大数据技术发展史

news2025/4/13 14:07:37

今天我们常说的大数据技术,其实起源于Google在2004年前后发表的三篇论文,也就是我们经常听到的“三驾马车”,分别是分布式文件系统GFS、大数据分布式计算框架MapReduce和NoSQL数据库系统BigTable。

你知道,搜索引擎主要就做两件事情,一个是网页抓取,一个是索引构建,而在这个过程中,有大量的数据需要存储和计算。这“三驾马车”其实就是用来解决这个问题的,你从介绍中也能看出来,一个文件系统、一个计算框架、一个数据库系统。

现在你听到分布式、大数据之类的词,肯定一点儿也不陌生。但你要知道,在2004年那会儿,整个互联网还处于懵懂时代,Google发布的论文实在是让业界为之一振,大家恍然大悟,原来还可以这么玩。

因为那个时间段,大多数公司的关注点其实还是聚焦在单机上,在思考如何提升单机的性能,寻找更贵更好的服务器。而Google的思路是部署一个大规模的服务器集群,通过分布式的方式将海量数据存储在这个集群上,然后利用集群上的所有机器进行数据计算。 这样,Google其实不需要买很多很贵的服务器,它只要把这些普通的机器组织到一起,就非常厉害了。

当时的天才程序员,也是Lucene开源项目的创始人Doug Cutting正在开发开源搜索引擎Nutch,阅读了Google的论文后,他非常兴奋,紧接着就根据论文原理初步实现了类似GFS和MapReduce的功能。

两年后的2006年,Doug Cutting将这些大数据相关的功能从Nutch中分离了出来,然后启动了一个独立的项目专门开发维护大数据技术,这就是后来赫赫有名的Hadoop,主要包括Hadoop分布式文件系统HDFS和大数据计算引擎MapReduce。

当我们回顾软件开发的历史,包括我们自己开发的软件,你会发现,有的软件在开发出来以后无人问津或者寥寥数人使用,这样的软件其实在所有开发出来的软件中占大多数。而有的软件则可能会开创一个行业,每年创造数百亿美元的价值,创造百万计的就业岗位,这些软件曾经是Windows、Linux、Java,而现在这个名单要加上Hadoop的名字。

如果有时间,你可以简单浏览下Hadoop的代码,这个纯用Java编写的软件其实并没有什么高深的技术难点,使用的也都是一些最基础的编程技巧,也没有什么出奇之处,但是它却给社会带来巨大的影响,甚至带动一场深刻的科技革命,推动了人工智能的发展与进步。

我觉得,我们在做软件开发的时候,也可以多思考一下,我们所开发软件的价值点在哪里?真正需要使用软件实现价值的地方在哪里?你应该关注业务、理解业务,有价值导向,用自己的技术为公司创造真正的价值,进而实现自己的人生价值。而不是整天埋头在需求说明文档里,做一个没有思考的代码机器人。

Hadoop发布之后,Yahoo很快就用了起来。大概又过了一年到了2007年,百度和阿里巴巴也开始使用Hadoop进行大数据存储与计算。

2008年,Hadoop正式成为Apache的顶级项目,后来Doug Cutting本人也成为了Apache基金会的主席。自此,Hadoop作为软件开发领域的一颗明星冉冉升起。

同年,专门运营Hadoop的商业公司Cloudera成立,Hadoop得到进一步的商业支持。

这个时候,Yahoo的一些人觉得用MapReduce进行大数据编程太麻烦了,于是便开发了Pig。Pig是一种脚本语言,使用类SQL的语法,开发者可以用Pig脚本描述要对大数据集上进行的操作,Pig经过编译后会生成MapReduce程序,然后在Hadoop上运行。

编写Pig脚本虽然比直接MapReduce编程容易,但是依然需要学习新的脚本语法。于是Facebook又发布了Hive。Hive支持使用SQL语法来进行大数据计算,比如说你可以写个Select语句进行数据查询,然后Hive会把SQL语句转化成MapReduce的计算程序。

这样,熟悉数据库的数据分析师和工程师便可以无门槛地使用大数据进行数据分析和处理了。Hive出现后极大程度地降低了Hadoop的使用难度,迅速得到开发者和企业的追捧。据说,2011年的时候,Facebook大数据平台上运行的作业90%都来源于Hive。

随后,众多Hadoop周边产品开始出现,大数据生态体系逐渐形成,其中包括:专门将关系数据库中的数据导入导出到Hadoop平台的Sqoop;针对大规模日志进行分布式收集、聚合和传输的Flume;MapReduce工作流调度引擎Oozie等。

在Hadoop早期,MapReduce既是一个执行引擎,又是一个资源调度框架,服务器集群的资源调度管理由MapReduce自己完成。但是这样不利于资源复用,也使得MapReduce非常臃肿。于是一个新项目启动了,将MapReduce执行引擎和资源调度分离开来,这就是Yarn。

2012年,Yarn成为一个独立的项目开始运营,随后被各类大数据产品支持,成为大数据平台上最主流的资源调度系统。

同样是在2012年,UC伯克利AMP实验室(Algorithms、Machine和People的缩写)开发的Spark开始崭露头角。当时AMP实验室的马铁博士发现使用MapReduce进行机器学习计算的时候性能非常差,因为机器学习算法通常需要进行很多次的迭代计算,而MapReduce每执行一次Map和Reduce计算都需要重新启动一次作业,带来大量的无谓消耗。还有一点就是MapReduce主要使用磁盘作为存储介质,而2012年的时候,内存已经突破容量和成本限制,成为数据运行过程中主要的存储介质。Spark一经推出,立即受到业界的追捧,并逐步替代MapReduce在企业应用中的地位。

一般说来,像MapReduce、Spark这类计算框架处理的业务场景都被称作批处理计算,因为它们通常针对以“天”为单位产生的数据进行一次计算,然后得到需要的结果,这中间计算需要花费的时间大概是几十分钟甚至更长的时间。因为计算的数据是非在线得到的实时数据,而是历史数据,所以这类计算也被称为大数据离线计算

而在大数据领域,还有另外一类应用场景,它们需要对实时产生的大量数据进行即时计算,比如对于遍布城市的监控摄像头进行人脸识别和嫌犯追踪。这类计算称为大数据流计算,相应地,有Storm、Flink、Spark Streaming等流计算框架来满足此类大数据应用的场景。 流式计算要处理的数据是实时在线产生的数据,所以这类计算也被称为大数据实时计算

在典型的大数据的业务场景下,数据业务最通用的做法是,采用批处理的技术处理历史全量数据,采用流式计算处理实时新增数据。而像Flink这样的计算引擎,可以同时支持流式计算和批处理计算。

除了大数据批处理和流处理,NoSQL系统处理的主要也是大规模海量数据的存储与访问,所以也被归为大数据技术。 NoSQL曾经在2011年左右非常火爆,涌现出HBase、Cassandra等许多优秀的产品,其中HBase是从Hadoop中分离出来的、基于HDFS的NoSQL系统。

我们回顾软件发展的历史会发现,差不多类似功能的软件,它们出现的时间都非常接近,比如Linux和Windows都是在90年代初出现,Java开发中的各类MVC框架也基本都是同期出现,Android和iOS也是前脚后脚问世。2011年前后,各种NoSQL数据库也是层出不穷,我也是在那个时候参与开发了阿里巴巴自己的NoSQL系统。

事物发展有自己的潮流和规律,当你身处潮流之中的时候,要紧紧抓住潮流的机会,想办法脱颖而出,即使没有成功,也会更加洞悉时代的脉搏,收获珍贵的知识和经验。而如果潮流已经退去,这个时候再去往这个方向上努力,只会收获迷茫与压抑,对时代、对自己都没有什么帮助。

但是时代的浪潮犹如海滩上的浪花,总是一浪接着一浪,只要你站在海边,身处这个行业之中,下一个浪潮很快又会到来。你需要敏感而又深刻地去观察,略去那些浮躁的泡沫,抓住真正潮流的机会,奋力一搏,不管成败,都不会遗憾。

正所谓在历史前进的逻辑中前进,在时代发展的潮流中发展。通俗地说,就是要在风口中飞翔。

上面我讲的这些基本上都可以归类为大数据引擎或者大数据框架。而大数据处理的主要应用场景包括数据分析、数据挖掘与机器学习。数据分析主要使用Hive、Spark SQL等SQL引擎完成;数据挖掘与机器学习则有专门的机器学习框架TensorFlow、Mahout以及MLlib等,内置了主要的机器学习和数据挖掘算法。

此外,大数据要存入分布式文件系统(HDFS),要有序调度MapReduce和Spark作业执行,并能把执行结果写入到各个应用系统的数据库中,还需要有一个大数据平台整合所有这些大数据组件和企业应用系统。

在这里插入图片描述
图中的所有这些框架、平台以及相关的算法共同构成了大数据的技术体系,我将会在专栏后面逐个分析,帮你能够对大数据技术原理和应用算法构建起完整的知识体系,进可以专职从事大数据开发,退可以在自己的应用开发中更好地和大数据集成,掌控自己的项目。

结语:

从我的角度而言,不管是学习某门技术,还是讨论某个事情,最好的方式一定不是一头扎到具体细节里,而是应该从时空的角度先了解它的来龙去脉,以及它为什么会演进成为现在的状态。当你深刻理解了这些前因后果之后,再去看现状,就会明朗很多,也能更直接地看到现状背后的本质。说实话,这对于我们理解技术、学习技术而言,同等重要。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1343646.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

k8s之kudeadm

kubeadm来快速的搭建一个k8s的集群: 二进制搭建适合大集群,50台以上主机 kubeadm更适合中小企业的业务集群 master:192.168.233.91 docker kubelet lubeadm kubectl flannel node1:192.168.233.92 docker kubelet lubeadm kubectl flannel…

Python中使用SQLite数据库的方法2-2

3.3.2 创建表单及字段 通过“3.2 创建Cursor类的对象”中创建的Cursor类的对象cur创建表单及字段,代码如图5所示。 图5 创建表单及字段 从图5中可以看出,通过Cursor类的对象cur调用了Cursor类的execute()方法来执行SQL语句。该方法的参数即为要指定的S…

代码随想录刷题笔记(DAY3)

今日总结:虽然之前刷过链表,但这次做的是有些费力的,也有了更深的理解。整理完今天的 Vue 笔记就睡。。。 DAY 3 01. 移除链表元素(No. 203) 题目链接:https://leetcode.cn/problems/remove-linked-list-…

UE4开发BIM程序 的 流程

某机构BIM设计研究中心主任马晓龙,他对编程颇有研究。今天他会用通俗易懂的语言来讲解基于游戏引擎UE4的BIM技术可视化应用。对于想要自己开发程序的设计师一定要读一下! 1)关于UE4——UE4是什么? 可以简单的理解为,一…

NXP MC17XS6500高边驱动芯片功能的介绍

简介 本文主要介绍了高边驱动芯片MC17XS6500 的功能、特性。世平集团基于 FlagChips FC7300 HV BMS 方案,高边驱动芯片MC17XS6500 被用于驱动继电器的断开和闭合。在本文中介绍了 MC17XS6500 在正常模式和故障模式下,是如何控制 OUT 的输出。 1、功能…

【软件测试】为bug而生

为什么定位问题如此重要? 可以明确一个问题是不是真的“bug” 很多时候,我们找到了问题的原因,结果发现这根本不是bug。原因明确,误报就会降低多个系统交互,可以明确指出是哪个系统的缺陷,防止“踢皮球”&…

彻底理解前端安全面试题(1)—— XSS 攻击,3种XSS攻击详解,建议收藏(含源码)

前言 前端关于网络安全看似高深莫测,其实来来回回就那么点东西,我总结一下就是 3 1 4,3个用字母描述的【分别是 XSS、CSRF、CORS】 一个中间人攻击。当然 CORS 同源策略是为了防止攻击的安全策略,其他的都是网络攻击。除了这…

mac安装k8s环境

安装kubectl brew install kubectl 确认一下安装的版本 kubectl version --client 如果想在本地运行kubernetes 需要安装minikube brew install minikube 需要注意安装minikube需要本地的docker服务是启动的 启动 默认连接的是google的仓库 minikube start 指定阿…

(2023,3D NeRF,无图像变分分数蒸馏,单步扩散)SwiftBrush:具有变分分数蒸馏的一步文本到图像扩散模型

SwiftBrush : One-Step Text-to-Image Diffusion Model with Variational Score Distillation 公众:EDPJ(添加 VX:CV_EDPJ 或直接进 Q 交流群:922230617 获取资料) 目录 0. 摘要 1. 方法 1.1 基础 1.2 SwiftBrus…

elasticsearch 笔记三:查询建议介绍、Suggester、自动完成

一、查询建议介绍 1. 查询建议是什么? 查询建议,为用户提供良好的使用体验。主要包括: 拼写检查; 自动建议查询词(自动补全) 拼写检查如图: 自动建议查询词(自动补全)…

Mybatis插件入门

专栏精选 引入Mybatis Mybatis的快速入门 Mybatis的增删改查扩展功能说明 mapper映射的参数和结果 Mybatis复杂类型的结果映射 Mybatis基于注解的结果映射 Mybatis枚举类型处理和类型处理器 再谈动态SQL Mybatis配置入门 Mybatis行为配置之Ⅰ—缓存 Mybatis行为配置…

【经典算法】有趣的算法之---蚁群算法梳理

every blog every motto: You can do more than you think. 0. 前言 蚁群算法记录 1. 简介 蚁群算法(Ant Clony Optimization, ACO)是一种群智能算法,它是由一群无智能或有轻微智能的个体(Agent)通过相互协作而表现出智能行为,从而为求解复杂问题提供了一个新的可能性…

JDK9及之后版本使用 jlink 生成定制化的 JRE

许多java软件的运行需要依赖jre,在 jdk8 之后,不再提供默认的 jre,后续如果项目中还是想用 jre 的形式发布软件,那么可以使用 jlink 工具生成 jre。 一、jlink 命令详解 jlink 二、查看jdk中包含的所有模块 如果在 jdk 安装文件夹…

css 用多个阴影做出光斑投影的效果 box-shadow

css 用多个阴影做出光斑投影的效果 box-shadow 你首先需要知道的一点是 box-shadow 可以接收多个值,也就是可以设置多个阴影,这样就可以做一个类似光斑投影的效果。 一、效果 二、代码 里面用到了我一些 scss 工具方法,不过不影响&#xf…

Android MVP 写法

前言 Model:负责数据逻辑 View:负责视图逻辑 Presenter:负责业务逻辑 持有关系: 1、View 持有 Presenter 2、Model 持有 Presenter 3、Presenter 持有 View 4、Presenter 持有 Model 辅助工具:ViewBinding 执行…

【华为机试】2023年真题B卷(python)-观看文艺汇演-计算演出场次

一、题目 题目描述: 一个人只能同时观看一场演出,且不能迟到早退,由于演出分布在不同的演出场地,所以连续观看的演出最少有15分钟的时间间隔,小明是一个狂热的文艺迷,想观看尽可能多的演出, 现给…

【并发设计模式】聊聊线程本地存储模式如何实现的线程安全

前面两篇文章,通过两阶段终止的模式进行优雅关闭线程,利用数据不变性的方式保证数据安全,以及基于COW的模式,保证读数据的安全。本篇我们来简述下如果利用线程本地存储的方式保证线程安全。 首先一个大前提就是并发问题&#xff…

八皇后问题(C语言)

了解题意 在一个8x8的棋盘上放置8个皇后,使得任何两个皇后都不能处于同一行、同一列或同一斜线上。问有多少种方法可以放置这8个皇后? 解决这个问题的目标是找到所有符合要求的皇后摆放方式,通常使用回溯算法来求解。回溯算法会尝试所有可能…

[蓝桥杯2022省赛] X 图形

X 图形 问题描述 给定一个字母矩阵。一个 X 图形由中心点和由中心点向四个 4545 度斜线方向引出的直线段组成,四条线段的长度相同,而且四条线段上的字母和中心点的字母相同。 一个 X 图形可以使用三个整数r,c,L 来描述,其中 r,c 表示中心点…

PiflowX组件-ReadFromKafka

ReadFromKafka组件 组件说明 从kafka中读取数据。 计算引擎 flink 有界性 Unbounded 组件分组 kafka 端口 Inport:默认端口 outport:默认端口 组件属性 名称展示名称默认值允许值是否必填描述例子kafka_hostKAFKA_HOST“”无是逗号分隔的Ka…