目标检测损失函数:IoU、GIoU、DIoU、CIoU、EIoU、alpha IoU、SIoU、WIoU原理及Pytorch实现

news2025/1/15 21:03:38

前言

损失函数是用来评价模型的预测值和真实值一致程度,损失函数越小,通常模型的性能越好。不同的模型用的损失函数一般也不一样。损失函数主要是用在模型的训练阶段,如果我们想让预测值无限接近于真实值,就需要将损失值降到最低,在这个过程中就需要引入损失函数,而损失函数的选择又是十分关键。尤其是在目标检测中,损失函数直接关乎到检测效果是否准确,其中IOU损失函数目前主要应用于目标检测的领域,其演变的过程如下:IOU --> GIOU --> DIOU -->CIOU损失函数,每一种损失函数都较上一种损失函数有所提升,下面来具体介绍这几种损失函数。

1 IoU(Intersection over Union)

1.1 IoU简介

UnitBox: An Advanced Object Detection Network

IoU全称Intersection over Union,交并比。IoU是一种测量在特定数据集中检测相应物体准确度的一个标准。只要是在输出中得出一个预测范围(bounding boxes)的任务都可以用IoU来进行测量。

IoU算法是使用最广泛的算法,大部分的检测算法都是使用的这个算法。在目标识别中,我们的预测框与实际框的某种比值就是IoU。

1.2 IoU计算公式

1.3 优点

  • IOU能够直观地反映出目标检测结果与真实情况之间的匹配程度。
  • IOU具有尺度不变性,由于IOU是基于重叠度量的,它不受目标尺度和形状变换的影响,这使得IOU适用于各种不同尺度和形状的目标检测任务。

1.4 缺点

  • 当预测框和目标框不相交时,即IOU=0时,不能反映两个目标之间距离的远近,此时损失函数不可导,IOU Loss 无法优化。
  • 当两个检测框大小相同,两个IOU也相同,IOU_Loss无法精确的反映两个框的重合度大小。

1.5 IoU代码

def IoU(box1, box2):
    b1_x1, b1_y1, b1_x2, b1_y2 = box1
    b2_x1, b2_y1, b2_x2, b2_y2 = box2
    
    xx1 = np.maximum(b1_x1, b2_x1)
    yy1 = np.maximum(b1_y1, b2_y1)
    xx2 = np.minimum(b1_x2, b2_x2)
    yy2 = np.minimum(b1_y2, b2_y2)
    
    w = np.maximum(0.0, yy2 - yy1)
    h = np.maximum(0.0, xx2 - xx1)
 
    inter = w * h
    IoU = inter/((b1_x2-b1_x1)*(b1_y2-b1_y1) + (b2_x2-b2_x1)*(b2_y2-b2_y1) - inter)
    print("IoU: ", IoU)
 
 
if __name__ == "__main__":
    box1 = np.array([100, 100, 210, 210])
    box2 = np.array([150, 150, 230, 220])
    IoU(box1, box2)

2 GIoU

Generalized Intersection over Union: A Metric and A Loss for Bounding BoxRegression

2.1 GIoU简介

通过上述分析,当预测框和真实框不相交时IoU值为0,导致很大范围内损失函数没有梯度。针对这一问题,提出了GIoU作为损失函数。GIoU比IoU多了一个‘Generalized’,能在更广义的层面上计算IoU。当检测框和真实框没有出现重叠的时候IoU的loss都是一样的,因此GIoU就引入了最小封闭形状C(C可以把A,B包含在内),在不重叠情况下能让预测框尽可能朝着真实框前进,这样就可以解决检测框和真实框没有重叠的问题 。

2.2 GIoU公式

算法公式及其解释:其实想法也很简单(但这一步很难):假如现在有两个box A,B,我们找到一个最小的封闭形状C,让C可以把A,B包含在内,然后再计算C中没有覆盖A和B的面积占C总面积的比值,最后用A与B的IoU减去这个比值,GIoU计算公式如下

2.3 优点

  • GIOU_Loss中,增加了相交尺度的衡量方式,缓解了单纯IOU_Loss时的尴尬,但是依然没有完全解决IoU存在的问题

2.4 缺点

  • 对每个预测框与真实框均要去计算最小外接矩形,计算及收敛速度受到限制
  • 状态1、2、3都是预测框在目标框内部且预测框大小一致的情况,这时预测框和目标框的差集都是相同的,因此这三种状态的GIoU值也都是相同的,这时GIoU退化成了IoU,无法区分相对位置关系。

2.5 GIoU代码 

 

def GIoU(box1, box2):
    b1_x1, b1_y1, b1_x2, b1_y2 = box1
    b2_x1, b2_y1, b2_x2, b2_y2 = box2
    
    # IOU
    xx1 = np.maximum(b1_x1, b2_x1)
    yy1 = np.maximum(b1_y1, b2_y1)
    xx2 = np.minimum(b1_x2, b2_x2)
    yy2 = np.minimum(b1_y2, b2_y2)
    inter_w = np.maximum(0.0, yy2 - yy1)
    inter_h = np.maximum(0.0, xx2 - xx1)
    inter = inter_w * inter_h
    Union = (b1_x2-b1_x1)*(b1_y2-b1_y1) + (b2_x2-b2_x1)*(b2_y2-b2_y1) - inter
 
    # GIOU
    C_xx1 = np.minimum(b1_x1, b2_x1)
    C_yy1 = np.minimum(b1_y1, b2_y1)
    C_xx2 = np.maximum(b1_x2, b2_x2)
    C_yy2 = np.maximum(b1_y2, b2_y2)
    C_area = (C_xx2 - C_xx1) * (C_yy2 - C_yy1)
 
    IOU = inter / Union
    GIOU = IOU - abs((C_area-Union)/C_area)
    print("GIOU:", GIOU)
 
if __name__ == "__main__":
    box1 = np.array([100, 100, 210, 210])
    box2 = np.array([150, 150, 230, 220])
    GIoU(box1, box2)

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1340811.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Ubuntu18.04安装GTSAM库并验证GTSAM是否安装成功(亲测可用)

在SLAM(Simultaneous Localization and Mapping)和SFM(Structure from Motion)这些复杂的估计问题中,因子图算法以其高效和灵活性而脱颖而出,成为图模型领域的核心技术。GTSAM(Georgia Tech Smo…

【论文阅读】Resource Allocation for Text Semantic Communications

这是一篇关于语义通信中资源分配的论文。全文共5页,篇幅较短。 目录在这里 摘要关键字引言语义通信资源分配贡献公式符号 系统模型DeepSC TransmitterTransmission ModelDeepSC Receiver 语义感知资源分配策略Semantic Spectral Efficiency (S-SE&#…

Docker七 | 搭建Swarm集群

目录 创建Swarm集群 创建管理节点 增加工作节点 查看集群 部署服务 新建服务 查看服务 服务伸缩 增加服务 减少服务 删除服务 创建Swarm集群 创建管理节点 在192.168.117.131下执行docker swarm init命令的节点自动成为管理节点 [rootlocalhost ~]# docker swar…

idea中切换JDK8、JDK11、JDK17

有时候,我们可能需要在不同的Java版本中去测试或者查看源码,idea可以让我们修改Java的版本。 前提:你必须下载安装好对应的Java版本,可参考文章【windows下切换JDK8、JDK11、JDK17】(https://blog.csdn.net/xijinno1/a…

深度学习核心技术与实践之深度学习基础篇

非书中全部内容,只是写了些自认为有收获的部分 神经网络 生物神经元的特点 (1)人体各种神经元本身的构成很相似 (2)早期的大脑损伤,其功能可能是以其他部位的神经元来代替实现的 (3&#x…

腾讯云服务器怎么买划算?最新优惠价格表

2023腾讯云轻量应用服务器优惠价格表,12月最新报价,腾讯云轻量2核2G3M带宽62元一年、2核2G4M轻量服务器118元一年,540元三年、2核4G5M带宽218元一年,756元三年、4核8G12M轻量服务器646元15个月,CVM云服务器S5实例2核2G…

C# 常用数据类型及取值范围

1.常见数据类型和取值范围 序号数据类型占字节数取值范围1byte10 到 2552sbyte1-128 到 1273short 2-32,768 到 32,7674ushort20 到 65,5355int4-2,147,483,648 到 2,147,483,6476uint40 到 4,294,967,2957float41.5 x 10−45 至 3.4 x 10388double85.0 10−324 到 1.…

15种线上Bug梳理,这坑我算是踩全了

日常开发过程中大家肯定或多或少都会遇到一些偶现的问题,最常见的一句话就是:在我本地运行的时候都是好的呀?在测试环境跑的时候都是好的呀?在预发布环境都是正常的呀?在灰度阶段都是没问题的呀? 怎么到生…

MFC工程中无法使用cygwin64的库

文章目录 MFC工程中无法使用cygwin64的库概述在MFC中使用cygwin64的静态库在MFC中使用cygwin64的DLL进行静态包含在MFC中使用cygwin64的DLL进行动态调用唯一可以使用cygwin64的方法是进程隔离来通讯cygwin64的官方用途修正后的启动进程隐藏dos窗口的函数动态载入DLL的实现 - La…

SCENIC+:增强子和基因调控网络的单细胞多组学推理

摘要 对单个细胞中染色质可及性和基因表达的联合分析为破译增强子驱动的基因调控网络(GRN)提供了机会。在这里,我们提出了一种用于推理增强器驱动的 GRN 的方法,称为 SCENIC。 SCENIC 预测基因组增强子以及候选上游转录因子 (TF)…

Ubuntu及Docker 安装rabbitmq

安装ubuntu 前 先暴露端口: 5672 用于与mq服务器通信用 15672 管理界面使用的端口 docker命令:docker run -itd --name ubuntu -p 5672:5672 -p 15672:15672 ubuntu 进入docker : docker exec -it ubuntu /bin/bash 步骤: 1. 更新安装源…

Android开发笔记(四)

中级控件 图形定制图形Drawable形状图形Shape状态列表图形 选择按钮复选框CheckBox开关按钮Switch单选按钮RadioButton 文本输入编辑框EditText焦点变更监听器 图形定制 图形Drawable Android把所有能够显示的图形都抽象为Drawable类(可绘制的)&#x…

【Fastadmin】通用排序weigh不执行model模型的事件

在model模型类支持的before_delete、after_delete、before_write、after_write、before_update、after_update、before_insert、after_insert事件行为中,我们可以快捷的做很多操作,如删除缓存、逻辑判断等 但是在fastadmin的通用排序weigh拖动中无法触发…

【我与Java的成长记】之this引用和构造方法的使用详解

系列文章目录 能看懂文字就能明白系列 C语言笔记传送门 🌟 个人主页:古德猫宁- 🌈 信念如阳光,照亮前行的每一步 文章目录 系列文章目录🌈 *信念如阳光,照亮前行的每一步* 前言一、this的使用this引用的特…

设备智能运维利器:无线振温一体式传感器

在现代工业领域中,设备的状态监测和维护是确保生产正常运行的关键环节。随着技术的不断进步,传感器在设备监测中发挥着越来越重要的作用。其中,无线振温一体式传感器作为设备智能运维的利器,具有独特的优势和潜力。本文将介绍无线…

Python+OpenCV 零基础学习笔记(6):ROI

文章目录 相关链接运行环境前言ROI颜色区域分割颜色通道合并 相关链接 【2022B站最好的OpenCV课程推荐】OpenCV从入门到实战 全套课程 CSDN标题里个括号对应视频的分P OpenCVPython CSDN专栏 Gitee 项目地址 运行环境 Python:3.11.5Anaconda:23.7.4IDE:vscode运行环境&#x…

一次性带屏电子烟解决方案,基于32位单片机开发

电子烟一般是指液态雾化电子烟,就是加烟油进行雾化的品类。电子烟根据烟油种类、烟雾量及使用情况有不同划分,如一次性小烟、换弹式电子烟、开放式注油电子烟、大烟、CBD雾化器等。一次性电子烟外形小巧,重量轻,便于随身携带&…

K8S 日志方案

目录 一、统一日志管理的整体方案 1、基础日志 2、Node级别的日志 3、集群级别的日志架构 二、安装统一日志管理组件 1、 部署Elasticsearch 2、部署Fluentd 3、部署Kibana 三、日志数据展示 一、统一日志管理的整体方案 通过应用和系统日志可以了解Kubernetes集群内…

力扣算法-Day14

第202题. 快乐数 编写一个算法来判断一个数 n 是不是快乐数。 「快乐数」 定义为: 对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和。然后重复这个过程直到这个数变为 1,也可能是 无限循环 但始终变不到 1。如果这个过程 结…

每日一题--------求数字的每⼀位之和

大家好今天的每日一题又来了,有啥不对的请在评论区留言哦 文章目录 目录 文章目录 求数字的每⼀位之和 题⽬描述: 输⼊⼀个整数m,求这个整数m的每⼀位之和,并打印。 一、解题思路 我们可以通过不断获取该整数的个位数&#xff0c…