【Java系列】多线程案例学习——基于阻塞队列实现生产者消费者模型

news2025/1/15 17:12:17

个人主页:兜里有颗棉花糖
欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创
收录于专栏【Java系列专栏】【JaveEE学习专栏】
本专栏旨在分享学习JavaEE的一点学习心得,欢迎大家在评论区交流讨论💌
在这里插入图片描述

目录

  • 一、阻塞式队列
  • 二、生产者消费者模型
    • 生产消费者模型的优势
  • 三、生产者消费者举例代码(基于阻塞队列)
  • 四、基于阻塞式队列实现生产者消费者模型

一、阻塞式队列

什么是阻塞式队列(有两点):

  • 第一点:当队列满的时候,如果此时入队列的话就会出现阻塞,直到其它线程从队列中取走元素为止。
  • 第二点:当队列为空的时候,如果继续出队列,此时就会出现阻塞,一直阻塞到其它线程往队列中添加元素为止。

二、生产者消费者模型

什么是生产者消费者模型:
生产者消费者模型是常见的多线程编程模型,可以用来解决生产者和消费者之间的数据交互问题。

阻塞队列的最主要的一个目的之一就是实现生产者消费者模型(基于阻塞队列实现),生产者消费主模型是处理多线程问题的一种方式。

生产消费者模型的优势

生产者消费主模型的优势:针对分布式系统有两个优势,一个是解耦合(耦合我们可以理解为依赖程度)、另一个是削峰填谷

  • 解耦合:生产者和消费主之间通过缓冲区进行解耦合,而不会对彼此产生直接的依赖,我们通过引入生产者消费者模型(即阻塞队列)就可以达到解耦合的效果,但是付出的代价就是效率有所降低。

  • 削峰填谷:服务器接收到的来自用户端的请求数量可能会因为一些突发时间而暴增,此时服务器面临的压力就非常大了。我们要知道一台服务器承担的上限是一样的,不同的服务器所能承担的上限又是不同的。(机器的硬件资源(CPU、内存、硬盘、网络带宽等等)是有限的,而服务器每处理一个请求都需要消耗一定的资源,请求足够多直到机器的硬件资源招架不住的时候服务器也就挂了)通过引入生产消费者模型(即阻塞队列)就可以起到一个缓冲的作用,其中阻塞队列就承担了服务器的一部分压力,然后当峰值消退的时候,服务器接收到的请求就相对较少了,此时服务器由于阻塞队列的原因依然可以按照既定的顺序处理请求。

  • ‘’

阻塞队列只是一个数据结构,如果我们把这个数据结构单独实现称了一个服务器程序,并且使用单独的主机或者主机群来进行部署的话,此时阻塞式队列就进化成了消息队列。而在Java标准库中已经实现了阻塞队列,并且实现了三种阻塞队列的实现方式:

三、生产者消费者举例代码(基于阻塞队列)

生产消费者模型代码如下(基于阻塞式队列):

import java.util.concurrent.BlockingQueue;
  import java.util.concurrent.LinkedBlockingQueue;

// 生产消费者模型——阻塞队列
public class Demo20 {
    public static void main(String[] args) {
        // 创建一个阻塞队列来作为交易场所
        BlockingQueue<Integer> queue = new LinkedBlockingQueue<>(10);
        Thread t1 = new Thread(() -> {
            int count = 0;
            while(true) {
                try {
                    queue.put(count);
                    System.out.println("生产元素:" + count);
                    count++;
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        });
        Thread t2 = new Thread(() -> {
            while(true) {
                while(true) {
                    try {
                        Integer n = queue.take();
                        System.out.println("消费元素:" + n);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        });
        t1.start();
        t2.start();
    }
}

代码运行结果如下:
在这里插入图片描述

四、基于阻塞式队列实现生产者消费者模型

现在,我们自己来基于循环队列来实现阻塞式队列。注意我们这里实现的阻塞队列是基于数组、基于循环队列的阻塞队列。

我们在实现阻塞队列的时候有以下几点需要注意:

  • 线程安全问题:需要给put方法take()方法进行加锁操作。
  • 经过加锁之后还需要考虑到内存可见性问题,这里就涉及到volatile关键字的使用。
  • 阻塞状态以及阻塞状态的解除时机要把握好(即wait()方法notify()方法的使用)。
  • wait()方法不一定是被notify()方法唤醒的,还有可能是被interrupt()方法唤醒的:如果interrupt方法是按照try catch的形式来进行编写的,一旦interrupt方法唤醒wait方法,接着执行完catch之后,代码并不会结束而是继续往后执行,此时就会出现覆盖元素的问题。(解决方法,使用while循环不断等待和检查条件。如果不使用 while 循环在状态被满足之前不断地等待和检查条件,就有可能在 wait 方法返回之后仍然不能安全地进行操作,这可能导致程序出现异常和错误。强烈建议使用wait方法的时候搭配while循环来判定条件

代码如下:

class MyBlockQueue {
    // 使用string类型的数组来保存元素,我们假设这里只存string
    private String[] items = new String[1000];
    //head表示指向队列的头部
    volatile private int head = 0;
    volatile private int tail = 0;
    volatile private int size = 0; // size表示元素个数
    
    private Object locker = new Object();
    
    public void put(String elem) throws InterruptedException {
        synchronized(locker) {
            while(size >= items.length) {
                //队列已满
                locker.wait();
                //return;
            }
            items[tail] = elem;
            tail++;
            if(tail >= items.length) {
                tail = 0;
            }
            //tail++和下面的if判断可以替换成tail = (tail + 1) % (items.length)
            //但是站在CPU的角度来看,其实还是简单的if判断比较快
            size++;
            locker.notify(); // 用来唤醒队列为空的阻塞情况
        }
    }
    //出队列
    public String take() throws InterruptedException {
        synchronized(locker) {
            while(size == 0) {
                locker.wait();
            }
            String elem = items[head];
            head++;
            if(head >= items.length) {
                head = 0;
            }
            size--;
            //使用notify来唤醒队列阻塞满的情况
            locker.notify();
            return elem;
        }
    }
}

public class Demo21 {
    public static void main(String[] args) {
        // 创建两个线程分别表示消费者和生产者
        MyBlockQueue queue = new MyBlockQueue();
        Thread t1 = new Thread(() -> {
           int count = 0;
           while(true) {
               try {
                   queue.put(count + "");
                   System.out.println("生产元素: " + count);
                   count++;
               } catch (InterruptedException e) {
                   e.printStackTrace();
               }
           }
        });
        Thread t2 = new Thread(() -> {
            while(true) {
                try {
                    String count = queue.take();
                    System.out.println("消费元素: " + count);
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    throw new RuntimeException(e);
                }
            }
        });
        t1.start();
        t2.start();
    }
}

本文到这里就结束了,希望友友们可以支持一下一键三连哈。嗯,就到这里吧,再见啦!!!

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1340825.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

九九乘法表c 语言 用于打印九九乘法表

以下是一个简单的C语言程序&#xff0c;用于打印九九乘法表&#xff1a; #include <stdio.h>int main() {int i, j;for (i 1; i < 9; i) {for (j 1; j < i; j) {printf("%d*%d%-2d ", j, i, i*j);}printf("\n");}return 0; }解释&#xff1…

GBASE南大通用GBaseCommand 类

代表一个要对 GBASE南大通用数据库执行操作的 SQL 语句。这个类不能被继承。对 于该类所有成员的列表&#xff0c;参考 GBASE南大通用 GBaseCommand 成员。  继承层次 System.Object |__ System.MarshalByRefObject |__ System.ComponentModel.Component |__ System.D…

go语言,ent库与gorm库,插入一条null值的time数据

情景介绍 使用go语言&#xff0c;我需要保存xxxTime的字段至数据库中&#xff0c;这个字段可能为空&#xff0c;也可能是一段时间。我采取的是统一先赋值为空&#xff0c;若有需要&#xff0c;则再进行插入&#xff08;需要根据另一个字段判断是否插入&#xff09; 在我的数据…

‘>>’,‘<<’和‘’的使用

>>: n n >> 1 是使用位移运算符将 n 向右移动一位的操作。在 C 语言中&#xff0c;>> 是右移位运算符&#xff0c;表示将二进制数向右移动指定的位数。 对于无符号整数&#xff0c;在右移位操作时&#xff0c;高位用 0 填充。例如&#xff0c;如果 n 的二…

Navicat导入与导出表的操作流程

我们使用Navicat时&#xff0c;创建表有两种方法&#xff0c;一种是写SQL语句&#xff0c;这种方法适合数据较少的表&#xff1b;另一种是通过“导入向导”功能导入表&#xff0c;这种方法可以一次性导入大批量的数据&#xff0c;提高效率。 下面我以.xls格式为例&#xff0c;…

程序员的浪漫,2023跨年烟花代码(Python)

跨年倒计时啦 今天分享用python实现一场烟花秀 感兴趣的小伙伴&#xff0c;提前收藏起来&#xff0c;一定要看到最后&#xff01; 话不多说 1.首先制作一个绚丽的夜空 制作夜空&#xff0c;其实就是设置画布。大家知道&#xff0c;夜晚的天空月明如水&#xff0c;星光攒动&a…

创建型设计模式 - 抽象工厂模式 - JAVA

创建型设计模式 - 抽象工厂设计模式 一. 简介二. 列子2.1 定义电脑的抽象类和子类2.2 定义抽象工厂类和其实现类2.3 测试 三. 抽象工厂设计模式的好处四. 抽象工厂模式的案例 前言 这是我在这个网站整理的笔记,有错误的地方请指出&#xff0c;关注我&#xff0c;接下来还会持续…

git 如何将某个分支的某个提交复制到另外一个分支

请直接去看原文: 原文链接:git 如何将某个分支的某个提交复制到另外一个分支_gitlab里面的markdown文件可以复用其他分支的吗-CSDN博客 --------------------------------------------------------------------------------------------------------------------------------…

drf知识-08

Django之了解DRF框架 # 介绍&#xff1a;DRF全称 django rest framework # 背景&#xff1a; 在序列化与反序列化时&#xff0c;虽然操作的数据不尽相同&#xff0c;但是执行的过程却是相似的&#xff0c;也就是说这部分代码是可以复用简化编写的 增&#xff1a;校验请…

leaflet学习笔记-地图图层控制(二)

图层介绍 Leaflet的地图图层控件可控制两类图层&#xff1a;一类是底图图层&#xff08;Base Layers&#xff09;&#xff0c;一次只能选择一个图层作为地图的背景图层&#xff0c;即底图图层&#xff0c;在地图图层控件中用单选按钮控制&#xff1b;另一类是覆盖图层&#xff…

目标检测损失函数:IoU、GIoU、DIoU、CIoU、EIoU、alpha IoU、SIoU、WIoU原理及Pytorch实现

前言 损失函数是用来评价模型的预测值和真实值一致程度&#xff0c;损失函数越小&#xff0c;通常模型的性能越好。不同的模型用的损失函数一般也不一样。损失函数主要是用在模型的训练阶段&#xff0c;如果我们想让预测值无限接近于真实值&#xff0c;就需要将损失值降到最低…

Ubuntu18.04安装GTSAM库并验证GTSAM是否安装成功(亲测可用)

在SLAM&#xff08;Simultaneous Localization and Mapping&#xff09;和SFM&#xff08;Structure from Motion&#xff09;这些复杂的估计问题中&#xff0c;因子图算法以其高效和灵活性而脱颖而出&#xff0c;成为图模型领域的核心技术。GTSAM&#xff08;Georgia Tech Smo…

【论文阅读】Resource Allocation for Text Semantic Communications

这是一篇关于语义通信中资源分配的论文。全文共5页&#xff0c;篇幅较短。 目录在这里 摘要关键字引言语义通信资源分配贡献公式符号 系统模型DeepSC TransmitterTransmission ModelDeepSC Receiver 语义感知资源分配策略Semantic Spectral Efficiency &#xff08;S-SE&#…

Docker七 | 搭建Swarm集群

目录 创建Swarm集群 创建管理节点 增加工作节点 查看集群 部署服务 新建服务 查看服务 服务伸缩 增加服务 减少服务 删除服务 创建Swarm集群 创建管理节点 在192.168.117.131下执行docker swarm init命令的节点自动成为管理节点 [rootlocalhost ~]# docker swar…

idea中切换JDK8、JDK11、JDK17

有时候&#xff0c;我们可能需要在不同的Java版本中去测试或者查看源码&#xff0c;idea可以让我们修改Java的版本。 前提&#xff1a;你必须下载安装好对应的Java版本&#xff0c;可参考文章【windows下切换JDK8、JDK11、JDK17】&#xff08;https://blog.csdn.net/xijinno1/a…

深度学习核心技术与实践之深度学习基础篇

非书中全部内容&#xff0c;只是写了些自认为有收获的部分 神经网络 生物神经元的特点 &#xff08;1&#xff09;人体各种神经元本身的构成很相似 &#xff08;2&#xff09;早期的大脑损伤&#xff0c;其功能可能是以其他部位的神经元来代替实现的 &#xff08;3&#x…

腾讯云服务器怎么买划算?最新优惠价格表

2023腾讯云轻量应用服务器优惠价格表&#xff0c;12月最新报价&#xff0c;腾讯云轻量2核2G3M带宽62元一年、2核2G4M轻量服务器118元一年&#xff0c;540元三年、2核4G5M带宽218元一年&#xff0c;756元三年、4核8G12M轻量服务器646元15个月&#xff0c;CVM云服务器S5实例2核2G…

C# 常用数据类型及取值范围

1.常见数据类型和取值范围 序号数据类型占字节数取值范围1byte10 到 2552sbyte1-128 到 1273short 2-32,768 到 32,7674ushort20 到 65,5355int4-2,147,483,648 到 2,147,483,6476uint40 到 4,294,967,2957float41.5 x 10−45 至 3.4 x 10388double85.0 10−324 到 1.…

15种线上Bug梳理,这坑我算是踩全了

日常开发过程中大家肯定或多或少都会遇到一些偶现的问题&#xff0c;最常见的一句话就是&#xff1a;在我本地运行的时候都是好的呀&#xff1f;在测试环境跑的时候都是好的呀&#xff1f;在预发布环境都是正常的呀&#xff1f;在灰度阶段都是没问题的呀&#xff1f; 怎么到生…

MFC工程中无法使用cygwin64的库

文章目录 MFC工程中无法使用cygwin64的库概述在MFC中使用cygwin64的静态库在MFC中使用cygwin64的DLL进行静态包含在MFC中使用cygwin64的DLL进行动态调用唯一可以使用cygwin64的方法是进程隔离来通讯cygwin64的官方用途修正后的启动进程隐藏dos窗口的函数动态载入DLL的实现 - La…