【 YOLOv5】目标检测 YOLOv5 开源代码项目调试与讲解实战(3)-训练yolov5模型(本地)

news2025/1/16 8:09:08

训练yolov5模型(本地)

  • 训练文件 train.py
    • 训练如下图
  • 一些参数的设置
    • weights:
      • 对于weight参数,可以往Default参数中填入的参数有
    • cfg:(缩写)
      • cfg参数可以选择的网络模型
    • data
      • 对于data
    • hyp 超参数
    • epochs 训练多少轮
    • batch-size 把多少数据打包成一个batch,送到网络当中
    • img-size
    • rect:矩阵的训练方式
    • resume
    • nosave
    • notest
    • noautoanchor 锚点
    • evolve
    • bucket
    • cache-image
    • image-weight
    • device
    • multi-scale
    • single-cls
    • adam 优化器
    • sync-bn
    • local_rank
    • project
    • entity
    • name
    • exist-ok
    • quad
    • linear-lr
    • Label-smoothing
    • save-period

训练文件 train.py

往下翻,找到main函数
在这里插入图片描述

这里的works最好设置为0
在这里插入图片描述
运行如图,下载coco数据集中
在这里插入图片描述
在这里插入图片描述

超参数:学习速率等各种参数
库:显示权重

训练如下图

在这里插入图片描述
出现数据集下载的问题可以参考下面的解决方法
Dataset autodownload failure

训练文件保存的目录
在这里插入图片描述

如果没有发现该文件夹可以进行刷新
在这里插入图片描述

在这里插入图片描述

best.pt :在哪个训练轮数当中最好效果的网络模型参数
last.pt:最后一个训练的网络模型
hyp.yaml :训练过程中对模型的一些超参数
labels.jpg:标注的分布
labels_correlogram:标注的一些相关矩阵
opt.yaml:在训练过程中对参数的一些设置
results.txt:对训练结果的一些记录
tran_batch0.jpg:训练的一些图片

一些参数的设置

weights:

指定训练好模型的路径,用该模型去初始化网络中的一些参数(自动去下载这些模型),如果我自己拥有一个训练好的模型,放在某一个路径,把这个路径放进来,就会用我训练好的模型作为训练过程中模型的参数初始化。
但是我们现在的训练一般是从头开始训练,所以这里默认为空,采用程序对参数的权重对它初始化,不采用训练好的模型对他初始化
在这里插入图片描述

对于weight参数,可以往Default参数中填入的参数有

在这里插入图片描述

cfg:(缩写)

关于模型的一些配置,一般都存在model里面,
在这里插入图片描述
整个yolov55总共可以分为4个模型,
在这里插入图片描述
里面都是模型参数的一些设置
在这里插入图片描述

nc:模型应该分为多少个类
depth_multiple:模型的一些深度

如果选择小模型复制路径填入default
修改之后的代码为
在这里插入图片描述
我们现在来训练模型,这个模型的结构是yolov5s,其中的一些模型初始化的参数采用程序之中的简单初始化,不用其他已经训练好的模型来指定参数初始化

cfg参数可以选择的网络模型

在这里插入图片描述

data

指定训练数据集
在这里插入图片描述
在这里插入图片描述

download :指定从哪里下载数据集,没法下载就从浏览器复制地址粘贴下载
train:指定coco数据集应该下载到什么地方
nc:总共有多少个类别
names:每个类别的名称是什么
0 类别代表人

对于data

在这里插入图片描述

hyp 超参数

在这里插入图片描述
在这里插入图片描述
scratch 从头开始,一般把这个文件作为从头开始训练的文件
finetune:用于对模型进行一个微调

epochs 训练多少轮

默认300轮
在这里插入图片描述

batch-size 把多少数据打包成一个batch,送到网络当中

在这里插入图片描述

img-size

去分别设置训练集,和数列集的大小
在这里插入图片描述
5s对应640

rect:矩阵的训练方式

在这里插入图片描述
在这里插入图片描述
加速模型。减少不必要信息

resume

从最近训练的一个模型当中在它的基础上进行一个训练
在这里插入图片描述
默认是false,但并不是设置为ture就是能运行的,需要指定在哪一个模型的基础上进行一个继续的训练,需要告诉它模型处在什么地方,所以default 后应该设置为模型的位置
需要指定之前训练的模型文件,因为需要读取模型文件和相应的配置
在这里插入图片描述

在这里插入图片描述
运行就是从该模型停止的地方继续
在这里插入图片描述
在这里插入图片描述

nosave

我们在一个模型上训练很多次,如果设置为true,就生效了,只保存最后一次epoch训练的模型的一些权重数据,保存为pt文件
在这里插入图片描述

notest

是否只对最后一个epoch进行测试,按理说是对每个epoch上进行测试
在这里插入图片描述

noautoanchor 锚点

在目标检测算法中,大致可以分为有锚点的模型和没有锚点的模型

这里建议去查一下锚点锚框的相关知识

以前要是在图片中检测目标的话,要在图片上进行一个遍历,比如滑动窗口。现在都采用锚点的方式。

在这里插入图片描述
指定参数就会把锚点取消,默认是开启的

evolve

在这里插入图片描述

默认开启,对参数进行进化,寻找最优参数的方式
如果不明白参数是什么意思,可以去百度复制一下询问

bucket

作者之前把一些东西放在谷歌云盘上了,通过这个可以直接下载
在这里插入图片描述

cache-image

在这里插入图片描述

是否把图片缓存用于更好的训练

image-weight

从我们上一轮的测试过程中,对于哪些测试图片/测试部分,测试效果不好,在下一轮的训练过程中会对这些图片加一些相关的权重
在这里插入图片描述

device

设备
在这里插入图片描述

multi-scale

对图片尺寸进行变换
在这里插入图片描述

single-cls

训练的数据集是单类别还是多类别
在这里插入图片描述

adam 优化器

true选择优化器,false选择随机梯度下降
在这里插入图片描述

sync-bn

带DDP字眼的可以不用看了
在这里插入图片描述
分布式训练,多cpu

local_rank

DDP参数,不要去改
在这里插入图片描述

project

文件默认位置
在这里插入图片描述

entity

库,不用管
在这里插入图片描述
在这里插入图片描述

name

保存的文件名
在这里插入图片描述

exist-ok

在这里插入图片描述
不设置会存在exp1,2,3,4,5
设置了就存在一个exp里面

quad

在这里插入图片描述

按住ctrl+F可以找到的单词在什么位置,看源码
或者在问题里查询
在这里插入图片描述

linear-lr

对学习速率进行调整
在这里插入图片描述

Label-smoothing

标签平滑
在这里插入图片描述

save-period

程序日志
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1340680.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Gradio】1、Gradio 是什么

官网:https://www.gradio.app/ 一、Gradio 是什么 Gradio是一个用于创建机器学习模型交互式界面的 Python 库。通过Gradio,可以快速地为模型构建一个可视化的、易于使用的Web界面,无需编写任何Web前端代码。 Gradio 支持多种不同类型的输入…

【信息安全原理】——拒绝服务攻击及防御(学习笔记)

📖 前言:拒绝服务攻击(Denial of Service, DoS)是一种应用广泛、难以防范、严重威胁网络安全(破坏可用性)的攻击方式。本章主要介绍DoS的基本概念、攻击原理及防御措施。 目录 🕒 1. 定义&#…

无人职守自动安装linux操作系统

无人职守自动安装linux操作系统 1. 大规模部署案例2. PXE 技术3. Kickstart 技术4. 配置安装服务器4.1 DHCP服务4.2 TFTP 服务4.3 NFS服务 5. 示例5.1 搭建server1. 启动dhcp并设为开机自启2. 设置并启动tftp3. 将客户端所需启动文件复制到TFTP服务器4. 创建Kickstart自动应答文…

再谈动态SQL

专栏精选 引入Mybatis Mybatis的快速入门 Mybatis的增删改查扩展功能说明 mapper映射的参数和结果 Mybatis复杂类型的结果映射 Mybatis基于注解的结果映射 Mybatis枚举类型处理和类型处理器 文章目录 专栏精选摘要引言正文动态sql标签ifchoose...when...otherwisewhere、…

0基础学习VR全景平台篇第132篇:曝光三要素—快门速度

上课!全体起立~ 大家好,欢迎观看蛙色官方系列全景摄影课程! 经过前面两节课的学习我们认识了曝光三要素中的感光度和光圈,这节课我们将一同去了解影响曝光的最后一个要素——快门速度。 (曝光三要素:感光度、光圈、…

记录一下亿级别数据入库clickhouse

需求背景 公司的业务主要是广告数据归因的,每天的pv数据和加粉数据粗粗算一下,一天几千万上亿是有的。由于数据量大,客户在后台查询时间跨度比较大的数据时,查询效率就堪忧。因而将数据聚合后导到clickhouse进行存储,…

Secondo数据库下载安装

SECONDO - An Extensible Database System (secondo-database.github.io) 官网地址 1配置环境 ubuntu20.04.2(这个版本不能错,我试了20.04.3就安装不超过),镜像下载地址如下:Index of /releases/20.04.2 2安装步骤 安…

Springboot使用log4j2日志框架

文章目录 1.pom.xml引入依赖2.配置文件引入log4j2的配置文件3.导入log4j2配置文件4.通过Slf4j注解来使用log.info()等最后 1.pom.xml引入依赖 提示&#xff1a;lombok用于Slf4j注解 <dependency><groupId>org.springframework.boot</groupId><artifactId&…

bat命令清理Window应用注册表(Unity开发Window应用)

bat命令清理Window应用注册表&#xff08;Unity开发Window应用&#xff09; 介绍出现的问题方案一方案二方案二解决方案1. 首先使用【Win】【R】组合快捷键&#xff0c;快速打开运行命令框&#xff0c;在打开后面键入命令&#xff1a;【Regedit】2. 完后后按回车键&#xff08;…

异步通知

文章目录 一、异步通知1、应用场景2、执行流程&#xff08;基于读取按键值的情景&#xff09;2.1、应用程序具体做什么&#xff1f;2.2、驱动程序具体做什么&#xff1f; 三、程序1、驱动程序2、测试应用程序 三、总结 一、异步通知 1、应用场景 当应用程序不想休眠时&#x…

[SWPUCTF 2021 新生赛]sql

[SWPUCTF 2021 新生赛]sql wp 输入 1 正常回显&#xff1a; ?wllm1 返回&#xff1a; Want Me? Cross the Waf Your Login name:xxx Your Password:yyy输入单引号引发报错&#xff1a; ?wllm1 返回&#xff1a; Want Me? Cross the Waf You have an error in your SQL s…

springboot整合minio做文件存储

一,minio介绍 MinIO 是一个基于Apache License v2.0开源协议的对象存储服务。它兼容亚马逊S3云存储服务接口&#xff0c;非常适合于存储大容量非结构化的数据&#xff0c;例如图片、视频、日志文件、备份数据和容器/虚拟机镜像等&#xff0c;而一个对象文件可以是任意大小&…

《数据结构、算法与应用C++语言描述》- 平衡搜索树 -全网唯一完整详细实现插入和删除操作的模板类

平衡搜索树 完整可编译运行代码见&#xff1a;Github::Data-Structures-Algorithms-and-Applications/_34Balanced search tree 概述 本章会讲AVL、红-黑树、分裂树、B-树。 平衡搜索树的应用&#xff1f; AVL 和红-黑树和分裂树适合内部存储的应用。 B-树适合外部存储的…

一种删除 KubeSphere 中一直卡在 Terminating 的 Namespace--KubeSphere Logging System的简单方法

文章目录 一、问题提出二、删除方法1&#xff0c;获取kubesphere-logging-syste的详细信息json文件2&#xff0c;编辑kubesphere-logging-system.json3&#xff0c;执行清理命令 三、检查结果 一、问题提出 在使用 KubeSphere 的时候发现有一个日志服务KubeSphere Logging Sys…

考研结束,以下事情要抓紧做了!

Hello&#xff0c;大家好&#xff0c;我是 Sunday。 首先恭喜大家考研结束&#xff0c;也在这里祝各位考研的同学们可以 成功上岸 ✿✿ヽ(▽)ノ✿。 不过&#xff0c;考试结束并不是一个终点&#xff0c;而是另外一个新的起点。摆在大家面前的&#xff0c;还有很多新的问题&a…

安卓全球定位系统RTK测量仪 手持GPS北斗定位仪可用于国土电力

RTK&#xff0c;英文全名叫做Real-time kinematic&#xff0c;也就是实时动态。这是一个简称&#xff0c;全称是RTK&#xff08;Real-time kinematic&#xff0c;实时动态&#xff09;载波相位差分技术。 RTK定位是一种高精度的全球卫星导航技术&#xff0c;是实时运用技术&…

系统活动监测:iStat Menus中文 for Mac

iStat Menus是一款功能强大的系统监测和监控软件&#xff0c;可用于 macOS 平台。它提供了实时的系统状态和性能数据&#xff0c;以及各种监控工具和定制选项&#xff0c;帮助用户全面了解和管理他们的计算机系统。 以下是iStat Menus的一些主要特点和功能&#xff1a; 实时系…

深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing) 第五节 引用类型复制问题及用克隆接口ICloneable修复

深入浅出图解C#堆与栈 C# Heaping VS Stacking 第五节 引用类型复制问题及用克隆接口ICloneable修复 [深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing) 第一节 理解堆与栈](https://mp.csdn.net/mdeditor/101021023)[深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing) 第二节…

数据库开发之图形化工具以及表操作的详细解析

2.3 图形化工具 2.3.1 介绍 前面我们讲解了DDL中关于数据库操作的SQL语句&#xff0c;在我们编写这些SQL时&#xff0c;都是在命令行当中完成的。大家在练习的时候应该也感受到了&#xff0c;在命令行当中来敲这些SQL语句很不方便&#xff0c;主要的原因有以下 3 点&#xff…

【JavaScript】new原理解析

✨ 专栏介绍 在现代Web开发中&#xff0c;JavaScript已经成为了不可或缺的一部分。它不仅可以为网页增加交互性和动态性&#xff0c;还可以在后端开发中使用Node.js构建高效的服务器端应用程序。作为一种灵活且易学的脚本语言&#xff0c;JavaScript具有广泛的应用场景&#x…