预先局部聚合,这方面的内容会在下一节详细介绍。 对应实例中的聚合语句,因为 count 函数支持 Partial 方式,因此调用的是 planAggregateWithoutDistinct 方法&a…

Nacos注册

一、简介 Nacos是阿里云开源的一个服务发现、配置管理和服务鉴权平台,它提供了一种更简单、更便捷、更开放的方式来管理服务,帮助开发者快速实现服务的发现、配置的管理、服务的鉴权等功能。Nacos可以帮助开发者轻松管理微服务应用中的服务提供者、服务…

Ubuntu22.04系统安装软件、显卡驱动、cuda、cudnn、pytorch

Ubuntu22.04系统安装软件、显卡驱动、cuda、cudnn、pytorch 安装 Nvidia 显卡驱动安装 CUDA安装 cuDNN安装 VSCode安装 Anaconda 并更换源在虚拟环境中安装 GPU 版本的 PyTorchReference 这篇博文主要介绍的是 Ubuntu22.04 系统中软件、显卡驱动、cuda、cudnn、pytorch 等软件和…

系统启动流程 - 理解modules加载流程

​编辑 Hacker_Albert    202 linux 启动流程module加载 1.启动过程分为三个部分 BIOS 上电自检(POST)引导装载程序 (GRUB2)内核初始化启动 systemd,其是所有进程之父。 1.1.BIOS 上电自检(POST) BIOS stands for…

杰发科技AC7840——EEPROM初探

0.序 7840和7801的模拟EEPROM使用不太一样 1.现象 按照官方Demo,在这样的配置下,我们看到存储是这样的(连续三个数字1 2 3)。 使用串口工具的多帧发送功能 看不出多少规律 修改代码后 发现如下规律: 前四个字节是…

VSCode中的注释标签

2023年12月30日,周六上午 在软件开发中,开发者会使用这些标签来提供关于代码功能、版本信息、作者、API使用说明等方面的额外信息。 这些标签的含义通常是: apiNote: 提供有关API使用的注释或说明。author: 标识代码作者的信息。category: …

【 ATU NXP-SBC 系列 】FS26XX GUI_OTP烧录与模拟操作

1. 概述 FS26XX 为了其安全性需求,针对重要暂存器的配置,使用 one time program 的功能,避免不小心修改重要暂存器,导致发生重大意外,使系统丧失功能安全性。FS26XX 也可以让使用者先测试 OTP 后的结果功能&#xff0…

Python:将print内容写入文件

简介:print函数是Python中使用频率非常非常高的函数,其包含四个参数:sep、end、file、flush。 历史攻略: Python基础:输入、输出 Python:将控制台输出保存成文件 参数解析: print()函数可以…

简单了解SQL堆叠注入与二次注入(基于sqllabs演示)

1、堆叠注入 使用分号 ; 成堆的执行sql语句 以sqllabs-less-38为例 ?id1 简单测试发现闭合点为单引号 ?id1 order by 3 ?id1 order by 4使用order by探测发现只有三列(字段数) 尝试简单的联合注入查询 ?id-1 union select 1,database(),user()-…

爬虫工作量由小到大的思维转变---<第三十五章 Scrapy 的scrapyd+Gerapy 部署爬虫项目>

前言: 项目框架没有问题大家布好了的话,接着我们就开始部署scrapy项目(没搭好架子的话,看我上文爬虫工作量由小到大的思维转变---<第三十四章 Scrapy 的部署scrapydGerapy>-CSDN博客) 正文: 1.创建主机: 首先gerapy的架子,就相当于部署服务器上的;所以…

[mysql 基于C++实现数据库连接池 连接池的使用] 持续更新中

目背景 常见的MySQL、Oracle、SQLServer等数据库都是基于C/S架构设计的,即(客户端/服务器)架构,也就是说我们对数据库的操作相当于一个客户端,这个客户端使用既定的API把SQL语句通过网络发送给服务器端,MyS…

【Bootstrap学习 day4】

Bootstrap5 列表组 使用Bootstrap创建列表 可以创建三种不类型的HTML列表: 无序列表—顺序无关紧要的项目列表。无序列表中的列表标有项目符号,例如。、等ul>li有序列表—顺序确实很重要的项目列表。有序列表中的列表项用数字标记,例如1、…

欧洲十大跨境电商平台,自养号测评下单的重要性及优势

在欧洲站,用户体量非常庞大,这与近几年人们的消费习惯密不可分,越来越多的人开始网购,据欧盟委员的最新调研显示,在欧盟,近一半(42%)的中小企业通过在线市场销售产品和服务。 所以,逸居海外给大…

Grafana无法发送告警消息的飞书webhook(机器人)

1.问题描述 Grafana无法向飞书机器人发送报警消息,实测使用Grafana自带的webhook也不好使,对于用飞书办公的程序猿非常不便,后来发现一个报警神器,开源免费,关键是好用 PrometheusAlert 2.PrometheusAlert安装 Prom…

ansible_角色的使用

本章主要介绍ansible中角色的使用 了解什么是角色独立地写一个角色使用角色系统自带角色地使用 1.了解角色 正常情况下,配置一个服务如 apache时,要做一系列的操作:安装、拷贝、启动服务等。如果要在不同的机器上重复配置此服务,需要重新执…

企业私有云容器化架构

什么是虚拟化: 虚拟化(Virtualization)技术最早出现在 20 世纪 60 年代的 IBM 大型机系统,在70年代的 System 370 系列中逐渐流行起来,这些机器通过一种叫虚拟机监控器(Virtual Machine Monitor,VMM&#x…

IC入门必备!数字IC中后端设计实现全流程解析(1.3万字长文)

吾爱IC社区自2018年2月份开始在公众号上开始分享数字IC后端设计实现相关基础理论和实战项目经验,累计输出文字超1000万字。全部是小编一个个字敲出来的,绝对没有复制粘贴的情况,此处小编自己得给自己鼓鼓掌鼓励下自己。人生不要给自己设限&am…

【华为数据之道学习笔记】7-5通过感知能力推进企业业务数字化

感知数据在华为信息架构中的位置 感知可以应用于广泛的物理世界和数字世界,感知范围可以从人、物、作业、地点扩展到复杂环境。成熟的用例倾向于以物和人为中心。而在企业中,只有将感知数据纳入整体的数据体系中,才能发挥感知数据的价值。 华…

Java核心技术卷接口的实现与继承多态知识梳理总结

Java核心技术卷接口的实现与继承多态知识梳理总结 接口的概念 在Java程序设计语言中,接口不是类,而是对希望符合这个接口的类的一组需求。 form: Java核心技术卷 I(原书第11版) 基础知识 by 凯 S.霍斯特曼 在Java中&a…

园林机械部件自动化三维测量检测形位公差-CASAIM自动化三维检测工作站

随着园林机械的广泛应用,对其机械部件的精确测量需求也日益增加。传统的测量方法不仅效率低下,而且精度难以保证,因此,自动化三维测量技术成为了解决这一问题的有效途径。本文将重点介绍CASAIM自动化三维检测工作站在园林机械部件…